File size: 81,400 Bytes
d82cf6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
#!/usr/bin/env python

# png.py - PNG encoder/decoder in pure Python
#
# Copyright (C) 2006 Johann C. Rocholl <[email protected]>
# Portions Copyright (C) 2009 David Jones <[email protected]>
# And probably portions Copyright (C) 2006 Nicko van Someren <[email protected]>
#
# Original concept by Johann C. Rocholl.
#
# LICENCE (MIT)
#
# Permission is hereby granted, free of charge, to any person
# obtaining a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

"""
The ``png`` module can read and write PNG files.

Installation and Overview
-------------------------

``pip install pypng``

For help, type ``import png; help(png)`` in your python interpreter.

A good place to start is the :class:`Reader` and :class:`Writer` classes.

Coverage of PNG formats is fairly complete;
all allowable bit depths (1/2/4/8/16/24/32/48/64 bits per pixel) and
colour combinations are supported:

- greyscale (1/2/4/8/16 bit);
- RGB, RGBA, LA (greyscale with alpha) with 8/16 bits per channel;
- colour mapped images (1/2/4/8 bit).

Interlaced images,
which support a progressive display when downloading,
are supported for both reading and writing.

A number of optional chunks can be specified (when writing)
and understood (when reading): ``tRNS``, ``bKGD``, ``gAMA``.

The ``sBIT`` chunk can be used to specify precision for
non-native bit depths.

Requires Python 3.5 or higher.
Installation is trivial,
but see the ``README.txt`` file (with the source distribution) for details.

Full use of all features will need some reading of the PNG specification
http://www.w3.org/TR/2003/REC-PNG-20031110/.

The package also comes with command line utilities.

- ``pripamtopng`` converts
  `Netpbm <http://netpbm.sourceforge.net/>`_ PAM/PNM files to PNG;
- ``pripngtopam`` converts PNG to file PAM/PNM.

There are a few more for simple PNG manipulations.

Spelling and Terminology
------------------------

Generally British English spelling is used in the documentation.
So that's "greyscale" and "colour".
This not only matches the author's native language,
it's also used by the PNG specification.

Colour Models
-------------

The major colour models supported by PNG (and hence by PyPNG) are:

- greyscale;
- greyscale--alpha;
- RGB;
- RGB--alpha.

Also referred to using the abbreviations: L, LA, RGB, RGBA.
Each letter codes a single channel:
*L* is for Luminance or Luma or Lightness (greyscale images);
*A* stands for Alpha, the opacity channel
(used for transparency effects, but higher values are more opaque,
so it makes sense to call it opacity);
*R*, *G*, *B* stand for Red, Green, Blue (colour image).

Lists, arrays, sequences, and so on
-----------------------------------

When getting pixel data out of this module (reading) and
presenting data to this module (writing) there are
a number of ways the data could be represented as a Python value.

The preferred format is a sequence of *rows*,
which each row being a sequence of *values*.
In this format, the values are in pixel order,
with all the values from all the pixels in a row
being concatenated into a single sequence for that row.

Consider an image that is 3 pixels wide by 2 pixels high, and each pixel
has RGB components:

Sequence of rows::

  list([R,G,B, R,G,B, R,G,B],
       [R,G,B, R,G,B, R,G,B])

Each row appears as its own list,
but the pixels are flattened so that three values for one pixel
simply follow the three values for the previous pixel.

This is the preferred because
it provides a good compromise between space and convenience.
PyPNG regards itself as at liberty to replace any sequence type with
any sufficiently compatible other sequence type;
in practice each row is an array (``bytearray`` or ``array.array``).

To allow streaming the outer list is sometimes
an iterator rather than an explicit list.

An alternative format is a single array holding all the values.

Array of values::

  [R,G,B, R,G,B, R,G,B,
   R,G,B, R,G,B, R,G,B]

The entire image is one single giant sequence of colour values.
Generally an array will be used (to save space), not a list.

The top row comes first,
and within each row the pixels are ordered from left-to-right.
Within a pixel the values appear in the order R-G-B-A
(or L-A for greyscale--alpha).

There is another format, which should only be used with caution.
It is mentioned because it is used internally,
is close to what lies inside a PNG file itself,
and has some support from the public API.
This format is called *packed*.
When packed, each row is a sequence of bytes (integers from 0 to 255),
just as it is before PNG scanline filtering is applied.
When the bit depth is 8 this is the same as a sequence of rows;
when the bit depth is less than 8 (1, 2 and 4),
several pixels are packed into each byte;
when the bit depth is 16 each pixel value is decomposed into 2 bytes
(and `packed` is a misnomer).
This format is used by the :meth:`Writer.write_packed` method.
It isn't usually a convenient format,
but may be just right if the source data for
the PNG image comes from something that uses a similar format
(for example, 1-bit BMPs, or another PNG file).
"""

__version__ = "0.0.20"

import collections
import io   # For io.BytesIO
import itertools
import math
# http://www.python.org/doc/2.4.4/lib/module-operator.html
import operator
import re
import struct
import sys
# http://www.python.org/doc/2.4.4/lib/module-warnings.html
import warnings
import zlib

from array import array


__all__ = ['Image', 'Reader', 'Writer', 'write_chunks', 'from_array']


# The PNG signature.
# http://www.w3.org/TR/PNG/#5PNG-file-signature
signature = struct.pack('8B', 137, 80, 78, 71, 13, 10, 26, 10)

# The xstart, ystart, xstep, ystep for the Adam7 interlace passes.
adam7 = ((0, 0, 8, 8),
         (4, 0, 8, 8),
         (0, 4, 4, 8),
         (2, 0, 4, 4),
         (0, 2, 2, 4),
         (1, 0, 2, 2),
         (0, 1, 1, 2))


def adam7_generate(width, height):
    """
    Generate the coordinates for the reduced scanlines
    of an Adam7 interlaced image
    of size `width` by `height` pixels.

    Yields a generator for each pass,
    and each pass generator yields a series of (x, y, xstep) triples,
    each one identifying a reduced scanline consisting of
    pixels starting at (x, y) and taking every xstep pixel to the right.
    """

    for xstart, ystart, xstep, ystep in adam7:
        if xstart >= width:
            continue
        yield ((xstart, y, xstep) for y in range(ystart, height, ystep))


# Models the 'pHYs' chunk (used by the Reader)
Resolution = collections.namedtuple('_Resolution', 'x y unit_is_meter')


def group(s, n):
    return list(zip(* [iter(s)] * n))


def isarray(x):
    return isinstance(x, array)


def check_palette(palette):
    """
    Check a palette argument (to the :class:`Writer` class) for validity.
    Returns the palette as a list if okay;
    raises an exception otherwise.
    """

    # None is the default and is allowed.
    if palette is None:
        return None

    p = list(palette)
    if not (0 < len(p) <= 256):
        raise ProtocolError(
            "a palette must have between 1 and 256 entries,"
            " see https://www.w3.org/TR/PNG/#11PLTE")
    seen_triple = False
    for i, t in enumerate(p):
        if len(t) not in (3, 4):
            raise ProtocolError(
                f"palette entry {i}: entries must be 3- or 4-tuples.")
        if len(t) == 3:
            seen_triple = True
        if seen_triple and len(t) == 4:
            raise ProtocolError(
                f"palette entry {i}: all 4-tuples must precede all 3-tuples")
        for x in t:
            if int(x) != x or not(0 <= x <= 255):
                raise ProtocolError(
                    f"palette entry {i}: "
                    "values must be integer: 0 <= x <= 255")
    return p


def check_sizes(size, width, height):
    """
    Check that these arguments, if supplied, are consistent.
    Return a (width, height) pair.
    """

    if not size:
        return width, height

    if len(size) != 2:
        raise ProtocolError(
            "size argument should be a pair (width, height)")
    if width is not None and width != size[0]:
        raise ProtocolError(
            f"size[0] ({size[0]}) and width ({width}) should match when both are used.")
    if height is not None and height != size[1]:
        raise ProtocolError(
            f"size[1] ({size[1]}) and height ({height}) should match when both are used.")
    return size


def check_color(c, greyscale, which):
    """
    Checks that a colour argument for transparent or background options
    is the right form.
    Returns the colour
    (which, if it's a bare integer, is "corrected" to a 1-tuple).
    """

    if c is None:
        return c
    if greyscale:
        try:
            len(c)
        except TypeError:
            c = (c,)
        if len(c) != 1:
            raise ProtocolError(f"{which} for greyscale must be 1-tuple")
        if not is_natural(c[0]):
            raise ProtocolError(
                f"{which} colour for greyscale must be integer")
    else:
        if not (len(c) == 3 and
                is_natural(c[0]) and
                is_natural(c[1]) and
                is_natural(c[2])):
            raise ProtocolError(
                f"{which} colour must be a triple of integers")
    return c


class Error(Exception):
    def __str__(self):
        return self.__class__.__name__ + ': ' + ' '.join(self.args)


class FormatError(Error):
    """
    Problem with input file format.
    In other words, PNG file does not conform to
    the specification in some way and is invalid.
    """


class ProtocolError(Error):
    """
    Problem with the way the programming interface has been used,
    or the data presented to it.
    """


class ChunkError(FormatError):
    pass


class Default:
    """The default for the greyscale paramter."""


class Writer:
    """
    PNG encoder in pure Python.
    """

    def __init__(self, width=None, height=None,
                 size=None,
                 greyscale=Default,
                 alpha=False,
                 bitdepth=8,
                 palette=None,
                 transparent=None,
                 background=None,
                 gamma=None,
                 compression=None,
                 interlace=False,
                 planes=None,
                 colormap=None,
                 maxval=None,
                 chunk_limit=2**20,
                 x_pixels_per_unit=None,
                 y_pixels_per_unit=None,
                 unit_is_meter=False):
        """
        Create a PNG encoder object.

        Arguments:

        width, height
          Image size in pixels, as two separate arguments.
        size
          Image size (w,h) in pixels, as single argument.
        greyscale
          Pixels are greyscale, not RGB.
        alpha
          Input data has alpha channel (RGBA or LA).
        bitdepth
          Bit depth: from 1 to 16 (for each channel).
        palette
          Create a palette for a colour mapped image (colour type 3).
        transparent
          Specify a transparent colour (create a ``tRNS`` chunk).
        background
          Specify a default background colour (create a ``bKGD`` chunk).
        gamma
          Specify a gamma value (create a ``gAMA`` chunk).
        compression
          zlib compression level: 0 (none) to 9 (more compressed);
          default: -1 or None.
        interlace
          Create an interlaced image.
        chunk_limit
          Write multiple ``IDAT`` chunks to save memory.
        x_pixels_per_unit
          Number of pixels a unit along the x axis (write a
          `pHYs` chunk).
        y_pixels_per_unit
          Number of pixels a unit along the y axis (write a
          `pHYs` chunk). Along with `x_pixel_unit`, this gives
          the pixel size ratio.
        unit_is_meter
          `True` to indicate that the unit (for the `pHYs`
          chunk) is metre.

        The image size (in pixels) can be specified either by using the
        `width` and `height` arguments, or with the single `size`
        argument.
        If `size` is used it should be a pair (*width*, *height*).

        The `greyscale` argument indicates whether input pixels
        are greyscale (when true), or colour (when false).
        The default is true unless `palette=` is used.

        The `alpha` argument (a boolean) specifies
        whether input pixels have an alpha channel (or not).

        `bitdepth` specifies the bit depth of the source pixel values.
        Each channel may have a different bit depth.
        Each source pixel must have values that are
        an integer between 0 and ``2**bitdepth-1``, where
        `bitdepth` is the bit depth for the corresponding channel.
        For example, 8-bit images have values between 0 and 255.
        PNG only stores images with bit depths of
        1,2,4,8, or 16 (the same for all channels).
        When `bitdepth` is not one of these values or where
        channels have different bit depths,
        the next highest valid bit depth is selected,
        and an ``sBIT`` (significant bits) chunk is generated
        that specifies the original precision of the source image.
        In this case the supplied pixel values will be rescaled to
        fit the range of the selected bit depth.

        The PNG file format supports many bit depth / colour model
        combinations, but not all.
        The details are somewhat arcane
        (refer to the PNG specification for full details).
        Briefly:
        Bit depths < 8 (1,2,4) are only allowed with greyscale and
        colour mapped images;
        colour mapped images cannot have bit depth 16.

        For colour mapped images
        (in other words, when the `palette` argument is specified)
        the `bitdepth` argument must match one of
        the valid PNG bit depths: 1, 2, 4, or 8.
        (It is valid to have a PNG image with a palette and
        an ``sBIT`` chunk, but the meaning is slightly different;
        it would be awkward to use the `bitdepth` argument for this.)

        The `palette` option, when specified,
        causes a colour mapped image to be created:
        the PNG colour type is set to 3;
        `greyscale` must not be true; `alpha` must not be true;
        `transparent` must not be set.
        The bit depth must be 1,2,4, or 8.
        When a colour mapped image is created,
        the pixel values are palette indexes and
        the `bitdepth` argument specifies the size of these indexes
        (not the size of the colour values in the palette).

        The palette argument value should be a sequence of 3- or
        4-tuples.
        3-tuples specify RGB palette entries;
        4-tuples specify RGBA palette entries.
        All the 4-tuples (if present) must come before all the 3-tuples.
        A ``PLTE`` chunk is created;
        if there are 4-tuples then a ``tRNS`` chunk is created as well.
        The ``PLTE`` chunk will contain all the RGB triples in the same
        sequence;
        the ``tRNS`` chunk will contain the alpha channel for
        all the 4-tuples, in the same sequence.
        Palette entries are always 8-bit.

        If specified, the `transparent` and `background` parameters must be
        a tuple with one element for each channel in the image.
        Either a 3-tuple of integer (RGB) values for a colour image, or
        a 1-tuple of a single integer for a greyscale image.

        If specified, the `gamma` parameter must be a positive number
        (generally, a `float`).
        A ``gAMA`` chunk will be created.
        Note that this will not change the values of the pixels as
        they appear in the PNG file,
        they are assumed to have already
        been converted appropriately for the gamma specified.

        The `compression` argument specifies the compression level to
        be used by the ``zlib`` module.
        Values from 1 to 9 (highest) specify compression.
        0 means no compression.
        -1 and ``None`` both mean that the ``zlib`` module uses
        the default level of compession (which is generally acceptable).

        If `interlace` is true then an interlaced image is created
        (using PNG's so far only interace method, *Adam7*).
        This does not affect how the pixels should be passed in,
        rather it changes how they are arranged into the PNG file.
        On slow connexions interlaced images can be
        partially decoded by the browser to give
        a rough view of the image that is
        successively refined as more image data appears.

        .. note ::

          Enabling the `interlace` option requires the entire image
          to be processed in working memory.

        `chunk_limit` is used to limit the amount of memory used whilst
        compressing the image.
        In order to avoid using large amounts of memory,
        multiple ``IDAT`` chunks may be created.
        """

        # At the moment the `planes` argument is ignored;
        # its purpose is to act as a dummy so that
        # ``Writer(x, y, **info)`` works, where `info` is a dictionary
        # returned by Reader.read and friends.
        # Ditto for `colormap`.

        width, height = check_sizes(size, width, height)
        del size

        if not is_natural(width) or not is_natural(height):
            raise ProtocolError("width and height must be integers")
        if width <= 0 or height <= 0:
            raise ProtocolError("width and height must be greater than zero")
        # http://www.w3.org/TR/PNG/#7Integers-and-byte-order
        if width > 2 ** 31 - 1 or height > 2 ** 31 - 1:
            raise ProtocolError("width and height cannot exceed 2**31-1")

        if alpha and transparent is not None:
            raise ProtocolError(
                "transparent colour not allowed with alpha channel")

        # bitdepth is either single integer, or tuple of integers.
        # Convert to tuple.
        try:
            len(bitdepth)
        except TypeError:
            bitdepth = (bitdepth, )
        for b in bitdepth:
            valid = is_natural(b) and 1 <= b <= 16
            if not valid:
                raise ProtocolError(
                    f"each bitdepth {bitdepth} must be a positive integer <= 16")

        # Calculate channels, and
        # expand bitdepth to be one element per channel.
        palette = check_palette(palette)
        alpha = bool(alpha)
        colormap = bool(palette)
        if greyscale is Default and palette:
            greyscale = False
        greyscale = bool(greyscale)
        if colormap:
            color_planes = 1
            planes = 1
        else:
            color_planes = (3, 1)[greyscale]
            planes = color_planes + alpha
        if len(bitdepth) == 1:
            bitdepth *= planes

        bitdepth, self.rescale = check_bitdepth_rescale(
                palette,
                bitdepth,
                transparent, alpha, greyscale)

        # These are assertions, because above logic should have
        # corrected or raised all problematic cases.
        if bitdepth < 8:
            assert greyscale or palette
            assert not alpha
        if bitdepth > 8:
            assert not palette

        transparent = check_color(transparent, greyscale, 'transparent')
        background = check_color(background, greyscale, 'background')

        # It's important that the true boolean values
        # (greyscale, alpha, colormap, interlace) are converted
        # to bool because Iverson's convention is relied upon later on.
        self.width = width
        self.height = height
        self.transparent = transparent
        self.background = background
        self.gamma = gamma
        self.greyscale = greyscale
        self.alpha = alpha
        self.colormap = colormap
        self.bitdepth = int(bitdepth)
        self.compression = compression
        self.chunk_limit = chunk_limit
        self.interlace = bool(interlace)
        self.palette = palette
        self.x_pixels_per_unit = x_pixels_per_unit
        self.y_pixels_per_unit = y_pixels_per_unit
        self.unit_is_meter = bool(unit_is_meter)

        self.color_type = (4 * self.alpha +
                           2 * (not greyscale) +
                           1 * self.colormap)
        assert self.color_type in (0, 2, 3, 4, 6)

        self.color_planes = color_planes
        self.planes = planes
        # :todo: fix for bitdepth < 8
        self.psize = (self.bitdepth / 8) * self.planes

    def write(self, outfile, rows):
        """
        Write a PNG image to the output file.
        `rows` should be an iterable that yields each row
        (each row is a sequence of values).
        The rows should be the rows of the original image,
        so there should be ``self.height`` rows of
        ``self.width * self.planes`` values.
        If `interlace` is specified (when creating the instance),
        then an interlaced PNG file will be written.
        Supply the rows in the normal image order;
        the interlacing is carried out internally.

        .. note ::

          Interlacing requires the entire image to be in working memory.
        """

        # Values per row
        vpr = self.width * self.planes

        def check_rows(rows):
            """
            Yield each row in rows,
            but check each row first (for correct width).
            """
            for i, row in enumerate(rows):
                try:
                    wrong_length = len(row) != vpr
                except TypeError:
                    # When using an itertools.ichain object or
                    # other generator not supporting __len__,
                    # we set this to False to skip the check.
                    wrong_length = False
                if wrong_length:
                    # Note: row numbers start at 0.
                    raise ProtocolError(
                        f"Expected {vpr} values but got {len(row)} values, in row {i}")
                yield row

        if self.interlace:
            fmt = 'BH'[self.bitdepth > 8]
            a = array(fmt, itertools.chain(*check_rows(rows)))
            return self.write_array(outfile, a)

        nrows = self.write_passes(outfile, check_rows(rows))
        if nrows != self.height:
            raise ProtocolError(
                f"rows supplied ({nrows}) does not match height ({self.height})")
        return nrows

    def write_passes(self, outfile, rows):
        """
        Write a PNG image to the output file.

        Most users are expected to find the :meth:`write` or
        :meth:`write_array` method more convenient.

        The rows should be given to this method in the order that
        they appear in the output file.
        For straightlaced images, this is the usual top to bottom ordering.
        For interlaced images the rows should have been interlaced before
        passing them to this function.

        `rows` should be an iterable that yields each row
        (each row being a sequence of values).
        """

        # Ensure rows are scaled (to 4-/8-/16-bit),
        # and packed into bytes.

        if self.rescale:
            rows = rescale_rows(rows, self.rescale)

        if self.bitdepth < 8:
            rows = pack_rows(rows, self.bitdepth)
        elif self.bitdepth == 16:
            rows = unpack_rows(rows)

        return self.write_packed(outfile, rows)

    def write_packed(self, outfile, rows):
        """
        Write PNG file to `outfile`.
        `rows` should be an iterator that yields each packed row;
        a packed row being a sequence of packed bytes.

        The rows have a filter byte prefixed and
        are then compressed into one or more IDAT chunks.
        They are not processed any further,
        so if bitdepth is other than 1, 2, 4, 8, 16,
        the pixel values should have been scaled
        before passing them to this method.

        This method does work for interlaced images but it is best avoided.
        For interlaced images, the rows should be
        presented in the order that they appear in the file.
        """

        self.write_preamble(outfile)

        # http://www.w3.org/TR/PNG/#11IDAT
        if self.compression is not None:
            compressor = zlib.compressobj(self.compression)
        else:
            compressor = zlib.compressobj()

        # data accumulates bytes to be compressed for the IDAT chunk;
        # it's compressed when sufficiently large.
        data = bytearray()

        # raise i scope out of the for loop. set to -1, because the for loop
        # sets i to 0 on the first pass
        i = -1
        for i, row in enumerate(rows):
            # Add "None" filter type.
            # Currently, it's essential that this filter type be used
            # for every scanline as
            # we do not mark the first row of a reduced pass image;
            # that means we could accidentally compute
            # the wrong filtered scanline if we used
            # "up", "average", or "paeth" on such a line.
            data.append(0)
            data.extend(row)
            if len(data) > self.chunk_limit:
                compressed = compressor.compress(data)
                if len(compressed):
                    write_chunk(outfile, b'IDAT', compressed)
                data = bytearray()

        compressed = compressor.compress(bytes(data))
        flushed = compressor.flush()
        if len(compressed) or len(flushed):
            write_chunk(outfile, b'IDAT', compressed + flushed)
        # http://www.w3.org/TR/PNG/#11IEND
        write_chunk(outfile, b'IEND')
        return i + 1

    def write_preamble(self, outfile):
        # http://www.w3.org/TR/PNG/#5PNG-file-signature
        outfile.write(signature)

        # http://www.w3.org/TR/PNG/#11IHDR
        write_chunk(outfile, b'IHDR',
                    struct.pack("!2I5B", self.width, self.height,
                                self.bitdepth, self.color_type,
                                0, 0, self.interlace))

        # See :chunk:order
        # http://www.w3.org/TR/PNG/#11gAMA
        if self.gamma is not None:
            write_chunk(outfile, b'gAMA',
                        struct.pack("!L", int(round(self.gamma * 1e5))))

        # See :chunk:order
        # http://www.w3.org/TR/PNG/#11sBIT
        if self.rescale:
            write_chunk(
                outfile, b'sBIT',
                struct.pack(f'{self.planes,* [s[0] for s in self.rescale]}B' ))

        # :chunk:order: Without a palette (PLTE chunk),
        # ordering is relatively relaxed.
        # With one, gAMA chunk must precede PLTE chunk
        # which must precede tRNS and bKGD.
        # See http://www.w3.org/TR/PNG/#5ChunkOrdering
        if self.palette:
            p, t = make_palette_chunks(self.palette)
            write_chunk(outfile, b'PLTE', p)
            if t:
                # tRNS chunk is optional;
                # Only needed if palette entries have alpha.
                write_chunk(outfile, b'tRNS', t)

        # http://www.w3.org/TR/PNG/#11tRNS
        if self.transparent is not None:
            if self.greyscale:
                fmt = "!1H"
            else:
                fmt = "!3H"
            write_chunk(outfile, b'tRNS',
                        struct.pack(fmt, *self.transparent))

        # http://www.w3.org/TR/PNG/#11bKGD
        if self.background is not None:
            if self.greyscale:
                fmt = "!1H"
            else:
                fmt = "!3H"
            write_chunk(outfile, b'bKGD',
                        struct.pack(fmt, *self.background))

        # http://www.w3.org/TR/PNG/#11pHYs
        if (self.x_pixels_per_unit is not None and
                self.y_pixels_per_unit is not None):
            tup = (self.x_pixels_per_unit,
                   self.y_pixels_per_unit,
                   int(self.unit_is_meter))
            write_chunk(outfile, b'pHYs', struct.pack("!LLB", *tup))

    def write_array(self, outfile, pixels):
        """
        Write an array that holds all the image values
        as a PNG file on the output file.
        See also :meth:`write` method.
        """

        if self.interlace:
            if type(pixels) != array:
                # Coerce to array type
                fmt = 'BH'[self.bitdepth > 8]
                pixels = array(fmt, pixels)
            return self.write_passes(
                outfile,
                self.array_scanlines_interlace(pixels)
            )
        else:
            return self.write_passes(
                outfile,
                self.array_scanlines(pixels)
            )

    def array_scanlines(self, pixels):
        """
        Generates rows (each a sequence of values) from
        a single array of values.
        """

        # Values per row
        vpr = self.width * self.planes
        stop = 0
        for y in range(self.height):
            start = stop
            stop = start + vpr
            yield pixels[start:stop]

    def array_scanlines_interlace(self, pixels):
        """
        Generator for interlaced scanlines from an array.
        `pixels` is the full source image as a single array of values.
        The generator yields each scanline of the reduced passes in turn,
        each scanline being a sequence of values.
        """

        # http://www.w3.org/TR/PNG/#8InterlaceMethods
        # Array type.
        fmt = 'BH'[self.bitdepth > 8]
        # Value per row
        vpr = self.width * self.planes

        # Each iteration generates a scanline starting at (x, y)
        # and consisting of every xstep pixels.
        for lines in adam7_generate(self.width, self.height):
            for x, y, xstep in lines:
                # Pixels per row (of reduced image)
                ppr = int(math.ceil((self.width - x) / float(xstep)))
                # Values per row (of reduced image)
                reduced_row_len = ppr * self.planes
                if xstep == 1:
                    # Easy case: line is a simple slice.
                    offset = y * vpr
                    yield pixels[offset: offset + vpr]
                    continue
                # We have to step by xstep,
                # which we can do one plane at a time
                # using the step in Python slices.
                row = array(fmt)
                # There's no easier way to set the length of an array
                row.extend(pixels[0:reduced_row_len])
                offset = y * vpr + x * self.planes
                end_offset = (y + 1) * vpr
                skip = self.planes * xstep
                for i in range(self.planes):
                    row[i::self.planes] = \
                        pixels[offset + i: end_offset: skip]
                yield row


def write_chunk(outfile, tag, data=b''):
    """
    Write a PNG chunk to the output file, including length and
    checksum.
    """

    data = bytes(data)
    # http://www.w3.org/TR/PNG/#5Chunk-layout
    outfile.write(struct.pack("!I", len(data)))
    outfile.write(tag)
    outfile.write(data)
    checksum = zlib.crc32(tag)
    checksum = zlib.crc32(data, checksum)
    checksum &= 2 ** 32 - 1
    outfile.write(struct.pack("!I", checksum))


def write_chunks(out, chunks):
    """Create a PNG file by writing out the chunks."""

    out.write(signature)
    for chunk in chunks:
        write_chunk(out, *chunk)


def rescale_rows(rows, rescale):
    """
    Take each row in rows (an iterator) and yield
    a fresh row with the pixels scaled according to
    the rescale parameters in the list `rescale`.
    Each element of `rescale` is a tuple of
    (source_bitdepth, target_bitdepth),
    with one element per channel.
    """

    # One factor for each channel
    fs = [float(2 ** s[1] - 1)/float(2 ** s[0] - 1)
          for s in rescale]

    # Assume all target_bitdepths are the same
    target_bitdepths = set(s[1] for s in rescale)
    assert len(target_bitdepths) == 1
    (target_bitdepth, ) = target_bitdepths
    typecode = 'BH'[target_bitdepth > 8]

    # Number of channels
    n_chans = len(rescale)

    for row in rows:
        rescaled_row = array(typecode, iter(row))
        for i in range(n_chans):
            channel = array(
                typecode,
                (int(round(fs[i] * x)) for x in row[i::n_chans]))
            rescaled_row[i::n_chans] = channel
        yield rescaled_row


def pack_rows(rows, bitdepth):
    """Yield packed rows that are a byte array.
    Each byte is packed with the values from several pixels.
    """

    assert bitdepth < 8
    assert 8 % bitdepth == 0

    # samples per byte
    spb = int(8 / bitdepth)

    def make_byte(block):
        """Take a block of (2, 4, or 8) values,
        and pack them into a single byte.
        """

        res = 0
        for v in block:
            res = (res << bitdepth) + v
        return res

    for row in rows:
        a = bytearray(row)
        # Adding padding bytes so we can group into a whole
        # number of spb-tuples.
        n = float(len(a))
        extra = math.ceil(n / spb) * spb - n
        a.extend([0] * int(extra))
        # Pack into bytes.
        # Each block is the samples for one byte.
        blocks = group(a, spb)
        yield bytearray(make_byte(block) for block in blocks)


def unpack_rows(rows):
    """Unpack each row from being 16-bits per value,
    to being a sequence of bytes.
    """
    for row in rows:
        fmt = f'!{len(row)}'
        yield bytearray(struct.pack(fmt, *row))


def make_palette_chunks(palette):
    """
    Create the byte sequences for a ``PLTE`` and
    if necessary a ``tRNS`` chunk.
    Returned as a pair (*p*, *t*).
    *t* will be ``None`` if no ``tRNS`` chunk is necessary.
    """

    p = bytearray()
    t = bytearray()

    for x in palette:
        p.extend(x[0:3])
        if len(x) > 3:
            t.append(x[3])
    if t:
        return p, t
    return p, None


def check_bitdepth_rescale(
        palette, bitdepth, transparent, alpha, greyscale):
    """
    Returns (bitdepth, rescale) pair.
    """

    if palette:
        if len(bitdepth) != 1:
            raise ProtocolError(
                "with palette, only a single bitdepth may be used")
        (bitdepth, ) = bitdepth
        if bitdepth not in (1, 2, 4, 8):
            raise ProtocolError(
                "with palette, bitdepth must be 1, 2, 4, or 8")
        if transparent is not None:
            raise ProtocolError("transparent and palette not compatible")
        if alpha:
            raise ProtocolError("alpha and palette not compatible")
        if greyscale:
            raise ProtocolError("greyscale and palette not compatible")
        return bitdepth, None

    # No palette, check for sBIT chunk generation.

    if greyscale and not alpha:
        # Single channel, L.
        (bitdepth,) = bitdepth
        if bitdepth in (1, 2, 4, 8, 16):
            return bitdepth, None
        if bitdepth > 8:
            targetbitdepth = 16
        elif bitdepth == 3:
            targetbitdepth = 4
        else:
            assert bitdepth in (5, 6, 7)
            targetbitdepth = 8
        return targetbitdepth, [(bitdepth, targetbitdepth)]

    assert alpha or not greyscale

    depth_set = tuple(set(bitdepth))
    if depth_set in [(8,), (16,)]:
        # No sBIT required.
        (bitdepth, ) = depth_set
        return bitdepth, None

    targetbitdepth = (8, 16)[max(bitdepth) > 8]
    return targetbitdepth, [(b, targetbitdepth) for b in bitdepth]


# Regex for decoding mode string
RegexModeDecode = re.compile("(LA?|RGBA?);?([0-9]*)", flags=re.IGNORECASE)


def from_array(a, mode=None, info={}):
    """
    Create a PNG :class:`Image` object from a 2-dimensional array.
    One application of this function is easy PIL-style saving:
    ``png.from_array(pixels, 'L').save('foo.png')``.

    Unless they are specified using the *info* parameter,
    the PNG's height and width are taken from the array size.
    The first axis is the height; the second axis is the
    ravelled width and channel index.
    The array is treated is a sequence of rows,
    each row being a sequence of values (``width*channels`` in number).
    So an RGB image that is 16 pixels high and 8 wide will
    occupy a 2-dimensional array that is 16x24
    (each row will be 8*3 = 24 sample values).

    *mode* is a string that specifies the image colour format in a
    PIL-style mode.  It can be:

    ``'L'``
      greyscale (1 channel)
    ``'LA'``
      greyscale with alpha (2 channel)
    ``'RGB'``
      colour image (3 channel)
    ``'RGBA'``
      colour image with alpha (4 channel)

    The mode string can also specify the bit depth
    (overriding how this function normally derives the bit depth,
    see below).
    Appending ``';16'`` to the mode will cause the PNG to be
    16 bits per channel;
    any decimal from 1 to 16 can be used to specify the bit depth.

    When a 2-dimensional array is used *mode* determines how many
    channels the image has, and so allows the width to be derived from
    the second array dimension.

    The array is expected to be a ``numpy`` array,
    but it can be any suitable Python sequence.
    For example, a list of lists can be used:
    ``png.from_array([[0, 255, 0], [255, 0, 255]], 'L')``.
    The exact rules are: ``len(a)`` gives the first dimension, height;
    ``len(a[0])`` gives the second dimension.
    It's slightly more complicated than that because
    an iterator of rows can be used, and it all still works.
    Using an iterator allows data to be streamed efficiently.

    The bit depth of the PNG is normally taken from
    the array element's datatype
    (but if *mode* specifies a bitdepth then that is used instead).
    The array element's datatype is determined in a way which
    is supposed to work both for ``numpy`` arrays and for Python
    ``array.array`` objects.
    A 1 byte datatype will give a bit depth of 8,
    a 2 byte datatype will give a bit depth of 16.
    If the datatype does not have an implicit size,
    like the above example where it is a plain Python list of lists,
    then a default of 8 is used.

    The *info* parameter is a dictionary that can
    be used to specify metadata (in the same style as
    the arguments to the :class:`png.Writer` class).
    For this function the keys that are useful are:

    height
      overrides the height derived from the array dimensions and
      allows *a* to be an iterable.
    width
      overrides the width derived from the array dimensions.
    bitdepth
      overrides the bit depth derived from the element datatype
      (but must match *mode* if that also specifies a bit depth).

    Generally anything specified in the *info* dictionary will
    override any implicit choices that this function would otherwise make,
    but must match any explicit ones.
    For example, if the *info* dictionary has a ``greyscale`` key then
    this must be true when mode is ``'L'`` or ``'LA'`` and
    false when mode is ``'RGB'`` or ``'RGBA'``.
    """

    # We abuse the *info* parameter by modifying it.  Take a copy here.
    # (Also typechecks *info* to some extent).
    info = dict(info)

    # Syntax check mode string.
    match = RegexModeDecode.match(mode)
    if not match:
        raise Error("mode string should be 'RGB' or 'L;16' or similar.")

    mode, bitdepth = match.groups()
    if bitdepth:
        bitdepth = int(bitdepth)

    # Colour format.
    if 'greyscale' in info:
        if bool(info['greyscale']) != ('L' in mode):
            raise ProtocolError("info['greyscale'] should match mode.")
    info['greyscale'] = 'L' in mode

    alpha = 'A' in mode
    if 'alpha' in info:
        if bool(info['alpha']) != alpha:
            raise ProtocolError("info['alpha'] should match mode.")
    info['alpha'] = alpha

    # Get bitdepth from *mode* if possible.
    if bitdepth:
        if info.get("bitdepth") and bitdepth != info['bitdepth']:
            raise ProtocolError(
                f"bitdepth ({bitdepth}) should match bitdepth of info ({info[bitdepth]}).")
        info['bitdepth'] = bitdepth

    # Fill in and/or check entries in *info*.
    # Dimensions.
    width, height = check_sizes(
        info.get("size"),
        info.get("width"),
        info.get("height"))
    if width:
        info["width"] = width
    if height:
        info["height"] = height

    if "height" not in info:
        try:
            info['height'] = len(a)
        except TypeError:
            raise ProtocolError(
                "len(a) does not work, supply info['height'] instead.")

    planes = len(mode)
    if 'planes' in info:
        if info['planes'] != planes:
            raise Error("info['planes'] should match mode.")

    # In order to work out whether we the array is 2D or 3D we need its
    # first row, which requires that we take a copy of its iterator.
    # We may also need the first row to derive width and bitdepth.
    a, t = itertools.tee(a)
    row = next(t)
    del t

    testelement = row
    if 'width' not in info:
        width = len(row) // planes
        info['width'] = width

    if 'bitdepth' not in info:
        try:
            dtype = testelement.dtype
            # goto the "else:" clause.  Sorry.
        except AttributeError:
            try:
                # Try a Python array.array.
                bitdepth = 8 * testelement.itemsize
            except AttributeError:
                # We can't determine it from the array element's datatype,
                # use a default of 8.
                bitdepth = 8
        else:
            # If we got here without exception,
            # we now assume that the array is a numpy array.
            if dtype.kind == 'b':
                bitdepth = 1
            else:
                bitdepth = 8 * dtype.itemsize
        info['bitdepth'] = bitdepth

    for thing in ["width", "height", "bitdepth", "greyscale", "alpha"]:
        assert thing in info

    return Image(a, info)


# So that refugee's from PIL feel more at home.  Not documented.
fromarray = from_array


class Image:
    """A PNG image.  You can create an :class:`Image` object from
    an array of pixels by calling :meth:`png.from_array`.  It can be
    saved to disk with the :meth:`save` method.
    """

    def __init__(self, rows, info):
        """
        .. note ::

          The constructor is not public.  Please do not call it.
        """

        self.rows = rows
        self.info = info

    def save(self, file):
        """Save the image to the named *file*.

        See `.write()` if you already have an open file object.

        In general, you can only call this method once;
        after it has been called the first time the PNG image is written,
        the source data will have been streamed, and
        cannot be streamed again.
        """

        w = Writer(**self.info)

        with open(file, 'wb') as fd:
            w.write(fd, self.rows)

    def write(self, file):
        """Write the image to the open file object.

        See `.save()` if you have a filename.

        In general, you can only call this method once;
        after it has been called the first time the PNG image is written,
        the source data will have been streamed, and
        cannot be streamed again.
        """

        w = Writer(**self.info)
        w.write(file, self.rows)


class Reader:
    """
    Pure Python PNG decoder in pure Python.
    """

    def __init__(self, _guess=None, filename=None, file=None, bytes=None):
        """
        The constructor expects exactly one keyword argument.
        If you supply a positional argument instead,
        it will guess the input type.
        Choose from the following keyword arguments:

        filename
          Name of input file (a PNG file).
        file
          A file-like object (object with a read() method).
        bytes
          ``bytes`` or ``bytearray`` with PNG data.

        """
        keywords_supplied = (
            (_guess is not None) +
            (filename is not None) +
            (file is not None) +
            (bytes is not None))
        if keywords_supplied != 1:
            raise TypeError("Reader() takes exactly 1 argument")

        # Will be the first 8 bytes, later on.  See validate_signature.
        self.signature = None
        self.transparent = None
        # A pair of (len,type) if a chunk has been read but its data and
        # checksum have not (in other words the file position is just
        # past the 4 bytes that specify the chunk type).
        # See preamble method for how this is used.
        self.atchunk = None

        if _guess is not None:
            if isarray(_guess):
                bytes = _guess
            elif isinstance(_guess, str):
                filename = _guess
            elif hasattr(_guess, 'read'):
                file = _guess

        if bytes is not None:
            self.file = io.BytesIO(bytes)
        elif filename is not None:
            self.file = open(filename, "rb")
        elif file is not None:
            self.file = file
        else:
            raise ProtocolError("expecting filename, file or bytes array")

    def chunk(self, lenient=False):
        """
        Read the next PNG chunk from the input file;
        returns a (*type*, *data*) tuple.
        *type* is the chunk's type as a byte string
        (all PNG chunk types are 4 bytes long).
        *data* is the chunk's data content, as a byte string.

        If the optional `lenient` argument evaluates to `True`,
        checksum failures will raise warnings rather than exceptions.
        """

        self.validate_signature()

        # http://www.w3.org/TR/PNG/#5Chunk-layout
        if not self.atchunk:
            self.atchunk = self._chunk_len_type()
        if not self.atchunk:
            raise ChunkError("No more chunks.")
        length, type = self.atchunk
        self.atchunk = None

        data = self.file.read(length)
        if len(data) != length:
            raise ChunkError(
                f'Chunk {type} too short for required {length} octets.')
        checksum = self.file.read(4)
        if len(checksum) != 4:
            raise ChunkError(f'Chunk {type} too short for checksum.')
        verify = zlib.crc32(type)
        verify = zlib.crc32(data, verify)
        verify = struct.pack('!I', verify)
        if checksum != verify:
            (a, ) = struct.unpack('!I', checksum)
            (b, ) = struct.unpack('!I', verify)
            message = f"Checksum error in {type.decode('ascii')} chunk: 0x{a:08X} != 0x{b:08X}."
            if lenient:
                warnings.warn(message, RuntimeWarning)
            else:
                raise ChunkError(message)
        return type, data

    def chunks(self):
        """Return an iterator that will yield each chunk as a
        (*chunktype*, *content*) pair.
        """

        while True:
            t, v = self.chunk()
            yield t, v
            if t == b'IEND':
                break

    def undo_filter(self, filter_type, scanline, previous):
        """
        Undo the filter for a scanline.
        `scanline` is a sequence of bytes that
        does not include the initial filter type byte.
        `previous` is decoded previous scanline
        (for straightlaced images this is the previous pixel row,
        but for interlaced images, it is
        the previous scanline in the reduced image,
        which in general is not the previous pixel row in the final image).
        When there is no previous scanline
        (the first row of a straightlaced image,
        or the first row in one of the passes in an interlaced image),
        then this argument should be ``None``.

        The scanline will have the effects of filtering removed;
        the result will be returned as a fresh sequence of bytes.
        """

        # :todo: Would it be better to update scanline in place?
        result = scanline

        if filter_type == 0:
            return result

        if filter_type not in (1, 2, 3, 4):
            raise FormatError(
                'Invalid PNG Filter Type.  '
                'See http://www.w3.org/TR/2003/REC-PNG-20031110/#9Filters .')

        # Filter unit.  The stride from one pixel to the corresponding
        # byte from the previous pixel.  Normally this is the pixel
        # size in bytes, but when this is smaller than 1, the previous
        # byte is used instead.
        fu = max(1, self.psize)

        # For the first line of a pass, synthesize a dummy previous
        # line.  An alternative approach would be to observe that on the
        # first line 'up' is the same as 'null', 'paeth' is the same
        # as 'sub', with only 'average' requiring any special case.
        if not previous:
            previous = bytearray([0] * len(scanline))

        # Call appropriate filter algorithm.  Note that 0 has already
        # been dealt with.
        fn = (None,
              undo_filter_sub,
              undo_filter_up,
              undo_filter_average,
              undo_filter_paeth)[filter_type]
        fn(fu, scanline, previous, result)
        return result

    def _deinterlace(self, raw):
        """
        Read raw pixel data, undo filters, deinterlace, and flatten.
        Return a single array of values.
        """

        # Values per row (of the target image)
        vpr = self.width * self.planes

        # Values per image
        vpi = vpr * self.height
        # Interleaving writes to the output array randomly
        # (well, not quite), so the entire output array must be in memory.
        # Make a result array, and make it big enough.
        if self.bitdepth > 8:
            a = array('H', [0] * vpi)
        else:
            a = bytearray([0] * vpi)
        source_offset = 0

        for lines in adam7_generate(self.width, self.height):
            # The previous (reconstructed) scanline.
            # `None` at the beginning of a pass
            # to indicate that there is no previous line.
            recon = None
            for x, y, xstep in lines:
                # Pixels per row (reduced pass image)
                ppr = int(math.ceil((self.width - x) / float(xstep)))
                # Row size in bytes for this pass.
                row_size = int(math.ceil(self.psize * ppr))

                filter_type = raw[source_offset]
                source_offset += 1
                scanline = raw[source_offset: source_offset + row_size]
                source_offset += row_size
                recon = self.undo_filter(filter_type, scanline, recon)
                # Convert so that there is one element per pixel value
                flat = self._bytes_to_values(recon, width=ppr)
                if xstep == 1:
                    assert x == 0
                    offset = y * vpr
                    a[offset: offset + vpr] = flat
                else:
                    offset = y * vpr + x * self.planes
                    end_offset = (y + 1) * vpr
                    skip = self.planes * xstep
                    for i in range(self.planes):
                        a[offset + i: end_offset: skip] = \
                            flat[i:: self.planes]

        return a

    def _iter_bytes_to_values(self, byte_rows):
        """
        Iterator that yields each scanline;
        each scanline being a sequence of values.
        `byte_rows` should be an iterator that yields
        the bytes of each row in turn.
        """

        for row in byte_rows:
            yield self._bytes_to_values(row)

    def _bytes_to_values(self, bs, width=None):
        """Convert a packed row of bytes into a row of values.
        Result will be a freshly allocated object,
        not shared with the argument.
        """

        if self.bitdepth == 8:
            return bytearray(bs)
        if self.bitdepth == 16:
            return array('H',
                         struct.unpack(f'!{(len(bs) // 2)}H' , bs))

        assert self.bitdepth < 8
        if width is None:
            width = self.width
        # Samples per byte
        spb = 8 // self.bitdepth
        out = bytearray()
        mask = 2**self.bitdepth - 1
        shifts = [self.bitdepth * i
                  for i in reversed(list(range(spb)))]
        for o in bs:
            out.extend([mask & (o >> i) for i in shifts])
        return out[:width]

    def _iter_straight_packed(self, byte_blocks):
        """Iterator that undoes the effect of filtering;
        yields each row as a sequence of packed bytes.
        Assumes input is straightlaced.
        `byte_blocks` should be an iterable that yields the raw bytes
        in blocks of arbitrary size.
        """

        # length of row, in bytes
        rb = self.row_bytes
        a = bytearray()
        # The previous (reconstructed) scanline.
        # None indicates first line of image.
        recon = None
        for some_bytes in byte_blocks:
            a.extend(some_bytes)
            while len(a) >= rb + 1:
                filter_type = a[0]
                scanline = a[1: rb + 1]
                del a[: rb + 1]
                recon = self.undo_filter(filter_type, scanline, recon)
                yield recon
        if len(a) != 0:
            # :file:format We get here with a file format error:
            # when the available bytes (after decompressing) do not
            # pack into exact rows.
            raise FormatError('Wrong size for decompressed IDAT chunk.')
        assert len(a) == 0

    def validate_signature(self):
        """
        If signature (header) has not been read then read and
        validate it; otherwise do nothing.
        """

        if self.signature:
            return
        self.signature = self.file.read(8)
        if self.signature != signature:
            raise FormatError("PNG file has invalid signature.")

    def preamble(self, lenient=False):
        """
        Extract the image metadata by reading
        the initial part of the PNG file up to
        the start of the ``IDAT`` chunk.
        All the chunks that precede the ``IDAT`` chunk are
        read and either processed for metadata or discarded.

        If the optional `lenient` argument evaluates to `True`,
        checksum failures will raise warnings rather than exceptions.
        """

        self.validate_signature()

        while True:
            if not self.atchunk:
                self.atchunk = self._chunk_len_type()
                if self.atchunk is None:
                    raise FormatError('This PNG file has no IDAT chunks.')
            if self.atchunk[1] == b'IDAT':
                return
            self.process_chunk(lenient=lenient)

    def _chunk_len_type(self):
        """
        Reads just enough of the input to
        determine the next chunk's length and type;
        return a (*length*, *type*) pair where *type* is a byte sequence.
        If there are no more chunks, ``None`` is returned.
        """

        x = self.file.read(8)
        if not x:
            return None
        if len(x) != 8:
            raise FormatError(
                'End of file whilst reading chunk length and type.')
        length, type = struct.unpack('!I4s', x)
        if length > 2 ** 31 - 1:
            raise FormatError(f'Chunk {type} is too large: {length}.')
        # Check that all bytes are in valid ASCII range.
        # https://www.w3.org/TR/2003/REC-PNG-20031110/#5Chunk-layout
        type_bytes = set(bytearray(type))
        if not(type_bytes <= set(range(65, 91)) | set(range(97, 123))):
            raise FormatError(
                f'Chunk {list(type)} has invalid Chunk Type.')
        return length, type

    def process_chunk(self, lenient=False):
        """
        Process the next chunk and its data.
        This only processes the following chunk types:
        ``IHDR``, ``PLTE``, ``bKGD``, ``tRNS``, ``gAMA``, ``sBIT``, ``pHYs``.
        All other chunk types are ignored.

        If the optional `lenient` argument evaluates to `True`,
        checksum failures will raise warnings rather than exceptions.
        """

        type, data = self.chunk(lenient=lenient)
        method = '_process_' + type.decode('ascii')
        m = getattr(self, method, None)
        if m:
            m(data)

    def _process_IHDR(self, data):
        # http://www.w3.org/TR/PNG/#11IHDR
        if len(data) != 13:
            raise FormatError('IHDR chunk has incorrect length.')
        (self.width, self.height, self.bitdepth, self.color_type,
         self.compression, self.filter,
         self.interlace) = struct.unpack("!2I5B", data)

        check_bitdepth_colortype(self.bitdepth, self.color_type)

        if self.compression != 0:
            raise FormatError(
                f"Unknown compression method {self.compression}")
        if self.filter != 0:
            raise FormatError(
                f"Unknown filter method {self.filter},"
                " see http://www.w3.org/TR/2003/REC-PNG-20031110/#9Filters ."
                )
        if self.interlace not in (0, 1):
            raise FormatError(
                f"Unknown interlace method {self.interlace}, see "
                "http://www.w3.org/TR/2003/REC-PNG-20031110/#8InterlaceMethods"
                " .")

        # Derived values
        # http://www.w3.org/TR/PNG/#6Colour-values
        colormap = bool(self.color_type & 1)
        greyscale = not(self.color_type & 2)
        alpha = bool(self.color_type & 4)
        color_planes = (3, 1)[greyscale or colormap]
        planes = color_planes + alpha

        self.colormap = colormap
        self.greyscale = greyscale
        self.alpha = alpha
        self.color_planes = color_planes
        self.planes = planes
        self.psize = float(self.bitdepth) / float(8) * planes
        if int(self.psize) == self.psize:
            self.psize = int(self.psize)
        self.row_bytes = int(math.ceil(self.width * self.psize))
        # Stores PLTE chunk if present, and is used to check
        # chunk ordering constraints.
        self.plte = None
        # Stores tRNS chunk if present, and is used to check chunk
        # ordering constraints.
        self.trns = None
        # Stores sBIT chunk if present.
        self.sbit = None

    def _process_PLTE(self, data):
        # http://www.w3.org/TR/PNG/#11PLTE
        if self.plte:
            warnings.warn("Multiple PLTE chunks present.")
        self.plte = data
        if len(data) % 3 != 0:
            raise FormatError(
                "PLTE chunk's length should be a multiple of 3.")
        if len(data) > (2 ** self.bitdepth) * 3:
            raise FormatError("PLTE chunk is too long.")
        if len(data) == 0:
            raise FormatError("Empty PLTE is not allowed.")

    def _process_bKGD(self, data):
        try:
            if self.colormap:
                if not self.plte:
                    warnings.warn(
                        "PLTE chunk is required before bKGD chunk.")
                self.background = struct.unpack('B', data)
            else:
                self.background = struct.unpack(f"!{self.color_planes}",
                                                data)
        except struct.error:
            raise FormatError("bKGD chunk has incorrect length.")

    def _process_tRNS(self, data):
        # http://www.w3.org/TR/PNG/#11tRNS
        self.trns = data
        if self.colormap:
            if not self.plte:
                warnings.warn("PLTE chunk is required before tRNS chunk.")
            else:
                if len(data) > len(self.plte) / 3:
                    # Was warning, but promoted to Error as it
                    # would otherwise cause pain later on.
                    raise FormatError("tRNS chunk is too long.")
        else:
            if self.alpha:
                raise FormatError(
                    f"tRNS chunk is not valid with colour type {self.color_type}.")
            try:
                self.transparent = \
                    struct.unpack(f"!{self.color_planes}", data)
            except struct.error:
                raise FormatError("tRNS chunk has incorrect length.")

    def _process_gAMA(self, data):
        try:
            self.gamma = struct.unpack("!L", data)[0] / 100000.0
        except struct.error:
            raise FormatError("gAMA chunk has incorrect length.")

    def _process_sBIT(self, data):
        self.sbit = data
        if (self.colormap and len(data) != 3 or
                not self.colormap and len(data) != self.planes):
            raise FormatError("sBIT chunk has incorrect length.")

    def _process_pHYs(self, data):
        # http://www.w3.org/TR/PNG/#11pHYs
        self.phys = data
        fmt = "!LLB"
        if len(data) != struct.calcsize(fmt):
            raise FormatError("pHYs chunk has incorrect length.")
        self.x_pixels_per_unit, self.y_pixels_per_unit, unit = \
            struct.unpack(fmt, data)
        self.unit_is_meter = bool(unit)

    def read(self, lenient=False):
        """
        Read the PNG file and decode it.
        Returns (`width`, `height`, `rows`, `info`).

        May use excessive memory.

        `rows` is a sequence of rows;
        each row is a sequence of values.

        If the optional `lenient` argument evaluates to True,
        checksum failures will raise warnings rather than exceptions.
        """

        def iteridat():
            """Iterator that yields all the ``IDAT`` chunks as strings."""
            while True:
                type, data = self.chunk(lenient=lenient)
                if type == b'IEND':
                    # http://www.w3.org/TR/PNG/#11IEND
                    break
                if type != b'IDAT':
                    continue
                # type == b'IDAT'
                # http://www.w3.org/TR/PNG/#11IDAT
                if self.colormap and not self.plte:
                    warnings.warn("PLTE chunk is required before IDAT chunk")
                yield data

        self.preamble(lenient=lenient)
        raw = decompress(iteridat())

        if self.interlace:
            def rows_from_interlace():
                """Yield each row from an interlaced PNG."""
                # It's important that this iterator doesn't read
                # IDAT chunks until it yields the first row.
                bs = bytearray(itertools.chain(*raw))
                arraycode = 'BH'[self.bitdepth > 8]
                # Like :meth:`group` but
                # producing an array.array object for each row.
                values = self._deinterlace(bs)
                vpr = self.width * self.planes
                for i in range(0, len(values), vpr):
                    row = array(arraycode, values[i:i+vpr])
                    yield row
            rows = rows_from_interlace()
        else:
            rows = self._iter_bytes_to_values(self._iter_straight_packed(raw))
        info = dict()
        for attr in 'greyscale alpha planes bitdepth interlace'.split():
            info[attr] = getattr(self, attr)
        info['size'] = (self.width, self.height)
        for attr in 'gamma transparent background'.split():
            a = getattr(self, attr, None)
            if a is not None:
                info[attr] = a
        if getattr(self, 'x_pixels_per_unit', None):
            info['physical'] = Resolution(self.x_pixels_per_unit,
                                          self.y_pixels_per_unit,
                                          self.unit_is_meter)
        if self.plte:
            info['palette'] = self.palette()
        return self.width, self.height, rows, info

    def read_flat(self):
        """
        Read a PNG file and decode it into a single array of values.
        Returns (*width*, *height*, *values*, *info*).

        May use excessive memory.

        `values` is a single array.

        The :meth:`read` method is more stream-friendly than this,
        because it returns a sequence of rows.
        """

        x, y, pixel, info = self.read()
        arraycode = 'BH'[info['bitdepth'] > 8]
        pixel = array(arraycode, itertools.chain(*pixel))
        return x, y, pixel, info

    def palette(self, alpha='natural'):
        """
        Returns a palette that is a sequence of 3-tuples or 4-tuples,
        synthesizing it from the ``PLTE`` and ``tRNS`` chunks.
        These chunks should have already been processed (for example,
        by calling the :meth:`preamble` method).
        All the tuples are the same size:
        3-tuples if there is no ``tRNS`` chunk,
        4-tuples when there is a ``tRNS`` chunk.

        Assumes that the image is colour type
        3 and therefore a ``PLTE`` chunk is required.

        If the `alpha` argument is ``'force'`` then an alpha channel is
        always added, forcing the result to be a sequence of 4-tuples.
        """

        if not self.plte:
            raise FormatError(
                "Required PLTE chunk is missing in colour type 3 image.")
        plte = group(array('B', self.plte), 3)
        if self.trns or alpha == 'force':
            trns = array('B', self.trns or [])
            trns.extend([255] * (len(plte) - len(trns)))
            plte = list(map(operator.add, plte, group(trns, 1)))
        return plte

    def asDirect(self):
        """
        Returns the image data as a direct representation of
        an ``x * y * planes`` array.
        This removes the need for callers to deal with
        palettes and transparency themselves.
        Images with a palette (colour type 3) are converted to RGB or RGBA;
        images with transparency (a ``tRNS`` chunk) are converted to
        LA or RGBA as appropriate.
        When returned in this format the pixel values represent
        the colour value directly without needing to refer
        to palettes or transparency information.

        Like the :meth:`read` method this method returns a 4-tuple:

        (*width*, *height*, *rows*, *info*)

        This method normally returns pixel values with
        the bit depth they have in the source image, but
        when the source PNG has an ``sBIT`` chunk it is inspected and
        can reduce the bit depth of the result pixels;
        pixel values will be reduced according to the bit depth
        specified in the ``sBIT`` chunk.
        PNG nerds should note a single result bit depth is
        used for all channels:
        the maximum of the ones specified in the ``sBIT`` chunk.
        An RGB565 image will be rescaled to 6-bit RGB666.

        The *info* dictionary that is returned reflects
        the `direct` format and not the original source image.
        For example, an RGB source image with a ``tRNS`` chunk
        to represent a transparent colour,
        will start with ``planes=3`` and ``alpha=False`` for the
        source image,
        but the *info* dictionary returned by this method
        will have ``planes=4`` and ``alpha=True`` because
        an alpha channel is synthesized and added.

        *rows* is a sequence of rows;
        each row being a sequence of values
        (like the :meth:`read` method).

        All the other aspects of the image data are not changed.
        """

        self.preamble()

        # Simple case, no conversion necessary.
        if not self.colormap and not self.trns and not self.sbit:
            return self.read()

        x, y, pixels, info = self.read()

        if self.colormap:
            info['colormap'] = False
            info['alpha'] = bool(self.trns)
            info['bitdepth'] = 8
            info['planes'] = 3 + bool(self.trns)
            plte = self.palette()

            def iterpal(pixels):
                for row in pixels:
                    row = [plte[x] for x in row]
                    yield array('B', itertools.chain(*row))
            pixels = iterpal(pixels)
        elif self.trns:
            # It would be nice if there was some reasonable way
            # of doing this without generating a whole load of
            # intermediate tuples.  But tuples does seem like the
            # easiest way, with no other way clearly much simpler or
            # much faster.  (Actually, the L to LA conversion could
            # perhaps go faster (all those 1-tuples!), but I still
            # wonder whether the code proliferation is worth it)
            it = self.transparent
            maxval = 2 ** info['bitdepth'] - 1
            planes = info['planes']
            info['alpha'] = True
            info['planes'] += 1
            typecode = 'BH'[info['bitdepth'] > 8]

            def itertrns(pixels):
                for row in pixels:
                    # For each row we group it into pixels, then form a
                    # characterisation vector that says whether each
                    # pixel is opaque or not.  Then we convert
                    # True/False to 0/maxval (by multiplication),
                    # and add it as the extra channel.
                    row = group(row, planes)
                    opa = map(it.__ne__, row)
                    opa = map(maxval.__mul__, opa)
                    opa = list(zip(opa))    # convert to 1-tuples
                    yield array(
                        typecode,
                        itertools.chain(*map(operator.add, row, opa)))
            pixels = itertrns(pixels)
        targetbitdepth = None
        if self.sbit:
            sbit = struct.unpack(f'{len(self.sbit)}', self.sbit)
            targetbitdepth = max(sbit)
            if targetbitdepth > info['bitdepth']:
                raise Error(f'sBIT chunk {sbit!r} exceeds bitdepth {self.bitdepth}')
            if min(sbit) <= 0:
                raise Error(f'sBIT chunk {sbit} has a 0-entry')
        if targetbitdepth:
            shift = info['bitdepth'] - targetbitdepth
            info['bitdepth'] = targetbitdepth

            def itershift(pixels):
                for row in pixels:
                    yield [p >> shift for p in row]
            pixels = itershift(pixels)
        return x, y, pixels, info

    def _as_rescale(self, get, targetbitdepth):
        """Helper used by :meth:`asRGB8` and :meth:`asRGBA8`."""

        width, height, pixels, info = get()
        maxval = 2**info['bitdepth'] - 1
        targetmaxval = 2**targetbitdepth - 1
        factor = float(targetmaxval) / float(maxval)
        info['bitdepth'] = targetbitdepth

        def iterscale():
            for row in pixels:
                yield [int(round(x * factor)) for x in row]
        if maxval == targetmaxval:
            return width, height, pixels, info
        else:
            return width, height, iterscale(), info

    def asRGB8(self):
        """
        Return the image data as an RGB pixels with 8-bits per sample.
        This is like the :meth:`asRGB` method except that
        this method additionally rescales the values so that
        they are all between 0 and 255 (8-bit).
        In the case where the source image has a bit depth < 8
        the transformation preserves all the information;
        where the source image has bit depth > 8, then
        rescaling to 8-bit values loses precision.
        No dithering is performed.
        Like :meth:`asRGB`,
        an alpha channel in the source image will raise an exception.

        This function returns a 4-tuple:
        (*width*, *height*, *rows*, *info*).
        *width*, *height*, *info* are as per the :meth:`read` method.

        *rows* is the pixel data as a sequence of rows.
        """

        return self._as_rescale(self.asRGB, 8)

    def asRGBA8(self):
        """
        Return the image data as RGBA pixels with 8-bits per sample.
        This method is similar to :meth:`asRGB8` and :meth:`asRGBA`:
        The result pixels have an alpha channel, *and*
        values are rescaled to the range 0 to 255.
        The alpha channel is synthesized if necessary
        (with a small speed penalty).
        """

        return self._as_rescale(self.asRGBA, 8)

    def asRGB(self):
        """
        Return image as RGB pixels.
        RGB colour images are passed through unchanged;
        greyscales are expanded into RGB triplets
        (there is a small speed overhead for doing this).

        An alpha channel in the source image will raise an exception.

        The return values are as for the :meth:`read` method except that
        the *info* reflect the returned pixels, not the source image.
        In particular,
        for this method ``info['greyscale']`` will be ``False``.
        """

        width, height, pixels, info = self.asDirect()
        if info['alpha']:
            raise Error("will not convert image with alpha channel to RGB")
        if not info['greyscale']:
            return width, height, pixels, info
        info['greyscale'] = False
        info['planes'] = 3

        if info['bitdepth'] > 8:
            def newarray():
                return array('H', [0])
        else:
            def newarray():
                return bytearray([0])

        def iterrgb():
            for row in pixels:
                a = newarray() * 3 * width
                for i in range(3):
                    a[i::3] = row
                yield a
        return width, height, iterrgb(), info

    def asRGBA(self):
        """
        Return image as RGBA pixels.
        Greyscales are expanded into RGB triplets;
        an alpha channel is synthesized if necessary.
        The return values are as for the :meth:`read` method except that
        the *info* reflect the returned pixels, not the source image.
        In particular, for this method
        ``info['greyscale']`` will be ``False``, and
        ``info['alpha']`` will be ``True``.
        """

        width, height, pixels, info = self.asDirect()
        if info['alpha'] and not info['greyscale']:
            return width, height, pixels, info
        typecode = 'BH'[info['bitdepth'] > 8]
        maxval = 2**info['bitdepth'] - 1
        maxbuffer = struct.pack('=' + typecode, maxval) * 4 * width

        if info['bitdepth'] > 8:
            def newarray():
                return array('H', maxbuffer)
        else:
            def newarray():
                return bytearray(maxbuffer)

        if info['alpha'] and info['greyscale']:
            # LA to RGBA
            def convert():
                for row in pixels:
                    # Create a fresh target row, then copy L channel
                    # into first three target channels, and A channel
                    # into fourth channel.
                    a = newarray()
                    convert_la_to_rgba(row, a)
                    yield a
        elif info['greyscale']:
            # L to RGBA
            def convert():
                for row in pixels:
                    a = newarray()
                    convert_l_to_rgba(row, a)
                    yield a
        else:
            assert not info['alpha'] and not info['greyscale']
            # RGB to RGBA

            def convert():
                for row in pixels:
                    a = newarray()
                    convert_rgb_to_rgba(row, a)
                    yield a
        info['alpha'] = True
        info['greyscale'] = False
        info['planes'] = 4
        return width, height, convert(), info


def decompress(data_blocks):
    """
    `data_blocks` should be an iterable that
    yields the compressed data (from the ``IDAT`` chunks).
    This yields decompressed byte strings.
    """

    # Currently, with no max_length parameter to decompress,
    # this routine will do one yield per IDAT chunk: Not very
    # incremental.
    d = zlib.decompressobj()
    # Each IDAT chunk is passed to the decompressor, then any
    # remaining state is decompressed out.
    for data in data_blocks:
        # :todo: add a max_length argument here to limit output size.
        yield bytearray(d.decompress(data))
    yield bytearray(d.flush())


def check_bitdepth_colortype(bitdepth, colortype):
    """
    Check that `bitdepth` and `colortype` are both valid,
    and specified in a valid combination.
    Returns (None) if valid, raise an Exception if not valid.
    """

    if bitdepth not in (1, 2, 4, 8, 16):
        raise FormatError(f"invalid bit depth {bitdepth}")
    if colortype not in (0, 2, 3, 4, 6):
        raise FormatError(f"invalid colour type {colortype}")
    # Check indexed (palettized) images have 8 or fewer bits
    # per pixel; check only indexed or greyscale images have
    # fewer than 8 bits per pixel.
    if colortype & 1 and bitdepth > 8:
        raise FormatError(
            f"Indexed images (colour type {bitdepth}) cannot"
            f" have bitdepth > 8 (bit depth {colortype})."
            " See http://www.w3.org/TR/2003/REC-PNG-20031110/#table111 ."
            )
    if bitdepth < 8 and colortype not in (0, 3):
        raise FormatError(
            f"Illegal combination of bit depth ({bitdepth})"
            f" and colour type ({colortype})."
            " See http://www.w3.org/TR/2003/REC-PNG-20031110/#table111 .")


def is_natural(x):
    """A non-negative integer."""
    try:
        is_integer = int(x) == x
    except (TypeError, ValueError):
        return False
    return is_integer and x >= 0


def undo_filter_sub(filter_unit, scanline, previous, result):
    """Undo sub filter."""

    ai = 0
    # Loops starts at index fu.  Observe that the initial part
    # of the result is already filled in correctly with
    # scanline.
    for i in range(filter_unit, len(result)):
        x = scanline[i]
        a = result[ai]
        result[i] = (x + a) & 0xff
        ai += 1


def undo_filter_up(filter_unit, scanline, previous, result):
    """Undo up filter."""

    for i in range(len(result)):
        x = scanline[i]
        b = previous[i]
        result[i] = (x + b) & 0xff


def undo_filter_average(filter_unit, scanline, previous, result):
    """Undo up filter."""

    ai = -filter_unit
    for i in range(len(result)):
        x = scanline[i]
        if ai < 0:
            a = 0
        else:
            a = result[ai]
        b = previous[i]
        result[i] = (x + ((a + b) >> 1)) & 0xff
        ai += 1


def undo_filter_paeth(filter_unit, scanline, previous, result):
    """Undo Paeth filter."""

    # Also used for ci.
    ai = -filter_unit
    for i in range(len(result)):
        x = scanline[i]
        if ai < 0:
            a = c = 0
        else:
            a = result[ai]
            c = previous[ai]
        b = previous[i]
        p = a + b - c
        pa = abs(p - a)
        pb = abs(p - b)
        pc = abs(p - c)
        if pa <= pb and pa <= pc:
            pr = a
        elif pb <= pc:
            pr = b
        else:
            pr = c
        result[i] = (x + pr) & 0xff
        ai += 1


def convert_la_to_rgba(row, result):
    for i in range(3):
        result[i::4] = row[0::2]
    result[3::4] = row[1::2]


def convert_l_to_rgba(row, result):
    """
    Convert a grayscale image to RGBA.
    This method assumes the alpha channel in result is
    already correctly initialized.
    """
    for i in range(3):
        result[i::4] = row


def convert_rgb_to_rgba(row, result):
    """
    Convert an RGB image to RGBA.
    This method assumes the alpha channel in result is
    already correctly initialized.
    """
    for i in range(3):
        result[i::4] = row[i::3]


# Only reason to include this in this module is that
# several utilities need it, and it is small.
def binary_stdin():
    """
    A sys.stdin that returns bytes.
    """

    return sys.stdin.buffer


def binary_stdout():
    """
    A sys.stdout that accepts bytes.
    """

    stdout = sys.stdout.buffer

    # On Windows the C runtime file orientation needs changing.
    if sys.platform == "win32":
        import msvcrt
        import os
        msvcrt.setmode(sys.stdout.fileno(), os.O_BINARY)

    return stdout


def cli_open(path):
    if path == "-":
        return binary_stdin()
    return open(path, "rb")


def main(argv):
    """
    Run command line PNG.
    """
    print("What should the command line tool do?", file=sys.stderr)


if __name__ == '__main__':
    try:
        main(sys.argv)
    except Error as e:
        print(e, file=sys.stderr)