Spaces:
Runtime error
Runtime error
File size: 35,928 Bytes
d82cf6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 |
"""Matrix and Vector math.
This module provides Vector and Matrix objects, including Vec2, Vec3,
Vec4, Mat3, and Mat4. Most common matrix and vector operations are
supported. Helper methods are included for rotating, scaling, and
transforming. The :py:class:`~pyglet.matrix.Mat4` includes class methods
for creating orthographic and perspective projection matrixes.
Matrices behave just like they do in GLSL: they are specified in column-major
order and multiply on the left of vectors, which are treated as columns.
:note: For performance, Matrixes subclass the `tuple` type. They
are therefore immutable - all operations return a new object;
the object is not updated in-place.
"""
from __future__ import annotations
import math as _math
import typing as _typing
import warnings as _warnings
from operator import mul as _mul
from collections.abc import Iterable as _Iterable
from collections.abc import Iterator as _Iterator
number = _typing.Union[float, int]
Mat4T = _typing.TypeVar("Mat4T", bound="Mat4")
def clamp(num: float, min_val: float, max_val: float) -> float:
return max(min(num, max_val), min_val)
class Vec2:
__slots__ = 'x', 'y'
"""A two-dimensional vector represented as an X Y coordinate pair."""
def __init__(self, x: number = 0.0, y: number = 0.0) -> None:
self.x = x
self.y = y
def __iter__(self) -> _Iterator[float]:
yield self.x
yield self.y
@_typing.overload
def __getitem__(self, item: int) -> float:
...
@_typing.overload
def __getitem__(self, item: slice) -> tuple[float, ...]:
...
def __getitem__(self, item):
return (self.x, self.y)[item]
def __setitem__(self, key, value):
if type(key) is slice:
for i, attr in enumerate(['x', 'y'][key]):
setattr(self, attr, value[i])
else:
setattr(self, ['x', 'y'][key], value)
def __len__(self) -> int:
return 2
def __add__(self, other: Vec2) -> Vec2:
return Vec2(self.x + other.x, self.y + other.y)
def __sub__(self, other: Vec2) -> Vec2:
return Vec2(self.x - other.x, self.y - other.y)
def __mul__(self, scalar: number) -> Vec2:
return Vec2(self.x * scalar, self.y * scalar)
def __truediv__(self, scalar: number) -> Vec2:
return Vec2(self.x / scalar, self.y / scalar)
def __floordiv__(self, scalar: number) -> Vec2:
return Vec2(self.x // scalar, self.y // scalar)
def __abs__(self) -> float:
return _math.sqrt(self.x ** 2 + self.y ** 2)
def __neg__(self) -> Vec2:
return Vec2(-self.x, -self.y)
def __round__(self, ndigits: int | None = None) -> Vec2:
return Vec2(*(round(v, ndigits) for v in self))
def __radd__(self, other: Vec2 | int) -> Vec2:
"""Reverse add. Required for functionality with sum()
"""
if other == 0:
return self
else:
return self.__add__(_typing.cast(Vec2, other))
def __eq__(self, other: object) -> bool:
return isinstance(other, Vec2) and self.x == other.x and self.y == other.y
def __ne__(self, other: object) -> bool:
return not isinstance(other, Vec2) or self.x != other.x or self.y != other.y
@staticmethod
def from_polar(mag: float, angle: float) -> Vec2:
"""Create a new vector from the given polar coordinates.
:parameters:
`mag` : int or float :
The magnitude of the vector.
`angle` : int or float :
The angle of the vector in radians.
:returns: A new vector with the given angle and magnitude.
:rtype: Vec2
"""
return Vec2(mag * _math.cos(angle), mag * _math.sin(angle))
def from_magnitude(self, magnitude: float) -> Vec2:
"""Create a new Vector of the given magnitude by normalizing,
then scaling the vector. The heading remains unchanged.
:parameters:
`magnitude` : int or float :
The magnitude of the new vector.
:returns: A new vector with the magnitude.
:rtype: Vec2
"""
return self.normalize() * magnitude
def from_heading(self, heading: float) -> Vec2:
"""Create a new vector of the same magnitude with the given heading. I.e. Rotate the vector to the heading.
:parameters:
`heading` : int or float :
The angle of the new vector in radians.
:returns: A new vector with the given heading.
:rtype: Vec2
"""
mag = self.__abs__()
return Vec2(mag * _math.cos(heading), mag * _math.sin(heading))
@property
def heading(self) -> float:
"""The angle of the vector in radians.
:type: float
"""
return _math.atan2(self.y, self.x)
@property
def mag(self) -> float:
"""The magnitude, or length of the vector. The distance between the coordinates and the origin.
Alias of abs(self).
:type: float
"""
return self.__abs__()
def limit(self, maximum: float) -> Vec2:
"""Limit the magnitude of the vector to the value used for the max parameter.
:parameters:
`maximum` : int or float :
The maximum magnitude for the vector.
:returns: Either self or a new vector with the maximum magnitude.
:rtype: Vec2
"""
if self.x ** 2 + self.y ** 2 > maximum * maximum:
return self.from_magnitude(maximum)
return self
def lerp(self, other: Vec2, alpha: float) -> Vec2:
"""Create a new Vec2 linearly interpolated between this vector and another Vec2.
:parameters:
`other` : Vec2 :
The vector to linearly interpolate with.
`alpha` : float or int :
The amount of interpolation.
Some value between 0.0 (this vector) and 1.0 (other vector).
0.5 is halfway inbetween.
:returns: A new interpolated vector.
:rtype: Vec2
"""
return Vec2(self.x + (alpha * (other.x - self.x)),
self.y + (alpha * (other.y - self.y)))
def reflect(self, normal: Vec2) -> Vec2:
"""Create a new Vec2 reflected (ricochet) from the given normal."""
return self - normal * 2 * normal.dot(self)
def rotate(self, angle: float) -> Vec2:
"""Create a new Vector rotated by the angle. The magnitude remains unchanged.
:parameters:
`angle` : int or float :
The angle to rotate by
:returns: A new rotated vector of the same magnitude.
:rtype: Vec2
"""
s = _math.sin(angle)
c = _math.cos(angle)
return Vec2(c * self.x - s * self.y, s * self.x + c * self.y)
def distance(self, other: Vec2) -> float:
"""Calculate the distance between this vector and another 2D vector."""
return _math.sqrt(((other.x - self.x) ** 2) + ((other.y - self.y) ** 2))
def normalize(self) -> Vec2:
"""Normalize the vector to have a magnitude of 1. i.e. make it a unit vector.
:returns: A unit vector with the same heading.
:rtype: Vec2
"""
d = self.__abs__()
if d:
return Vec2(self.x / d, self.y / d)
return self
def clamp(self, min_val: float, max_val: float) -> Vec2:
"""Restrict the value of the X and Y components of the vector to be within the given values.
:parameters:
`min_val` : int or float :
The minimum value
`max_val` : int or float :
The maximum value
:returns: A new vector with clamped X and Y components.
:rtype: Vec2
"""
return Vec2(clamp(self.x, min_val, max_val), clamp(self.y, min_val, max_val))
def dot(self, other: Vec2) -> float:
"""Calculate the dot product of this vector and another 2D vector.
:parameters:
`other` : Vec2 :
The other vector.
:returns: The dot product of the two vectors.
:rtype: float
"""
return self.x * other.x + self.y * other.y
def __getattr__(self, attrs: str) -> Vec2 | Vec3 | Vec4:
try:
# Allow swizzled getting of attrs
vec_class = {2: Vec2, 3: Vec3, 4: Vec4}[len(attrs)]
return vec_class(*(self['xy'.index(c)] for c in attrs))
except Exception:
raise AttributeError(
f"'{self.__class__.__name__}' object has no attribute '{attrs}'"
) from None
def __repr__(self) -> str:
return f"Vec2({self.x}, {self.y})"
class Vec3:
__slots__ = 'x', 'y', 'z'
"""A three-dimensional vector represented as X Y Z coordinates."""
def __init__(self, x: number = 0.0, y: number = 0.0, z: number = 0.0) -> None:
self.x = x
self.y = y
self.z = z
def __iter__(self) -> _Iterator[float]:
yield self.x
yield self.y
yield self.z
@_typing.overload
def __getitem__(self, item: int) -> float:
...
@_typing.overload
def __getitem__(self, item: slice) -> tuple[float, ...]:
...
def __getitem__(self, item):
return (self.x, self.y, self.z)[item]
def __setitem__(self, key, value):
if type(key) is slice:
for i, attr in enumerate(['x', 'y', 'z'][key]):
setattr(self, attr, value[i])
else:
setattr(self, ['x', 'y', 'z'][key], value)
def __len__(self) -> int:
return 3
@property
def mag(self) -> float:
"""The magnitude, or length of the vector. The distance between the coordinates and the origin.
Alias of abs(self).
:type: float
"""
return self.__abs__()
def __add__(self, other: Vec3) -> Vec3:
return Vec3(self.x + other.x, self.y + other.y, self.z + other.z)
def __sub__(self, other: Vec3) -> Vec3:
return Vec3(self.x - other.x, self.y - other.y, self.z - other.z)
def __mul__(self, scalar: number) -> Vec3:
return Vec3(self.x * scalar, self.y * scalar, self.z * scalar)
def __truediv__(self, scalar: number) -> Vec3:
return Vec3(self.x / scalar, self.y / scalar, self.z / scalar)
def __floordiv__(self, scalar: number) -> Vec3:
return Vec3(self.x // scalar, self.y // scalar, self.z // scalar)
def __abs__(self) -> float:
return _math.sqrt(self.x ** 2 + self.y ** 2 + self.z ** 2)
def __neg__(self) -> Vec3:
return Vec3(-self.x, -self.y, -self.z)
def __round__(self, ndigits: int | None = None) -> Vec3:
return Vec3(*(round(v, ndigits) for v in self))
def __radd__(self, other: Vec3 | int) -> Vec3:
"""Reverse add. Required for functionality with sum()"""
if other == 0:
return self
else:
return self.__add__(_typing.cast(Vec3, other))
def __eq__(self, other: object) -> bool:
return isinstance(other, Vec3) and self.x == other.x and self.y == other.y and self.z == other.z
def __ne__(self, other: object) -> bool:
return not isinstance(other, Vec3) or self.x != other.x or self.y != other.y or self.z != other.z
def from_magnitude(self, magnitude: float) -> Vec3:
"""Create a new Vector of the given magnitude by normalizing,
then scaling the vector. The rotation remains unchanged.
:parameters:
`magnitude` : int or float :
The magnitude of the new vector.
:returns: A new vector with the magnitude.
:rtype: Vec3
"""
return self.normalize() * magnitude
def limit(self, maximum: float) -> Vec3:
"""Limit the magnitude of the vector to the value used for the max parameter.
:parameters:
`maximum` : int or float :
The maximum magnitude for the vector.
:returns: Either self or a new vector with the maximum magnitude.
:rtype: Vec3
"""
if self.x ** 2 + self.y ** 2 + self.z ** 2 > maximum * maximum * maximum:
return self.from_magnitude(maximum)
return self
def cross(self, other: Vec3) -> Vec3:
"""Calculate the cross product of this vector and another 3D vector.
:parameters:
`other` : Vec3 :
The other vector.
:returns: The cross product of the two vectors.
:rtype: float
"""
return Vec3((self.y * other.z) - (self.z * other.y),
(self.z * other.x) - (self.x * other.z),
(self.x * other.y) - (self.y * other.x))
def dot(self, other: Vec3) -> float:
"""Calculate the dot product of this vector and another 3D vector.
:parameters:
`other` : Vec3 :
The other vector.
:returns: The dot product of the two vectors.
:rtype: float
"""
return self.x * other.x + self.y * other.y + self.z * other.z
def lerp(self, other: Vec3, alpha: float) -> Vec3:
"""Create a new Vec3 linearly interpolated between this vector and another Vec3.
:parameters:
`other` : Vec3 :
The vector to linearly interpolate with.
`alpha` : float or int :
The amount of interpolation.
Some value between 0.0 (this vector) and 1.0 (other vector).
0.5 is halfway inbetween.
:returns: A new interpolated vector.
:rtype: Vec3
"""
return Vec3(self.x + (alpha * (other.x - self.x)),
self.y + (alpha * (other.y - self.y)),
self.z + (alpha * (other.z - self.z)))
def distance(self, other: Vec3) -> float:
"""Calculate the distance between this vector and another 3D vector.
:parameters:
`other` : Vec3 :
The other vector
:returns: The distance between the two vectors.
:rtype: float
"""
return _math.sqrt(((other.x - self.x) ** 2) +
((other.y - self.y) ** 2) +
((other.z - self.z) ** 2))
def normalize(self) -> Vec3:
"""Normalize the vector to have a magnitude of 1. i.e. make it a unit vector.
:returns: A unit vector with the same rotation.
:rtype: Vec3
"""
try:
d = self.__abs__()
return Vec3(self.x / d, self.y / d, self.z / d)
except ZeroDivisionError:
return self
def clamp(self, min_val: float, max_val: float) -> Vec3:
"""Restrict the value of the X, Y and Z components of the vector to be within the given values.
:parameters:
`min_val` : int or float :
The minimum value
`max_val` : int or float :
The maximum value
:returns: A new vector with clamped X, Y and Z components.
:rtype: Vec3
"""
return Vec3(clamp(self.x, min_val, max_val),
clamp(self.y, min_val, max_val),
clamp(self.z, min_val, max_val))
def __getattr__(self, attrs: str) -> Vec2 | Vec3 | Vec4:
try:
# Allow swizzled getting of attrs
vec_class = {2: Vec2, 3: Vec3, 4: Vec4}[len(attrs)]
return vec_class(*(self['xyz'.index(c)] for c in attrs))
except Exception:
raise AttributeError(
f"'{self.__class__.__name__}' object has no attribute '{attrs}'"
) from None
def __repr__(self) -> str:
return f"Vec3({self.x}, {self.y}, {self.z})"
class Vec4:
__slots__ = 'x', 'y', 'z', 'w'
"""A four-dimensional vector represented as X Y Z W coordinates."""
def __init__(self, x: number = 0.0, y: number = 0.0, z: number = 0.0, w: number = 0.0) -> None:
self.x = x
self.y = y
self.z = z
self.w = w
def __iter__(self) -> _Iterator[float]:
yield self.x
yield self.y
yield self.z
yield self.w
@_typing.overload
def __getitem__(self, item: int) -> float:
...
@_typing.overload
def __getitem__(self, item: slice) -> tuple[float, ...]:
...
def __getitem__(self, item):
return (self.x, self.y, self.z, self.w)[item]
def __setitem__(self, key, value):
if type(key) is slice:
for i, attr in enumerate(['x', 'y', 'z', 'w'][key]):
setattr(self, attr, value[i])
else:
setattr(self, ['x', 'y', 'z', 'w'][key], value)
def __len__(self) -> int:
return 4
def __add__(self, other: Vec4) -> Vec4:
return Vec4(self.x + other.x, self.y + other.y, self.z + other.z, self.w + other.w)
def __sub__(self, other: Vec4) -> Vec4:
return Vec4(self.x - other.x, self.y - other.y, self.z - other.z, self.w - other.w)
def __mul__(self, scalar: number) -> Vec4:
return Vec4(self.x * scalar, self.y * scalar, self.z * scalar, self.w * scalar)
def __truediv__(self, scalar: number) -> Vec4:
return Vec4(self.x / scalar, self.y / scalar, self.z / scalar, self.w / scalar)
def __floordiv__(self, scalar: number) -> Vec4:
return Vec4(self.x // scalar, self.y // scalar, self.z // scalar, self.w // scalar)
def __abs__(self) -> float:
return _math.sqrt(self.x ** 2 + self.y ** 2 + self.z ** 2 + self.w ** 2)
def __neg__(self) -> Vec4:
return Vec4(-self.x, -self.y, -self.z, -self.w)
def __round__(self, ndigits: int | None = None) -> Vec4:
return Vec4(*(round(v, ndigits) for v in self))
def __radd__(self, other: Vec4 | int) -> Vec4:
if other == 0:
return self
else:
return self.__add__(_typing.cast(Vec4, other))
def __eq__(self, other: object) -> bool:
return (
isinstance(other, Vec4)
and self.x == other.x
and self.y == other.y
and self.z == other.z
and self.w == other.w
)
def __ne__(self, other: object) -> bool:
return (
not isinstance(other, Vec4)
or self.x != other.x
or self.y != other.y
or self.z != other.z
or self.w != other.w
)
def lerp(self, other: Vec4, alpha: float) -> Vec4:
"""Create a new Vec4 linearly interpolated between this one and another Vec4.
:parameters:
`other` : Vec4 :
The vector to linearly interpolate with.
`alpha` : float or int :
The amount of interpolation.
Some value between 0.0 (this vector) and 1.0 (other vector).
0.5 is halfway inbetween.
:returns: A new interpolated vector.
:rtype: Vec4
"""
return Vec4(self.x + (alpha * (other.x - self.x)),
self.y + (alpha * (other.y - self.y)),
self.z + (alpha * (other.z - self.z)),
self.w + (alpha * (other.w - self.w)))
def distance(self, other: Vec4) -> float:
return _math.sqrt(((other.x - self.x) ** 2) +
((other.y - self.y) ** 2) +
((other.z - self.z) ** 2) +
((other.w - self.w) ** 2))
def normalize(self) -> Vec4:
"""Normalize the vector to have a magnitude of 1. i.e. make it a unit vector."""
d = self.__abs__()
if d:
return Vec4(self.x / d, self.y / d, self.z / d, self.w / d)
return self
def clamp(self, min_val: float, max_val: float) -> Vec4:
return Vec4(clamp(self.x, min_val, max_val),
clamp(self.y, min_val, max_val),
clamp(self.z, min_val, max_val),
clamp(self.w, min_val, max_val))
def dot(self, other: Vec4) -> float:
return self.x * other.x + self.y * other.y + self.z * other.z + self.w * other.w
def __getattr__(self, attrs: str) -> Vec2 | Vec3 | Vec4:
try:
# Allow swizzled getting of attrs
vec_class = {2: Vec2, 3: Vec3, 4: Vec4}[len(attrs)]
return vec_class(*(self['xyzw'.index(c)] for c in attrs))
except Exception:
raise AttributeError(
f"'{self.__class__.__name__}' object has no attribute '{attrs}'"
) from None
def __repr__(self) -> str:
return f"Vec4({self.x}, {self.y}, {self.z}, {self.w})"
class Mat3(tuple):
"""A 3x3 Matrix class
`Mat3` is an immutable 3x3 Matrix, including most common
operators. Matrix multiplication must be performed using
the "@" operator.
"""
def __new__(cls, values: _Iterable[float] = (1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0)) -> Mat3:
"""Create a 3x3 Matrix
A Mat3 can be created with a list or tuple of 9 values.
If no values are provided, an "identity matrix" will be created
(1.0 on the main diagonal). Matrix objects are immutable, so
all operations return a new Mat3 object.
:Parameters:
`values` : tuple of float or int
A tuple or list containing 9 floats or ints.
"""
new = super().__new__(Mat3, values)
assert len(new) == 9, "A 3x3 Matrix requires 9 values"
return new
def scale(self, sx: float, sy: float) -> Mat3:
return self @ Mat3((1.0 / sx, 0.0, 0.0, 0.0, 1.0 / sy, 0.0, 0.0, 0.0, 1.0))
def translate(self, tx: float, ty: float) -> Mat3:
return self @ Mat3((1.0, 0.0, 0.0, 0.0, 1.0, 0.0, -tx, ty, 1.0))
def rotate(self, phi: float) -> Mat3:
s = _math.sin(_math.radians(phi))
c = _math.cos(_math.radians(phi))
return self @ Mat3((c, s, 0.0, -s, c, 0.0, 0.0, 0.0, 1.0))
def shear(self, sx: float, sy: float) -> Mat3:
return self @ Mat3((1.0, sy, 0.0, sx, 1.0, 0.0, 0.0, 0.0, 1.0))
def __add__(self, other: Mat3) -> Mat3:
if not isinstance(other, Mat3):
raise TypeError("Can only add to other Mat3 types")
return Mat3(s + o for s, o in zip(self, other))
def __sub__(self, other: Mat3) -> Mat3:
if not isinstance(other, Mat3):
raise TypeError("Can only subtract from other Mat3 types")
return Mat3(s - o for s, o in zip(self, other))
def __pos__(self) -> Mat3:
return self
def __neg__(self) -> Mat3:
return Mat3(-v for v in self)
def __round__(self, ndigits: int | None = None) -> Mat3:
return Mat3(round(v, ndigits) for v in self)
def __mul__(self, other: object) -> _typing.NoReturn:
raise NotImplementedError("Please use the @ operator for Matrix multiplication.")
@_typing.overload
def __matmul__(self, other: Vec3) -> Vec3:
...
@_typing.overload
def __matmul__(self, other: Mat3) -> Mat3:
...
def __matmul__(self, other):
if isinstance(other, Vec3):
# Rows:
r0 = self[0::3]
r1 = self[1::3]
r2 = self[2::3]
return Vec3(sum(map(_mul, r0, other)),
sum(map(_mul, r1, other)),
sum(map(_mul, r2, other)))
if not isinstance(other, Mat3):
raise TypeError("Can only multiply with Mat3 or Vec3 types")
# Rows:
r0 = self[0::3]
r1 = self[1::3]
r2 = self[2::3]
# Columns:
c0 = other[0:3]
c1 = other[3:6]
c2 = other[6:9]
# Multiply and sum rows * columns:
return Mat3((sum(map(_mul, c0, r0)), sum(map(_mul, c0, r1)), sum(map(_mul, c0, r2)),
sum(map(_mul, c1, r0)), sum(map(_mul, c1, r1)), sum(map(_mul, c1, r2)),
sum(map(_mul, c2, r0)), sum(map(_mul, c2, r1)), sum(map(_mul, c2, r2))))
def __repr__(self) -> str:
return f"{self.__class__.__name__}{self[0:3]}\n {self[3:6]}\n {self[6:9]}"
class Mat4(tuple):
"""A 4x4 Matrix class
`Mat4` is an immutable 4x4 Matrix, including most common
operators. Matrix multiplication must be performed using
the "@" operator.
Class methods are available for creating orthogonal
and perspective projections matrixes.
"""
def __new__(cls, values: _Iterable[float] = (1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0,)) -> Mat4:
"""Create a 4x4 Matrix
A Matrix can be created with a list or tuple of 16 values.
If no values are provided, an "identity matrix" will be created
(1.0 on the main diagonal). Matrix objects are immutable, so
all operations return a new Mat4 object.
:Parameters:
`values` : tuple of float or int
A tuple or list containing 16 floats or ints.
"""
new = super().__new__(Mat4, values)
assert len(new) == 16, "A 4x4 Matrix requires 16 values"
return new
@classmethod
def orthogonal_projection(
cls: type[Mat4T],
left: float,
right: float,
bottom: float,
top: float,
z_near: float,
z_far: float
) -> Mat4T:
"""Create a Mat4 orthographic projection matrix for use with OpenGL.
This matrix doesn't actually perform the projection; it transforms the
space so that OpenGL's vertex processing performs it.
"""
width = right - left
height = top - bottom
depth = z_far - z_near
sx = 2.0 / width
sy = 2.0 / height
sz = 2.0 / -depth
tx = -(right + left) / width
ty = -(top + bottom) / height
tz = -(z_far + z_near) / depth
return cls((sx, 0.0, 0.0, 0.0,
0.0, sy, 0.0, 0.0,
0.0, 0.0, sz, 0.0,
tx, ty, tz, 1.0))
@classmethod
def perspective_projection(
cls: type[Mat4T],
aspect: float,
z_near: float,
z_far: float,
fov: float = 60
) -> Mat4T:
"""
Create a Mat4 perspective projection matrix for use with OpenGL.
This matrix doesn't actually perform the projection; it transforms the
space so that OpenGL's vertex processing performs it.
:Parameters:
`aspect` : The aspect ratio as a `float`
`z_near` : The near plane as a `float`
`z_far` : The far plane as a `float`
`fov` : Field of view in degrees as a `float`
"""
xy_max = z_near * _math.tan(fov * _math.pi / 360)
y_min = -xy_max
x_min = -xy_max
width = xy_max - x_min
height = xy_max - y_min
depth = z_far - z_near
q = -(z_far + z_near) / depth
qn = -2 * z_far * z_near / depth
w = 2 * z_near / width
w = w / aspect
h = 2 * z_near / height
return cls((w, 0, 0, 0,
0, h, 0, 0,
0, 0, q, -1,
0, 0, qn, 0))
@classmethod
def from_rotation(cls, angle: float, vector: Vec3) -> Mat4:
"""Create a rotation matrix from an angle and Vec3.
:Parameters:
`angle` : A `float` :
The angle as a float.
`vector` : A `Vec3`, or 3 component tuple of float or int :
Vec3 or tuple with x, y and z translation values
"""
return cls().rotate(angle, vector)
@classmethod
def from_scale(cls: type[Mat4T], vector: Vec3) -> Mat4T:
"""Create a scale matrix from a Vec3.
:Parameters:
`vector` : A `Vec3`, or 3 component tuple of float or int
Vec3 or tuple with x, y and z scale values
"""
return cls((vector[0], 0.0, 0.0, 0.0,
0.0, vector[1], 0.0, 0.0,
0.0, 0.0, vector[2], 0.0,
0.0, 0.0, 0.0, 1.0))
@classmethod
def from_translation(cls: type[Mat4T], vector: Vec3) -> Mat4T:
"""Create a translation matrix from a Vec3.
:Parameters:
`vector` : A `Vec3`, or 3 component tuple of float or int
Vec3 or tuple with x, y and z translation values
"""
return cls((1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
vector[0], vector[1], vector[2], 1.0))
@classmethod
def look_at(cls: type[Mat4T], position: Vec3, target: Vec3, up: Vec3):
f = (target - position).normalize()
u = up.normalize()
s = f.cross(u).normalize()
u = s.cross(f)
return cls([s.x, u.x, -f.x, 0.0,
s.y, u.y, -f.y, 0.0,
s.z, u.z, -f.z, 0.0,
-s.dot(position), -u.dot(position), f.dot(position), 1.0])
def row(self, index: int) -> tuple:
"""Get a specific row as a tuple."""
return self[index::4]
def column(self, index: int) -> tuple:
"""Get a specific column as a tuple."""
return self[index * 4: index * 4 + 4]
def rotate(self, angle: float, vector: Vec3) -> Mat4:
"""Get a rotation Matrix on x, y, or z axis."""
if not all(abs(n) <= 1 for n in vector):
raise ValueError("vector must be normalized (<=1)")
x, y, z = vector
c = _math.cos(angle)
s = _math.sin(angle)
t = 1 - c
temp_x, temp_y, temp_z = t * x, t * y, t * z
ra = c + temp_x * x
rb = 0 + temp_x * y + s * z
rc = 0 + temp_x * z - s * y
re = 0 + temp_y * x - s * z
rf = c + temp_y * y
rg = 0 + temp_y * z + s * x
ri = 0 + temp_z * x + s * y
rj = 0 + temp_z * y - s * x
rk = c + temp_z * z
# ra, rb, rc, --
# re, rf, rg, --
# ri, rj, rk, --
# --, --, --, --
return Mat4(self) @ Mat4((ra, rb, rc, 0, re, rf, rg, 0, ri, rj, rk, 0, 0, 0, 0, 1))
def scale(self, vector: Vec3) -> Mat4:
"""Get a scale Matrix on x, y, or z axis."""
temp = list(self)
temp[0] *= vector[0]
temp[5] *= vector[1]
temp[10] *= vector[2]
return Mat4(temp)
def translate(self, vector: Vec3) -> Mat4:
"""Get a translation Matrix along x, y, and z axis."""
return self @ Mat4((1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, *vector, 1))
def transpose(self) -> Mat4:
"""Get a transpose of this Matrix."""
return Mat4(self[0::4] + self[1::4] + self[2::4] + self[3::4])
def __add__(self, other: Mat4) -> Mat4:
if not isinstance(other, Mat4):
raise TypeError("Can only add to other Mat4 types")
return Mat4(s + o for s, o in zip(self, other))
def __sub__(self, other: Mat4) -> Mat4:
if not isinstance(other, Mat4):
raise TypeError("Can only subtract from other Mat4 types")
return Mat4(s - o for s, o in zip(self, other))
def __pos__(self) -> Mat4:
return self
def __neg__(self) -> Mat4:
return Mat4(-v for v in self)
def __invert__(self) -> Mat4:
a = self[10] * self[15] - self[11] * self[14]
b = self[9] * self[15] - self[11] * self[13]
c = self[9] * self[14] - self[10] * self[13]
d = self[8] * self[15] - self[11] * self[12]
e = self[8] * self[14] - self[10] * self[12]
f = self[8] * self[13] - self[9] * self[12]
g = self[6] * self[15] - self[7] * self[14]
h = self[5] * self[15] - self[7] * self[13]
i = self[5] * self[14] - self[6] * self[13]
j = self[6] * self[11] - self[7] * self[10]
k = self[5] * self[11] - self[7] * self[9]
l = self[5] * self[10] - self[6] * self[9]
m = self[4] * self[15] - self[7] * self[12]
n = self[4] * self[14] - self[6] * self[12]
o = self[4] * self[11] - self[7] * self[8]
p = self[4] * self[10] - self[6] * self[8]
q = self[4] * self[13] - self[5] * self[12]
r = self[4] * self[9] - self[5] * self[8]
det = (self[0] * (self[5] * a - self[6] * b + self[7] * c)
- self[1] * (self[4] * a - self[6] * d + self[7] * e)
+ self[2] * (self[4] * b - self[5] * d + self[7] * f)
- self[3] * (self[4] * c - self[5] * e + self[6] * f))
if det == 0:
_warnings.warn("Unable to calculate inverse of singular Matrix")
return self
pdet = 1 / det
ndet = -pdet
return Mat4((pdet * (self[5] * a - self[6] * b + self[7] * c),
ndet * (self[1] * a - self[2] * b + self[3] * c),
pdet * (self[1] * g - self[2] * h + self[3] * i),
ndet * (self[1] * j - self[2] * k + self[3] * l),
ndet * (self[4] * a - self[6] * d + self[7] * e),
pdet * (self[0] * a - self[2] * d + self[3] * e),
ndet * (self[0] * g - self[2] * m + self[3] * n),
pdet * (self[0] * j - self[2] * o + self[3] * p),
pdet * (self[4] * b - self[5] * d + self[7] * f),
ndet * (self[0] * b - self[1] * d + self[3] * f),
pdet * (self[0] * h - self[1] * m + self[3] * q),
ndet * (self[0] * k - self[1] * o + self[3] * r),
ndet * (self[4] * c - self[5] * e + self[6] * f),
pdet * (self[0] * c - self[1] * e + self[2] * f),
ndet * (self[0] * i - self[1] * n + self[2] * q),
pdet * (self[0] * l - self[1] * p + self[2] * r)))
def __round__(self, ndigits: int | None = None) -> Mat4:
return Mat4(round(v, ndigits) for v in self)
def __mul__(self, other: int) -> _typing.NoReturn:
raise NotImplementedError("Please use the @ operator for Matrix multiplication.")
@_typing.overload
def __matmul__(self, other: Vec4) -> Vec4:
...
@_typing.overload
def __matmul__(self, other: Mat4) -> Mat4:
...
def __matmul__(self, other):
if isinstance(other, Vec4):
# Rows:
r0 = self[0::4]
r1 = self[1::4]
r2 = self[2::4]
r3 = self[3::4]
return Vec4(sum(map(_mul, r0, other)),
sum(map(_mul, r1, other)),
sum(map(_mul, r2, other)),
sum(map(_mul, r3, other)))
if not isinstance(other, Mat4):
raise TypeError("Can only multiply with Mat4 or Vec4 types")
# Rows:
r0 = self[0::4]
r1 = self[1::4]
r2 = self[2::4]
r3 = self[3::4]
# Columns:
c0 = other[0:4]
c1 = other[4:8]
c2 = other[8:12]
c3 = other[12:16]
# Multiply and sum rows * columns:
return Mat4((sum(map(_mul, c0, r0)), sum(map(_mul, c0, r1)), sum(map(_mul, c0, r2)), sum(map(_mul, c0, r3)),
sum(map(_mul, c1, r0)), sum(map(_mul, c1, r1)), sum(map(_mul, c1, r2)), sum(map(_mul, c1, r3)),
sum(map(_mul, c2, r0)), sum(map(_mul, c2, r1)), sum(map(_mul, c2, r2)), sum(map(_mul, c2, r3)),
sum(map(_mul, c3, r0)), sum(map(_mul, c3, r1)), sum(map(_mul, c3, r2)), sum(map(_mul, c3, r3))))
# def __getitem__(self, item):
# row = [slice(0, 4), slice(4, 8), slice(8, 12), slice(12, 16)][item]
# return super().__getitem__(row)
def __repr__(self) -> str:
return f"{self.__class__.__name__}{self[0:4]}\n {self[4:8]}\n {self[8:12]}\n {self[12:16]}"
|