abrar-lohia commited on
Commit
9a2da78
·
1 Parent(s): 6a6f1e5

Upload 473 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. generate_human_motion/VQTrans/GPT_eval_multi.py +121 -0
  3. generate_human_motion/VQTrans/VQ_eval.py +95 -0
  4. generate_human_motion/VQTrans/ViT-B-32.pt +3 -0
  5. generate_human_motion/VQTrans/__init__.py +0 -0
  6. generate_human_motion/VQTrans/__pycache__/__init__.cpython-310.pyc +0 -0
  7. generate_human_motion/VQTrans/body_models/smpl/J_regressor_extra.npy +3 -0
  8. generate_human_motion/VQTrans/body_models/smpl/SMPL_NEUTRAL.pkl +3 -0
  9. generate_human_motion/VQTrans/body_models/smpl/kintree_table.pkl +3 -0
  10. generate_human_motion/VQTrans/body_models/smpl/smplfaces.npy +3 -0
  11. generate_human_motion/VQTrans/checkpoints/kit.zip +3 -0
  12. generate_human_motion/VQTrans/checkpoints/t2m.zip +3 -0
  13. generate_human_motion/VQTrans/checkpoints/train_vq.py +171 -0
  14. generate_human_motion/VQTrans/dataset/dataset_TM_eval.py +217 -0
  15. generate_human_motion/VQTrans/dataset/dataset_TM_train.py +161 -0
  16. generate_human_motion/VQTrans/dataset/dataset_VQ.py +109 -0
  17. generate_human_motion/VQTrans/dataset/dataset_tokenize.py +117 -0
  18. generate_human_motion/VQTrans/dataset/prepare/download_extractor.sh +15 -0
  19. generate_human_motion/VQTrans/dataset/prepare/download_glove.sh +9 -0
  20. generate_human_motion/VQTrans/dataset/prepare/download_model.sh +12 -0
  21. generate_human_motion/VQTrans/dataset/prepare/download_smpl.sh +13 -0
  22. generate_human_motion/VQTrans/environment.yml +121 -0
  23. generate_human_motion/VQTrans/models/__init__.py +0 -0
  24. generate_human_motion/VQTrans/models/__pycache__/__init__.cpython-310.pyc +0 -0
  25. generate_human_motion/VQTrans/models/__pycache__/encdec.cpython-310.pyc +0 -0
  26. generate_human_motion/VQTrans/models/__pycache__/pos_encoding.cpython-310.pyc +0 -0
  27. generate_human_motion/VQTrans/models/__pycache__/quantize_cnn.cpython-310.pyc +0 -0
  28. generate_human_motion/VQTrans/models/__pycache__/resnet.cpython-310.pyc +0 -0
  29. generate_human_motion/VQTrans/models/__pycache__/rotation2xyz.cpython-310.pyc +0 -0
  30. generate_human_motion/VQTrans/models/__pycache__/smpl.cpython-310.pyc +0 -0
  31. generate_human_motion/VQTrans/models/__pycache__/t2m_trans.cpython-310.pyc +0 -0
  32. generate_human_motion/VQTrans/models/__pycache__/vqvae.cpython-310.pyc +0 -0
  33. generate_human_motion/VQTrans/models/encdec.py +67 -0
  34. generate_human_motion/VQTrans/models/evaluator_wrapper.py +92 -0
  35. generate_human_motion/VQTrans/models/modules.py +109 -0
  36. generate_human_motion/VQTrans/models/pos_encoding.py +43 -0
  37. generate_human_motion/VQTrans/models/quantize_cnn.py +415 -0
  38. generate_human_motion/VQTrans/models/resnet.py +82 -0
  39. generate_human_motion/VQTrans/models/rotation2xyz.py +92 -0
  40. generate_human_motion/VQTrans/models/smpl.py +97 -0
  41. generate_human_motion/VQTrans/models/t2m_trans.py +211 -0
  42. generate_human_motion/VQTrans/models/vqvae.py +118 -0
  43. generate_human_motion/VQTrans/options/__pycache__/option_transformer.cpython-310.pyc +0 -0
  44. generate_human_motion/VQTrans/options/get_eval_option.py +83 -0
  45. generate_human_motion/VQTrans/options/option_transformer.py +68 -0
  46. generate_human_motion/VQTrans/options/option_vq.py +61 -0
  47. generate_human_motion/VQTrans/output/02ab4ad275eda92f352e2ed8d942eeef_pred.pt +3 -0
  48. generate_human_motion/VQTrans/output/06c27c738e874b23067c006f52e18ebc_pred.pt +3 -0
  49. generate_human_motion/VQTrans/output/0edd5f692aeec051d748dee0844f94e1_pred.pt +3 -0
  50. generate_human_motion/VQTrans/output/23cb7d0e26bb1646b3d386331971449c_pred.pt +3 -0
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ generate_human_motion/VQTrans/output/results.gif filter=lfs diff=lfs merge=lfs -text
generate_human_motion/VQTrans/GPT_eval_multi.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import numpy as np
4
+ from torch.utils.tensorboard import SummaryWriter
5
+ import json
6
+ import clip
7
+
8
+ import options.option_transformer as option_trans
9
+ import models.vqvae as vqvae
10
+ import utils.utils_model as utils_model
11
+ import utils.eval_trans as eval_trans
12
+ from dataset import dataset_TM_eval
13
+ import models.t2m_trans as trans
14
+ from options.get_eval_option import get_opt
15
+ from models.evaluator_wrapper import EvaluatorModelWrapper
16
+ import warnings
17
+ warnings.filterwarnings('ignore')
18
+
19
+ ##### ---- Exp dirs ---- #####
20
+ args = option_trans.get_args_parser()
21
+ torch.manual_seed(args.seed)
22
+
23
+ args.out_dir = os.path.join(args.out_dir, f'{args.exp_name}')
24
+ os.makedirs(args.out_dir, exist_ok = True)
25
+
26
+ ##### ---- Logger ---- #####
27
+ logger = utils_model.get_logger(args.out_dir)
28
+ writer = SummaryWriter(args.out_dir)
29
+ logger.info(json.dumps(vars(args), indent=4, sort_keys=True))
30
+
31
+ from utils.word_vectorizer import WordVectorizer
32
+ w_vectorizer = WordVectorizer('./glove', 'our_vab')
33
+ val_loader = dataset_TM_eval.DATALoader(args.dataname, True, 32, w_vectorizer)
34
+
35
+ dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt' if args.dataname == 'kit' else 'checkpoints/t2m/Comp_v6_KLD005/opt.txt'
36
+
37
+ wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda'))
38
+ eval_wrapper = EvaluatorModelWrapper(wrapper_opt)
39
+
40
+ ##### ---- Network ---- #####
41
+
42
+ ## load clip model and datasets
43
+ clip_model, clip_preprocess = clip.load("ViT-B/32", device=torch.device('cuda'), jit=False, download_root='/apdcephfs_cq2/share_1290939/maelyszhang/.cache/clip') # Must set jit=False for training
44
+ clip.model.convert_weights(clip_model) # Actually this line is unnecessary since clip by default already on float16
45
+ clip_model.eval()
46
+ for p in clip_model.parameters():
47
+ p.requires_grad = False
48
+
49
+ net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers
50
+ args.nb_code,
51
+ args.code_dim,
52
+ args.output_emb_width,
53
+ args.down_t,
54
+ args.stride_t,
55
+ args.width,
56
+ args.depth,
57
+ args.dilation_growth_rate)
58
+
59
+
60
+ trans_encoder = trans.Text2Motion_Transformer(num_vq=args.nb_code,
61
+ embed_dim=args.embed_dim_gpt,
62
+ clip_dim=args.clip_dim,
63
+ block_size=args.block_size,
64
+ num_layers=args.num_layers,
65
+ n_head=args.n_head_gpt,
66
+ drop_out_rate=args.drop_out_rate,
67
+ fc_rate=args.ff_rate)
68
+
69
+
70
+ print ('loading checkpoint from {}'.format(args.resume_pth))
71
+ ckpt = torch.load(args.resume_pth, map_location='cpu')
72
+ net.load_state_dict(ckpt['net'], strict=True)
73
+ net.eval()
74
+ net.cuda()
75
+
76
+ if args.resume_trans is not None:
77
+ print ('loading transformer checkpoint from {}'.format(args.resume_trans))
78
+ ckpt = torch.load(args.resume_trans, map_location='cpu')
79
+ trans_encoder.load_state_dict(ckpt['trans'], strict=True)
80
+ trans_encoder.train()
81
+ trans_encoder.cuda()
82
+
83
+
84
+ fid = []
85
+ div = []
86
+ top1 = []
87
+ top2 = []
88
+ top3 = []
89
+ matching = []
90
+ multi = []
91
+ repeat_time = 20
92
+
93
+
94
+ for i in range(repeat_time):
95
+ best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, best_multi, writer, logger = eval_trans.evaluation_transformer_test(args.out_dir, val_loader, net, trans_encoder, logger, writer, 0, best_fid=1000, best_iter=0, best_div=100, best_top1=0, best_top2=0, best_top3=0, best_matching=100, best_multi=0, clip_model=clip_model, eval_wrapper=eval_wrapper, draw=False, savegif=False, save=False, savenpy=(i==0))
96
+ fid.append(best_fid)
97
+ div.append(best_div)
98
+ top1.append(best_top1)
99
+ top2.append(best_top2)
100
+ top3.append(best_top3)
101
+ matching.append(best_matching)
102
+ multi.append(best_multi)
103
+
104
+ print('final result:')
105
+ print('fid: ', sum(fid)/repeat_time)
106
+ print('div: ', sum(div)/repeat_time)
107
+ print('top1: ', sum(top1)/repeat_time)
108
+ print('top2: ', sum(top2)/repeat_time)
109
+ print('top3: ', sum(top3)/repeat_time)
110
+ print('matching: ', sum(matching)/repeat_time)
111
+ print('multi: ', sum(multi)/repeat_time)
112
+
113
+ fid = np.array(fid)
114
+ div = np.array(div)
115
+ top1 = np.array(top1)
116
+ top2 = np.array(top2)
117
+ top3 = np.array(top3)
118
+ matching = np.array(matching)
119
+ multi = np.array(multi)
120
+ msg_final = f"FID. {np.mean(fid):.3f}, conf. {np.std(fid)*1.96/np.sqrt(repeat_time):.3f}, Diversity. {np.mean(div):.3f}, conf. {np.std(div)*1.96/np.sqrt(repeat_time):.3f}, TOP1. {np.mean(top1):.3f}, conf. {np.std(top1)*1.96/np.sqrt(repeat_time):.3f}, TOP2. {np.mean(top2):.3f}, conf. {np.std(top2)*1.96/np.sqrt(repeat_time):.3f}, TOP3. {np.mean(top3):.3f}, conf. {np.std(top3)*1.96/np.sqrt(repeat_time):.3f}, Matching. {np.mean(matching):.3f}, conf. {np.std(matching)*1.96/np.sqrt(repeat_time):.3f}, Multi. {np.mean(multi):.3f}, conf. {np.std(multi)*1.96/np.sqrt(repeat_time):.3f}"
121
+ logger.info(msg_final)
generate_human_motion/VQTrans/VQ_eval.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+
4
+ import torch
5
+ from torch.utils.tensorboard import SummaryWriter
6
+ import numpy as np
7
+ import models.vqvae as vqvae
8
+ import options.option_vq as option_vq
9
+ import utils.utils_model as utils_model
10
+ from dataset import dataset_TM_eval
11
+ import utils.eval_trans as eval_trans
12
+ from options.get_eval_option import get_opt
13
+ from models.evaluator_wrapper import EvaluatorModelWrapper
14
+ import warnings
15
+ warnings.filterwarnings('ignore')
16
+ import numpy as np
17
+ ##### ---- Exp dirs ---- #####
18
+ args = option_vq.get_args_parser()
19
+ torch.manual_seed(args.seed)
20
+
21
+ args.out_dir = os.path.join(args.out_dir, f'{args.exp_name}')
22
+ os.makedirs(args.out_dir, exist_ok = True)
23
+
24
+ ##### ---- Logger ---- #####
25
+ logger = utils_model.get_logger(args.out_dir)
26
+ writer = SummaryWriter(args.out_dir)
27
+ logger.info(json.dumps(vars(args), indent=4, sort_keys=True))
28
+
29
+
30
+ from utils.word_vectorizer import WordVectorizer
31
+ w_vectorizer = WordVectorizer('./glove', 'our_vab')
32
+
33
+
34
+ dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt' if args.dataname == 'kit' else 'checkpoints/t2m/Comp_v6_KLD005/opt.txt'
35
+
36
+ wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda'))
37
+ eval_wrapper = EvaluatorModelWrapper(wrapper_opt)
38
+
39
+
40
+ ##### ---- Dataloader ---- #####
41
+ args.nb_joints = 21 if args.dataname == 'kit' else 22
42
+
43
+ val_loader = dataset_TM_eval.DATALoader(args.dataname, True, 32, w_vectorizer, unit_length=2**args.down_t)
44
+
45
+ ##### ---- Network ---- #####
46
+ net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers
47
+ args.nb_code,
48
+ args.code_dim,
49
+ args.output_emb_width,
50
+ args.down_t,
51
+ args.stride_t,
52
+ args.width,
53
+ args.depth,
54
+ args.dilation_growth_rate,
55
+ args.vq_act,
56
+ args.vq_norm)
57
+
58
+ if args.resume_pth :
59
+ logger.info('loading checkpoint from {}'.format(args.resume_pth))
60
+ ckpt = torch.load(args.resume_pth, map_location='cpu')
61
+ net.load_state_dict(ckpt['net'], strict=True)
62
+ net.train()
63
+ net.cuda()
64
+
65
+ fid = []
66
+ div = []
67
+ top1 = []
68
+ top2 = []
69
+ top3 = []
70
+ matching = []
71
+ repeat_time = 20
72
+ for i in range(repeat_time):
73
+ best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_vqvae(args.out_dir, val_loader, net, logger, writer, 0, best_fid=1000, best_iter=0, best_div=100, best_top1=0, best_top2=0, best_top3=0, best_matching=100, eval_wrapper=eval_wrapper, draw=False, save=False, savenpy=(i==0))
74
+ fid.append(best_fid)
75
+ div.append(best_div)
76
+ top1.append(best_top1)
77
+ top2.append(best_top2)
78
+ top3.append(best_top3)
79
+ matching.append(best_matching)
80
+ print('final result:')
81
+ print('fid: ', sum(fid)/repeat_time)
82
+ print('div: ', sum(div)/repeat_time)
83
+ print('top1: ', sum(top1)/repeat_time)
84
+ print('top2: ', sum(top2)/repeat_time)
85
+ print('top3: ', sum(top3)/repeat_time)
86
+ print('matching: ', sum(matching)/repeat_time)
87
+
88
+ fid = np.array(fid)
89
+ div = np.array(div)
90
+ top1 = np.array(top1)
91
+ top2 = np.array(top2)
92
+ top3 = np.array(top3)
93
+ matching = np.array(matching)
94
+ msg_final = f"FID. {np.mean(fid):.3f}, conf. {np.std(fid)*1.96/np.sqrt(repeat_time):.3f}, Diversity. {np.mean(div):.3f}, conf. {np.std(div)*1.96/np.sqrt(repeat_time):.3f}, TOP1. {np.mean(top1):.3f}, conf. {np.std(top1)*1.96/np.sqrt(repeat_time):.3f}, TOP2. {np.mean(top2):.3f}, conf. {np.std(top2)*1.96/np.sqrt(repeat_time):.3f}, TOP3. {np.mean(top3):.3f}, conf. {np.std(top3)*1.96/np.sqrt(repeat_time):.3f}, Matching. {np.mean(matching):.3f}, conf. {np.std(matching)*1.96/np.sqrt(repeat_time):.3f}"
95
+ logger.info(msg_final)
generate_human_motion/VQTrans/ViT-B-32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af
3
+ size 353976522
generate_human_motion/VQTrans/__init__.py ADDED
File without changes
generate_human_motion/VQTrans/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (162 Bytes). View file
 
generate_human_motion/VQTrans/body_models/smpl/J_regressor_extra.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc968ea4f9855571e82f90203280836b01f13ee42a8e1b89d8d580b801242a89
3
+ size 496160
generate_human_motion/VQTrans/body_models/smpl/SMPL_NEUTRAL.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98e65c74ad9b998783132f00880d1025a8d64b158e040e6ef13a557e5098bc42
3
+ size 39001280
generate_human_motion/VQTrans/body_models/smpl/kintree_table.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62116ec76c6192ae912557122ea935267ba7188144efb9306ea1366f0e50d4d2
3
+ size 349
generate_human_motion/VQTrans/body_models/smpl/smplfaces.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ee8e99db736acf178a6078ab5710ca942edc3738d34c72f41a35c40b370e045
3
+ size 165440
generate_human_motion/VQTrans/checkpoints/kit.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e9d54e1c68bacad61277f89c7d05f9c88a68fd92ff79f79644128bb9b2508cb
3
+ size 704518254
generate_human_motion/VQTrans/checkpoints/t2m.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:09e0628dbc585416217617c0583415c8f654ff855703d72fdb713f7061c0863e
3
+ size 1222422692
generate_human_motion/VQTrans/checkpoints/train_vq.py ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+
4
+ import torch
5
+ import torch.optim as optim
6
+ from torch.utils.tensorboard import SummaryWriter
7
+
8
+ import models.vqvae as vqvae
9
+ import utils.losses as losses
10
+ import options.option_vq as option_vq
11
+ import utils.utils_model as utils_model
12
+ from dataset import dataset_VQ, dataset_TM_eval
13
+ import utils.eval_trans as eval_trans
14
+ from options.get_eval_option import get_opt
15
+ from models.evaluator_wrapper import EvaluatorModelWrapper
16
+ import warnings
17
+ warnings.filterwarnings('ignore')
18
+ from utils.word_vectorizer import WordVectorizer
19
+
20
+ def update_lr_warm_up(optimizer, nb_iter, warm_up_iter, lr):
21
+
22
+ current_lr = lr * (nb_iter + 1) / (warm_up_iter + 1)
23
+ for param_group in optimizer.param_groups:
24
+ param_group["lr"] = current_lr
25
+
26
+ return optimizer, current_lr
27
+
28
+ ##### ---- Exp dirs ---- #####
29
+ args = option_vq.get_args_parser()
30
+ torch.manual_seed(args.seed)
31
+
32
+ args.out_dir = os.path.join(args.out_dir, f'{args.exp_name}')
33
+ os.makedirs(args.out_dir, exist_ok = True)
34
+
35
+ ##### ---- Logger ---- #####
36
+ logger = utils_model.get_logger(args.out_dir)
37
+ writer = SummaryWriter(args.out_dir)
38
+ logger.info(json.dumps(vars(args), indent=4, sort_keys=True))
39
+
40
+
41
+
42
+ w_vectorizer = WordVectorizer('./glove', 'our_vab')
43
+
44
+ if args.dataname == 'kit' :
45
+ dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt'
46
+ args.nb_joints = 21
47
+
48
+ else :
49
+ dataset_opt_path = 'checkpoints/t2m/Comp_v6_KLD005/opt.txt'
50
+ args.nb_joints = 22
51
+
52
+ logger.info(f'Training on {args.dataname}, motions are with {args.nb_joints} joints')
53
+
54
+ wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda'))
55
+ eval_wrapper = EvaluatorModelWrapper(wrapper_opt)
56
+
57
+
58
+ ##### ---- Dataloader ---- #####
59
+ train_loader = dataset_VQ.DATALoader(args.dataname,
60
+ args.batch_size,
61
+ window_size=args.window_size,
62
+ unit_length=2**args.down_t)
63
+
64
+ train_loader_iter = dataset_VQ.cycle(train_loader)
65
+
66
+ val_loader = dataset_TM_eval.DATALoader(args.dataname, False,
67
+ 32,
68
+ w_vectorizer,
69
+ unit_length=2**args.down_t)
70
+
71
+ ##### ---- Network ---- #####
72
+ net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers
73
+ args.nb_code,
74
+ args.code_dim,
75
+ args.output_emb_width,
76
+ args.down_t,
77
+ args.stride_t,
78
+ args.width,
79
+ args.depth,
80
+ args.dilation_growth_rate,
81
+ args.vq_act,
82
+ args.vq_norm)
83
+
84
+
85
+ if args.resume_pth :
86
+ logger.info('loading checkpoint from {}'.format(args.resume_pth))
87
+ ckpt = torch.load(args.resume_pth, map_location='cpu')
88
+ net.load_state_dict(ckpt['net'], strict=True)
89
+ net.train()
90
+ net.cuda()
91
+
92
+ ##### ---- Optimizer & Scheduler ---- #####
93
+ optimizer = optim.AdamW(net.parameters(), lr=args.lr, betas=(0.9, 0.99), weight_decay=args.weight_decay)
94
+ scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_scheduler, gamma=args.gamma)
95
+
96
+
97
+ Loss = losses.ReConsLoss(args.recons_loss, args.nb_joints)
98
+
99
+ ##### ------ warm-up ------- #####
100
+ avg_recons, avg_perplexity, avg_commit = 0., 0., 0.
101
+
102
+ for nb_iter in range(1, args.warm_up_iter):
103
+
104
+ optimizer, current_lr = update_lr_warm_up(optimizer, nb_iter, args.warm_up_iter, args.lr)
105
+
106
+ gt_motion = next(train_loader_iter)
107
+ gt_motion = gt_motion.cuda().float() # (bs, 64, dim)
108
+
109
+ pred_motion, loss_commit, perplexity = net(gt_motion)
110
+ loss_motion = Loss(pred_motion, gt_motion)
111
+ loss_vel = Loss.forward_vel(pred_motion, gt_motion)
112
+
113
+ loss = loss_motion + args.commit * loss_commit + args.loss_vel * loss_vel
114
+
115
+ optimizer.zero_grad()
116
+ loss.backward()
117
+ optimizer.step()
118
+
119
+ avg_recons += loss_motion.item()
120
+ avg_perplexity += perplexity.item()
121
+ avg_commit += loss_commit.item()
122
+
123
+ if nb_iter % args.print_iter == 0 :
124
+ avg_recons /= args.print_iter
125
+ avg_perplexity /= args.print_iter
126
+ avg_commit /= args.print_iter
127
+
128
+ logger.info(f"Warmup. Iter {nb_iter} : lr {current_lr:.5f} \t Commit. {avg_commit:.5f} \t PPL. {avg_perplexity:.2f} \t Recons. {avg_recons:.5f}")
129
+
130
+ avg_recons, avg_perplexity, avg_commit = 0., 0., 0.
131
+
132
+ ##### ---- Training ---- #####
133
+ avg_recons, avg_perplexity, avg_commit = 0., 0., 0.
134
+ best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_vqvae(args.out_dir, val_loader, net, logger, writer, 0, best_fid=1000, best_iter=0, best_div=100, best_top1=0, best_top2=0, best_top3=0, best_matching=100, eval_wrapper=eval_wrapper)
135
+
136
+ for nb_iter in range(1, args.total_iter + 1):
137
+
138
+ gt_motion = next(train_loader_iter)
139
+ gt_motion = gt_motion.cuda().float() # bs, nb_joints, joints_dim, seq_len
140
+
141
+ pred_motion, loss_commit, perplexity = net(gt_motion)
142
+ loss_motion = Loss(pred_motion, gt_motion)
143
+ loss_vel = Loss.forward_vel(pred_motion, gt_motion)
144
+
145
+ loss = loss_motion + args.commit * loss_commit + args.loss_vel * loss_vel
146
+
147
+ optimizer.zero_grad()
148
+ loss.backward()
149
+ optimizer.step()
150
+ scheduler.step()
151
+
152
+ avg_recons += loss_motion.item()
153
+ avg_perplexity += perplexity.item()
154
+ avg_commit += loss_commit.item()
155
+
156
+ if nb_iter % args.print_iter == 0 :
157
+ avg_recons /= args.print_iter
158
+ avg_perplexity /= args.print_iter
159
+ avg_commit /= args.print_iter
160
+
161
+ writer.add_scalar('./Train/L1', avg_recons, nb_iter)
162
+ writer.add_scalar('./Train/PPL', avg_perplexity, nb_iter)
163
+ writer.add_scalar('./Train/Commit', avg_commit, nb_iter)
164
+
165
+ logger.info(f"Train. Iter {nb_iter} : \t Commit. {avg_commit:.5f} \t PPL. {avg_perplexity:.2f} \t Recons. {avg_recons:.5f}")
166
+
167
+ avg_recons, avg_perplexity, avg_commit = 0., 0., 0.,
168
+
169
+ if nb_iter % args.eval_iter==0 :
170
+ best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_vqvae(args.out_dir, val_loader, net, logger, writer, nb_iter, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, eval_wrapper=eval_wrapper)
171
+
generate_human_motion/VQTrans/dataset/dataset_TM_eval.py ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.utils import data
3
+ import numpy as np
4
+ from os.path import join as pjoin
5
+ import random
6
+ import codecs as cs
7
+ from tqdm import tqdm
8
+
9
+ import utils.paramUtil as paramUtil
10
+ from torch.utils.data._utils.collate import default_collate
11
+
12
+
13
+ def collate_fn(batch):
14
+ batch.sort(key=lambda x: x[3], reverse=True)
15
+ return default_collate(batch)
16
+
17
+
18
+ '''For use of training text-2-motion generative model'''
19
+ class Text2MotionDataset(data.Dataset):
20
+ def __init__(self, dataset_name, is_test, w_vectorizer, feat_bias = 5, max_text_len = 20, unit_length = 4):
21
+
22
+ self.max_length = 20
23
+ self.pointer = 0
24
+ self.dataset_name = dataset_name
25
+ self.is_test = is_test
26
+ self.max_text_len = max_text_len
27
+ self.unit_length = unit_length
28
+ self.w_vectorizer = w_vectorizer
29
+ if dataset_name == 't2m':
30
+ self.data_root = './dataset/HumanML3D'
31
+ self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
32
+ self.text_dir = pjoin(self.data_root, 'texts')
33
+ self.joints_num = 22
34
+ radius = 4
35
+ fps = 20
36
+ self.max_motion_length = 196
37
+ dim_pose = 263
38
+ kinematic_chain = paramUtil.t2m_kinematic_chain
39
+ self.meta_dir = 'checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta'
40
+ elif dataset_name == 'kit':
41
+ self.data_root = './dataset/KIT-ML'
42
+ self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
43
+ self.text_dir = pjoin(self.data_root, 'texts')
44
+ self.joints_num = 21
45
+ radius = 240 * 8
46
+ fps = 12.5
47
+ dim_pose = 251
48
+ self.max_motion_length = 196
49
+ kinematic_chain = paramUtil.kit_kinematic_chain
50
+ self.meta_dir = 'checkpoints/kit/VQVAEV3_CB1024_CMT_H1024_NRES3/meta'
51
+
52
+ mean = np.load(pjoin(self.meta_dir, 'mean.npy'))
53
+ std = np.load(pjoin(self.meta_dir, 'std.npy'))
54
+
55
+ if is_test:
56
+ split_file = pjoin(self.data_root, 'test.txt')
57
+ else:
58
+ split_file = pjoin(self.data_root, 'val.txt')
59
+
60
+ min_motion_len = 40 if self.dataset_name =='t2m' else 24
61
+ # min_motion_len = 64
62
+
63
+ joints_num = self.joints_num
64
+
65
+ data_dict = {}
66
+ id_list = []
67
+ with cs.open(split_file, 'r') as f:
68
+ for line in f.readlines():
69
+ id_list.append(line.strip())
70
+
71
+ new_name_list = []
72
+ length_list = []
73
+ for name in tqdm(id_list):
74
+ try:
75
+ motion = np.load(pjoin(self.motion_dir, name + '.npy'))
76
+ if (len(motion)) < min_motion_len or (len(motion) >= 200):
77
+ continue
78
+ text_data = []
79
+ flag = False
80
+ with cs.open(pjoin(self.text_dir, name + '.txt')) as f:
81
+ for line in f.readlines():
82
+ text_dict = {}
83
+ line_split = line.strip().split('#')
84
+ caption = line_split[0]
85
+ tokens = line_split[1].split(' ')
86
+ f_tag = float(line_split[2])
87
+ to_tag = float(line_split[3])
88
+ f_tag = 0.0 if np.isnan(f_tag) else f_tag
89
+ to_tag = 0.0 if np.isnan(to_tag) else to_tag
90
+
91
+ text_dict['caption'] = caption
92
+ text_dict['tokens'] = tokens
93
+ if f_tag == 0.0 and to_tag == 0.0:
94
+ flag = True
95
+ text_data.append(text_dict)
96
+ else:
97
+ try:
98
+ n_motion = motion[int(f_tag*fps) : int(to_tag*fps)]
99
+ if (len(n_motion)) < min_motion_len or (len(n_motion) >= 200):
100
+ continue
101
+ new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name
102
+ while new_name in data_dict:
103
+ new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name
104
+ data_dict[new_name] = {'motion': n_motion,
105
+ 'length': len(n_motion),
106
+ 'text':[text_dict]}
107
+ new_name_list.append(new_name)
108
+ length_list.append(len(n_motion))
109
+ except:
110
+ print(line_split)
111
+ print(line_split[2], line_split[3], f_tag, to_tag, name)
112
+ # break
113
+
114
+ if flag:
115
+ data_dict[name] = {'motion': motion,
116
+ 'length': len(motion),
117
+ 'text': text_data}
118
+ new_name_list.append(name)
119
+ length_list.append(len(motion))
120
+ except Exception as e:
121
+ # print(e)
122
+ pass
123
+
124
+ name_list, length_list = zip(*sorted(zip(new_name_list, length_list), key=lambda x: x[1]))
125
+ self.mean = mean
126
+ self.std = std
127
+ self.length_arr = np.array(length_list)
128
+ self.data_dict = data_dict
129
+ self.name_list = name_list
130
+ self.reset_max_len(self.max_length)
131
+
132
+ def reset_max_len(self, length):
133
+ assert length <= self.max_motion_length
134
+ self.pointer = np.searchsorted(self.length_arr, length)
135
+ print("Pointer Pointing at %d"%self.pointer)
136
+ self.max_length = length
137
+
138
+ def inv_transform(self, data):
139
+ return data * self.std + self.mean
140
+
141
+ def forward_transform(self, data):
142
+ return (data - self.mean) / self.std
143
+
144
+ def __len__(self):
145
+ return len(self.data_dict) - self.pointer
146
+
147
+ def __getitem__(self, item):
148
+ idx = self.pointer + item
149
+ name = self.name_list[idx]
150
+ data = self.data_dict[name]
151
+ # data = self.data_dict[self.name_list[idx]]
152
+ motion, m_length, text_list = data['motion'], data['length'], data['text']
153
+ # Randomly select a caption
154
+ text_data = random.choice(text_list)
155
+ caption, tokens = text_data['caption'], text_data['tokens']
156
+
157
+ if len(tokens) < self.max_text_len:
158
+ # pad with "unk"
159
+ tokens = ['sos/OTHER'] + tokens + ['eos/OTHER']
160
+ sent_len = len(tokens)
161
+ tokens = tokens + ['unk/OTHER'] * (self.max_text_len + 2 - sent_len)
162
+ else:
163
+ # crop
164
+ tokens = tokens[:self.max_text_len]
165
+ tokens = ['sos/OTHER'] + tokens + ['eos/OTHER']
166
+ sent_len = len(tokens)
167
+ pos_one_hots = []
168
+ word_embeddings = []
169
+ for token in tokens:
170
+ word_emb, pos_oh = self.w_vectorizer[token]
171
+ pos_one_hots.append(pos_oh[None, :])
172
+ word_embeddings.append(word_emb[None, :])
173
+ pos_one_hots = np.concatenate(pos_one_hots, axis=0)
174
+ word_embeddings = np.concatenate(word_embeddings, axis=0)
175
+
176
+ if self.unit_length < 10:
177
+ coin2 = np.random.choice(['single', 'single', 'double'])
178
+ else:
179
+ coin2 = 'single'
180
+
181
+ if coin2 == 'double':
182
+ m_length = (m_length // self.unit_length - 1) * self.unit_length
183
+ elif coin2 == 'single':
184
+ m_length = (m_length // self.unit_length) * self.unit_length
185
+ idx = random.randint(0, len(motion) - m_length)
186
+ motion = motion[idx:idx+m_length]
187
+
188
+ "Z Normalization"
189
+ motion = (motion - self.mean) / self.std
190
+
191
+ if m_length < self.max_motion_length:
192
+ motion = np.concatenate([motion,
193
+ np.zeros((self.max_motion_length - m_length, motion.shape[1]))
194
+ ], axis=0)
195
+
196
+ return word_embeddings, pos_one_hots, caption, sent_len, motion, m_length, '_'.join(tokens), name
197
+
198
+
199
+
200
+
201
+ def DATALoader(dataset_name, is_test,
202
+ batch_size, w_vectorizer,
203
+ num_workers = 8, unit_length = 4) :
204
+
205
+ val_loader = torch.utils.data.DataLoader(Text2MotionDataset(dataset_name, is_test, w_vectorizer, unit_length=unit_length),
206
+ batch_size,
207
+ shuffle = True,
208
+ num_workers=num_workers,
209
+ collate_fn=collate_fn,
210
+ drop_last = True)
211
+ return val_loader
212
+
213
+
214
+ def cycle(iterable):
215
+ while True:
216
+ for x in iterable:
217
+ yield x
generate_human_motion/VQTrans/dataset/dataset_TM_train.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.utils import data
3
+ import numpy as np
4
+ from os.path import join as pjoin
5
+ import random
6
+ import codecs as cs
7
+ from tqdm import tqdm
8
+ import utils.paramUtil as paramUtil
9
+ from torch.utils.data._utils.collate import default_collate
10
+
11
+
12
+ def collate_fn(batch):
13
+ batch.sort(key=lambda x: x[3], reverse=True)
14
+ return default_collate(batch)
15
+
16
+
17
+ '''For use of training text-2-motion generative model'''
18
+ class Text2MotionDataset(data.Dataset):
19
+ def __init__(self, dataset_name, feat_bias = 5, unit_length = 4, codebook_size = 1024, tokenizer_name=None):
20
+
21
+ self.max_length = 64
22
+ self.pointer = 0
23
+ self.dataset_name = dataset_name
24
+
25
+ self.unit_length = unit_length
26
+ # self.mot_start_idx = codebook_size
27
+ self.mot_end_idx = codebook_size
28
+ self.mot_pad_idx = codebook_size + 1
29
+ if dataset_name == 't2m':
30
+ self.data_root = './dataset/HumanML3D'
31
+ self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
32
+ self.text_dir = pjoin(self.data_root, 'texts')
33
+ self.joints_num = 22
34
+ radius = 4
35
+ fps = 20
36
+ self.max_motion_length = 26 if unit_length == 8 else 51
37
+ dim_pose = 263
38
+ kinematic_chain = paramUtil.t2m_kinematic_chain
39
+ elif dataset_name == 'kit':
40
+ self.data_root = './dataset/KIT-ML'
41
+ self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
42
+ self.text_dir = pjoin(self.data_root, 'texts')
43
+ self.joints_num = 21
44
+ radius = 240 * 8
45
+ fps = 12.5
46
+ dim_pose = 251
47
+ self.max_motion_length = 26 if unit_length == 8 else 51
48
+ kinematic_chain = paramUtil.kit_kinematic_chain
49
+
50
+ split_file = pjoin(self.data_root, 'train.txt')
51
+
52
+
53
+ id_list = []
54
+ with cs.open(split_file, 'r') as f:
55
+ for line in f.readlines():
56
+ id_list.append(line.strip())
57
+
58
+ new_name_list = []
59
+ data_dict = {}
60
+ for name in tqdm(id_list):
61
+ try:
62
+ m_token_list = np.load(pjoin(self.data_root, tokenizer_name, '%s.npy'%name))
63
+
64
+ # Read text
65
+ with cs.open(pjoin(self.text_dir, name + '.txt')) as f:
66
+ text_data = []
67
+ flag = False
68
+ lines = f.readlines()
69
+
70
+ for line in lines:
71
+ try:
72
+ text_dict = {}
73
+ line_split = line.strip().split('#')
74
+ caption = line_split[0]
75
+ t_tokens = line_split[1].split(' ')
76
+ f_tag = float(line_split[2])
77
+ to_tag = float(line_split[3])
78
+ f_tag = 0.0 if np.isnan(f_tag) else f_tag
79
+ to_tag = 0.0 if np.isnan(to_tag) else to_tag
80
+
81
+ text_dict['caption'] = caption
82
+ text_dict['tokens'] = t_tokens
83
+ if f_tag == 0.0 and to_tag == 0.0:
84
+ flag = True
85
+ text_data.append(text_dict)
86
+ else:
87
+ m_token_list_new = [tokens[int(f_tag*fps/unit_length) : int(to_tag*fps/unit_length)] for tokens in m_token_list if int(f_tag*fps/unit_length) < int(to_tag*fps/unit_length)]
88
+
89
+ if len(m_token_list_new) == 0:
90
+ continue
91
+ new_name = '%s_%f_%f'%(name, f_tag, to_tag)
92
+
93
+ data_dict[new_name] = {'m_token_list': m_token_list_new,
94
+ 'text':[text_dict]}
95
+ new_name_list.append(new_name)
96
+ except:
97
+ pass
98
+
99
+ if flag:
100
+ data_dict[name] = {'m_token_list': m_token_list,
101
+ 'text':text_data}
102
+ new_name_list.append(name)
103
+ except:
104
+ pass
105
+ self.data_dict = data_dict
106
+ self.name_list = new_name_list
107
+
108
+ def __len__(self):
109
+ return len(self.data_dict)
110
+
111
+ def __getitem__(self, item):
112
+ data = self.data_dict[self.name_list[item]]
113
+ m_token_list, text_list = data['m_token_list'], data['text']
114
+ m_tokens = random.choice(m_token_list)
115
+
116
+ text_data = random.choice(text_list)
117
+ caption= text_data['caption']
118
+
119
+
120
+ coin = np.random.choice([False, False, True])
121
+ # print(len(m_tokens))
122
+ if coin:
123
+ # drop one token at the head or tail
124
+ coin2 = np.random.choice([True, False])
125
+ if coin2:
126
+ m_tokens = m_tokens[:-1]
127
+ else:
128
+ m_tokens = m_tokens[1:]
129
+ m_tokens_len = m_tokens.shape[0]
130
+
131
+ if m_tokens_len+1 < self.max_motion_length:
132
+ m_tokens = np.concatenate([m_tokens, np.ones((1), dtype=int) * self.mot_end_idx, np.ones((self.max_motion_length-1-m_tokens_len), dtype=int) * self.mot_pad_idx], axis=0)
133
+ else:
134
+ m_tokens = np.concatenate([m_tokens, np.ones((1), dtype=int) * self.mot_end_idx], axis=0)
135
+
136
+ return caption, m_tokens.reshape(-1), m_tokens_len
137
+
138
+
139
+
140
+
141
+ def DATALoader(dataset_name,
142
+ batch_size, codebook_size, tokenizer_name, unit_length=4,
143
+ num_workers = 8) :
144
+
145
+ train_loader = torch.utils.data.DataLoader(Text2MotionDataset(dataset_name, codebook_size = codebook_size, tokenizer_name = tokenizer_name, unit_length=unit_length),
146
+ batch_size,
147
+ shuffle=True,
148
+ num_workers=num_workers,
149
+ #collate_fn=collate_fn,
150
+ drop_last = True)
151
+
152
+
153
+ return train_loader
154
+
155
+
156
+ def cycle(iterable):
157
+ while True:
158
+ for x in iterable:
159
+ yield x
160
+
161
+
generate_human_motion/VQTrans/dataset/dataset_VQ.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.utils import data
3
+ import numpy as np
4
+ from os.path import join as pjoin
5
+ import random
6
+ import codecs as cs
7
+ from tqdm import tqdm
8
+
9
+
10
+
11
+ class VQMotionDataset(data.Dataset):
12
+ def __init__(self, dataset_name, window_size = 64, unit_length = 4):
13
+ self.window_size = window_size
14
+ self.unit_length = unit_length
15
+ self.dataset_name = dataset_name
16
+
17
+ if dataset_name == 't2m':
18
+ self.data_root = './dataset/HumanML3D'
19
+ self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
20
+ self.text_dir = pjoin(self.data_root, 'texts')
21
+ self.joints_num = 22
22
+ self.max_motion_length = 196
23
+ self.meta_dir = 'checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta'
24
+
25
+ elif dataset_name == 'kit':
26
+ self.data_root = './dataset/KIT-ML'
27
+ self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
28
+ self.text_dir = pjoin(self.data_root, 'texts')
29
+ self.joints_num = 21
30
+
31
+ self.max_motion_length = 196
32
+ self.meta_dir = 'checkpoints/kit/VQVAEV3_CB1024_CMT_H1024_NRES3/meta'
33
+
34
+ joints_num = self.joints_num
35
+
36
+ mean = np.load(pjoin(self.meta_dir, 'mean.npy'))
37
+ std = np.load(pjoin(self.meta_dir, 'std.npy'))
38
+
39
+ split_file = pjoin(self.data_root, 'train.txt')
40
+
41
+ self.data = []
42
+ self.lengths = []
43
+ id_list = []
44
+ with cs.open(split_file, 'r') as f:
45
+ for line in f.readlines():
46
+ id_list.append(line.strip())
47
+
48
+ for name in tqdm(id_list):
49
+ try:
50
+ motion = np.load(pjoin(self.motion_dir, name + '.npy'))
51
+ if motion.shape[0] < self.window_size:
52
+ continue
53
+ self.lengths.append(motion.shape[0] - self.window_size)
54
+ self.data.append(motion)
55
+ except:
56
+ # Some motion may not exist in KIT dataset
57
+ pass
58
+
59
+
60
+ self.mean = mean
61
+ self.std = std
62
+ print("Total number of motions {}".format(len(self.data)))
63
+
64
+ def inv_transform(self, data):
65
+ return data * self.std + self.mean
66
+
67
+ def compute_sampling_prob(self) :
68
+
69
+ prob = np.array(self.lengths, dtype=np.float32)
70
+ prob /= np.sum(prob)
71
+ return prob
72
+
73
+ def __len__(self):
74
+ return len(self.data)
75
+
76
+ def __getitem__(self, item):
77
+ motion = self.data[item]
78
+
79
+ idx = random.randint(0, len(motion) - self.window_size)
80
+
81
+ motion = motion[idx:idx+self.window_size]
82
+ "Z Normalization"
83
+ motion = (motion - self.mean) / self.std
84
+
85
+ return motion
86
+
87
+ def DATALoader(dataset_name,
88
+ batch_size,
89
+ num_workers = 8,
90
+ window_size = 64,
91
+ unit_length = 4):
92
+
93
+ trainSet = VQMotionDataset(dataset_name, window_size=window_size, unit_length=unit_length)
94
+ prob = trainSet.compute_sampling_prob()
95
+ sampler = torch.utils.data.WeightedRandomSampler(prob, num_samples = len(trainSet) * 1000, replacement=True)
96
+ train_loader = torch.utils.data.DataLoader(trainSet,
97
+ batch_size,
98
+ shuffle=True,
99
+ #sampler=sampler,
100
+ num_workers=num_workers,
101
+ #collate_fn=collate_fn,
102
+ drop_last = True)
103
+
104
+ return train_loader
105
+
106
+ def cycle(iterable):
107
+ while True:
108
+ for x in iterable:
109
+ yield x
generate_human_motion/VQTrans/dataset/dataset_tokenize.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.utils import data
3
+ import numpy as np
4
+ from os.path import join as pjoin
5
+ import random
6
+ import codecs as cs
7
+ from tqdm import tqdm
8
+
9
+
10
+
11
+ class VQMotionDataset(data.Dataset):
12
+ def __init__(self, dataset_name, feat_bias = 5, window_size = 64, unit_length = 8):
13
+ self.window_size = window_size
14
+ self.unit_length = unit_length
15
+ self.feat_bias = feat_bias
16
+
17
+ self.dataset_name = dataset_name
18
+ min_motion_len = 40 if dataset_name =='t2m' else 24
19
+
20
+ if dataset_name == 't2m':
21
+ self.data_root = './dataset/HumanML3D'
22
+ self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
23
+ self.text_dir = pjoin(self.data_root, 'texts')
24
+ self.joints_num = 22
25
+ radius = 4
26
+ fps = 20
27
+ self.max_motion_length = 196
28
+ dim_pose = 263
29
+ self.meta_dir = 'checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta'
30
+ #kinematic_chain = paramUtil.t2m_kinematic_chain
31
+ elif dataset_name == 'kit':
32
+ self.data_root = './dataset/KIT-ML'
33
+ self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
34
+ self.text_dir = pjoin(self.data_root, 'texts')
35
+ self.joints_num = 21
36
+ radius = 240 * 8
37
+ fps = 12.5
38
+ dim_pose = 251
39
+ self.max_motion_length = 196
40
+ self.meta_dir = 'checkpoints/kit/VQVAEV3_CB1024_CMT_H1024_NRES3/meta'
41
+ #kinematic_chain = paramUtil.kit_kinematic_chain
42
+
43
+ joints_num = self.joints_num
44
+
45
+ mean = np.load(pjoin(self.meta_dir, 'mean.npy'))
46
+ std = np.load(pjoin(self.meta_dir, 'std.npy'))
47
+
48
+ split_file = pjoin(self.data_root, 'train.txt')
49
+
50
+ data_dict = {}
51
+ id_list = []
52
+ with cs.open(split_file, 'r') as f:
53
+ for line in f.readlines():
54
+ id_list.append(line.strip())
55
+
56
+ new_name_list = []
57
+ length_list = []
58
+ for name in tqdm(id_list):
59
+ try:
60
+ motion = np.load(pjoin(self.motion_dir, name + '.npy'))
61
+ if (len(motion)) < min_motion_len or (len(motion) >= 200):
62
+ continue
63
+
64
+ data_dict[name] = {'motion': motion,
65
+ 'length': len(motion),
66
+ 'name': name}
67
+ new_name_list.append(name)
68
+ length_list.append(len(motion))
69
+ except:
70
+ # Some motion may not exist in KIT dataset
71
+ pass
72
+
73
+
74
+ self.mean = mean
75
+ self.std = std
76
+ self.length_arr = np.array(length_list)
77
+ self.data_dict = data_dict
78
+ self.name_list = new_name_list
79
+
80
+ def inv_transform(self, data):
81
+ return data * self.std + self.mean
82
+
83
+ def __len__(self):
84
+ return len(self.data_dict)
85
+
86
+ def __getitem__(self, item):
87
+ name = self.name_list[item]
88
+ data = self.data_dict[name]
89
+ motion, m_length = data['motion'], data['length']
90
+
91
+ m_length = (m_length // self.unit_length) * self.unit_length
92
+
93
+ idx = random.randint(0, len(motion) - m_length)
94
+ motion = motion[idx:idx+m_length]
95
+
96
+ "Z Normalization"
97
+ motion = (motion - self.mean) / self.std
98
+
99
+ return motion, name
100
+
101
+ def DATALoader(dataset_name,
102
+ batch_size = 1,
103
+ num_workers = 8, unit_length = 4) :
104
+
105
+ train_loader = torch.utils.data.DataLoader(VQMotionDataset(dataset_name, unit_length=unit_length),
106
+ batch_size,
107
+ shuffle=True,
108
+ num_workers=num_workers,
109
+ #collate_fn=collate_fn,
110
+ drop_last = True)
111
+
112
+ return train_loader
113
+
114
+ def cycle(iterable):
115
+ while True:
116
+ for x in iterable:
117
+ yield x
generate_human_motion/VQTrans/dataset/prepare/download_extractor.sh ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ rm -rf checkpoints
2
+ mkdir checkpoints
3
+ cd checkpoints
4
+ echo -e "Downloading extractors"
5
+ gdown --fuzzy https://drive.google.com/file/d/1o7RTDQcToJjTm9_mNWTyzvZvjTWpZfug/view
6
+ gdown --fuzzy https://drive.google.com/file/d/1tX79xk0fflp07EZ660Xz1RAFE33iEyJR/view
7
+
8
+
9
+ unzip t2m.zip
10
+ unzip kit.zip
11
+
12
+ echo -e "Cleaning\n"
13
+ rm t2m.zip
14
+ rm kit.zip
15
+ echo -e "Downloading done!"
generate_human_motion/VQTrans/dataset/prepare/download_glove.sh ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ echo -e "Downloading glove (in use by the evaluators)"
2
+ gdown --fuzzy https://drive.google.com/file/d/1bCeS6Sh_mLVTebxIgiUHgdPrroW06mb6/view?usp=sharing
3
+ rm -rf glove
4
+
5
+ unzip glove.zip
6
+ echo -e "Cleaning\n"
7
+ rm glove.zip
8
+
9
+ echo -e "Downloading done!"
generate_human_motion/VQTrans/dataset/prepare/download_model.sh ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ mkdir -p pretrained
3
+ cd pretrained/
4
+
5
+ echo -e "The pretrained model files will be stored in the 'pretrained' folder\n"
6
+ gdown 1LaOvwypF-jM2Axnq5dc-Iuvv3w_G-WDE
7
+
8
+ unzip VQTrans_pretrained.zip
9
+ echo -e "Cleaning\n"
10
+ rm VQTrans_pretrained.zip
11
+
12
+ echo -e "Downloading done!"
generate_human_motion/VQTrans/dataset/prepare/download_smpl.sh ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ mkdir -p body_models
3
+ cd body_models/
4
+
5
+ echo -e "The smpl files will be stored in the 'body_models/smpl/' folder\n"
6
+ gdown 1INYlGA76ak_cKGzvpOV2Pe6RkYTlXTW2
7
+ rm -rf smpl
8
+
9
+ unzip smpl.zip
10
+ echo -e "Cleaning\n"
11
+ rm smpl.zip
12
+
13
+ echo -e "Downloading done!"
generate_human_motion/VQTrans/environment.yml ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: VQTrans
2
+ channels:
3
+ - pytorch
4
+ - defaults
5
+ dependencies:
6
+ - _libgcc_mutex=0.1=main
7
+ - _openmp_mutex=4.5=1_gnu
8
+ - blas=1.0=mkl
9
+ - bzip2=1.0.8=h7b6447c_0
10
+ - ca-certificates=2021.7.5=h06a4308_1
11
+ - certifi=2021.5.30=py38h06a4308_0
12
+ - cudatoolkit=10.1.243=h6bb024c_0
13
+ - ffmpeg=4.3=hf484d3e_0
14
+ - freetype=2.10.4=h5ab3b9f_0
15
+ - gmp=6.2.1=h2531618_2
16
+ - gnutls=3.6.15=he1e5248_0
17
+ - intel-openmp=2021.3.0=h06a4308_3350
18
+ - jpeg=9b=h024ee3a_2
19
+ - lame=3.100=h7b6447c_0
20
+ - lcms2=2.12=h3be6417_0
21
+ - ld_impl_linux-64=2.35.1=h7274673_9
22
+ - libffi=3.3=he6710b0_2
23
+ - libgcc-ng=9.3.0=h5101ec6_17
24
+ - libgomp=9.3.0=h5101ec6_17
25
+ - libiconv=1.15=h63c8f33_5
26
+ - libidn2=2.3.2=h7f8727e_0
27
+ - libpng=1.6.37=hbc83047_0
28
+ - libstdcxx-ng=9.3.0=hd4cf53a_17
29
+ - libtasn1=4.16.0=h27cfd23_0
30
+ - libtiff=4.2.0=h85742a9_0
31
+ - libunistring=0.9.10=h27cfd23_0
32
+ - libuv=1.40.0=h7b6447c_0
33
+ - libwebp-base=1.2.0=h27cfd23_0
34
+ - lz4-c=1.9.3=h295c915_1
35
+ - mkl=2021.3.0=h06a4308_520
36
+ - mkl-service=2.4.0=py38h7f8727e_0
37
+ - mkl_fft=1.3.0=py38h42c9631_2
38
+ - mkl_random=1.2.2=py38h51133e4_0
39
+ - ncurses=6.2=he6710b0_1
40
+ - nettle=3.7.3=hbbd107a_1
41
+ - ninja=1.10.2=hff7bd54_1
42
+ - numpy=1.20.3=py38hf144106_0
43
+ - numpy-base=1.20.3=py38h74d4b33_0
44
+ - olefile=0.46=py_0
45
+ - openh264=2.1.0=hd408876_0
46
+ - openjpeg=2.3.0=h05c96fa_1
47
+ - openssl=1.1.1k=h27cfd23_0
48
+ - pillow=8.3.1=py38h2c7a002_0
49
+ - pip=21.0.1=py38h06a4308_0
50
+ - python=3.8.11=h12debd9_0_cpython
51
+ - pytorch=1.8.1=py3.8_cuda10.1_cudnn7.6.3_0
52
+ - readline=8.1=h27cfd23_0
53
+ - setuptools=52.0.0=py38h06a4308_0
54
+ - six=1.16.0=pyhd3eb1b0_0
55
+ - sqlite=3.36.0=hc218d9a_0
56
+ - tk=8.6.10=hbc83047_0
57
+ - torchaudio=0.8.1=py38
58
+ - torchvision=0.9.1=py38_cu101
59
+ - typing_extensions=3.10.0.0=pyh06a4308_0
60
+ - wheel=0.37.0=pyhd3eb1b0_0
61
+ - xz=5.2.5=h7b6447c_0
62
+ - zlib=1.2.11=h7b6447c_3
63
+ - zstd=1.4.9=haebb681_0
64
+ - pip:
65
+ - absl-py==0.13.0
66
+ - backcall==0.2.0
67
+ - cachetools==4.2.2
68
+ - charset-normalizer==2.0.4
69
+ - chumpy==0.70
70
+ - cycler==0.10.0
71
+ - decorator==5.0.9
72
+ - google-auth==1.35.0
73
+ - google-auth-oauthlib==0.4.5
74
+ - grpcio==1.39.0
75
+ - idna==3.2
76
+ - imageio==2.9.0
77
+ - ipdb==0.13.9
78
+ - ipython==7.26.0
79
+ - ipython-genutils==0.2.0
80
+ - jedi==0.18.0
81
+ - joblib==1.0.1
82
+ - kiwisolver==1.3.1
83
+ - markdown==3.3.4
84
+ - matplotlib==3.4.3
85
+ - matplotlib-inline==0.1.2
86
+ - oauthlib==3.1.1
87
+ - pandas==1.3.2
88
+ - parso==0.8.2
89
+ - pexpect==4.8.0
90
+ - pickleshare==0.7.5
91
+ - prompt-toolkit==3.0.20
92
+ - protobuf==3.17.3
93
+ - ptyprocess==0.7.0
94
+ - pyasn1==0.4.8
95
+ - pyasn1-modules==0.2.8
96
+ - pygments==2.10.0
97
+ - pyparsing==2.4.7
98
+ - python-dateutil==2.8.2
99
+ - pytz==2021.1
100
+ - pyyaml==5.4.1
101
+ - requests==2.26.0
102
+ - requests-oauthlib==1.3.0
103
+ - rsa==4.7.2
104
+ - scikit-learn==0.24.2
105
+ - scipy==1.7.1
106
+ - sklearn==0.0
107
+ - smplx==0.1.28
108
+ - tensorboard==2.6.0
109
+ - tensorboard-data-server==0.6.1
110
+ - tensorboard-plugin-wit==1.8.0
111
+ - threadpoolctl==2.2.0
112
+ - toml==0.10.2
113
+ - tqdm==4.62.2
114
+ - traitlets==5.0.5
115
+ - urllib3==1.26.6
116
+ - wcwidth==0.2.5
117
+ - werkzeug==2.0.1
118
+ - git+https://github.com/openai/CLIP.git
119
+ - git+https://github.com/nghorbani/human_body_prior
120
+ - gdown
121
+ - moviepy
generate_human_motion/VQTrans/models/__init__.py ADDED
File without changes
generate_human_motion/VQTrans/models/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (169 Bytes). View file
 
generate_human_motion/VQTrans/models/__pycache__/encdec.cpython-310.pyc ADDED
Binary file (2.05 kB). View file
 
generate_human_motion/VQTrans/models/__pycache__/pos_encoding.cpython-310.pyc ADDED
Binary file (1.78 kB). View file
 
generate_human_motion/VQTrans/models/__pycache__/quantize_cnn.cpython-310.pyc ADDED
Binary file (9.31 kB). View file
 
generate_human_motion/VQTrans/models/__pycache__/resnet.cpython-310.pyc ADDED
Binary file (2.81 kB). View file
 
generate_human_motion/VQTrans/models/__pycache__/rotation2xyz.cpython-310.pyc ADDED
Binary file (2.4 kB). View file
 
generate_human_motion/VQTrans/models/__pycache__/smpl.cpython-310.pyc ADDED
Binary file (3.45 kB). View file
 
generate_human_motion/VQTrans/models/__pycache__/t2m_trans.cpython-310.pyc ADDED
Binary file (6.89 kB). View file
 
generate_human_motion/VQTrans/models/__pycache__/vqvae.cpython-310.pyc ADDED
Binary file (3.54 kB). View file
 
generate_human_motion/VQTrans/models/encdec.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ from resnet import Resnet1D
3
+
4
+ class Encoder(nn.Module):
5
+ def __init__(self,
6
+ input_emb_width = 3,
7
+ output_emb_width = 512,
8
+ down_t = 3,
9
+ stride_t = 2,
10
+ width = 512,
11
+ depth = 3,
12
+ dilation_growth_rate = 3,
13
+ activation='relu',
14
+ norm=None):
15
+ super().__init__()
16
+
17
+ blocks = []
18
+ filter_t, pad_t = stride_t * 2, stride_t // 2
19
+ blocks.append(nn.Conv1d(input_emb_width, width, 3, 1, 1))
20
+ blocks.append(nn.ReLU())
21
+
22
+ for i in range(down_t):
23
+ input_dim = width
24
+ block = nn.Sequential(
25
+ nn.Conv1d(input_dim, width, filter_t, stride_t, pad_t),
26
+ Resnet1D(width, depth, dilation_growth_rate, activation=activation, norm=norm),
27
+ )
28
+ blocks.append(block)
29
+ blocks.append(nn.Conv1d(width, output_emb_width, 3, 1, 1))
30
+ self.model = nn.Sequential(*blocks)
31
+
32
+ def forward(self, x):
33
+ return self.model(x)
34
+
35
+ class Decoder(nn.Module):
36
+ def __init__(self,
37
+ input_emb_width = 3,
38
+ output_emb_width = 512,
39
+ down_t = 3,
40
+ stride_t = 2,
41
+ width = 512,
42
+ depth = 3,
43
+ dilation_growth_rate = 3,
44
+ activation='relu',
45
+ norm=None):
46
+ super().__init__()
47
+ blocks = []
48
+
49
+ filter_t, pad_t = stride_t * 2, stride_t // 2
50
+ blocks.append(nn.Conv1d(output_emb_width, width, 3, 1, 1))
51
+ blocks.append(nn.ReLU())
52
+ for i in range(down_t):
53
+ out_dim = width
54
+ block = nn.Sequential(
55
+ Resnet1D(width, depth, dilation_growth_rate, reverse_dilation=True, activation=activation, norm=norm),
56
+ nn.Upsample(scale_factor=2, mode='nearest'),
57
+ nn.Conv1d(width, out_dim, 3, 1, 1)
58
+ )
59
+ blocks.append(block)
60
+ blocks.append(nn.Conv1d(width, width, 3, 1, 1))
61
+ blocks.append(nn.ReLU())
62
+ blocks.append(nn.Conv1d(width, input_emb_width, 3, 1, 1))
63
+ self.model = nn.Sequential(*blocks)
64
+
65
+ def forward(self, x):
66
+ return self.model(x)
67
+
generate_human_motion/VQTrans/models/evaluator_wrapper.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import torch
3
+ from os.path import join as pjoin
4
+ import numpy as np
5
+ from models.modules import MovementConvEncoder, TextEncoderBiGRUCo, MotionEncoderBiGRUCo
6
+ from utils.word_vectorizer import POS_enumerator
7
+
8
+ def build_models(opt):
9
+ movement_enc = MovementConvEncoder(opt.dim_pose-4, opt.dim_movement_enc_hidden, opt.dim_movement_latent)
10
+ text_enc = TextEncoderBiGRUCo(word_size=opt.dim_word,
11
+ pos_size=opt.dim_pos_ohot,
12
+ hidden_size=opt.dim_text_hidden,
13
+ output_size=opt.dim_coemb_hidden,
14
+ device=opt.device)
15
+
16
+ motion_enc = MotionEncoderBiGRUCo(input_size=opt.dim_movement_latent,
17
+ hidden_size=opt.dim_motion_hidden,
18
+ output_size=opt.dim_coemb_hidden,
19
+ device=opt.device)
20
+
21
+ checkpoint = torch.load(pjoin(opt.checkpoints_dir, opt.dataset_name, 'text_mot_match', 'model', 'finest.tar'),
22
+ map_location=opt.device)
23
+ movement_enc.load_state_dict(checkpoint['movement_encoder'])
24
+ text_enc.load_state_dict(checkpoint['text_encoder'])
25
+ motion_enc.load_state_dict(checkpoint['motion_encoder'])
26
+ print('Loading Evaluation Model Wrapper (Epoch %d) Completed!!' % (checkpoint['epoch']))
27
+ return text_enc, motion_enc, movement_enc
28
+
29
+
30
+ class EvaluatorModelWrapper(object):
31
+
32
+ def __init__(self, opt):
33
+
34
+ if opt.dataset_name == 't2m':
35
+ opt.dim_pose = 263
36
+ elif opt.dataset_name == 'kit':
37
+ opt.dim_pose = 251
38
+ else:
39
+ raise KeyError('Dataset not Recognized!!!')
40
+
41
+ opt.dim_word = 300
42
+ opt.max_motion_length = 196
43
+ opt.dim_pos_ohot = len(POS_enumerator)
44
+ opt.dim_motion_hidden = 1024
45
+ opt.max_text_len = 20
46
+ opt.dim_text_hidden = 512
47
+ opt.dim_coemb_hidden = 512
48
+
49
+ # print(opt)
50
+
51
+ self.text_encoder, self.motion_encoder, self.movement_encoder = build_models(opt)
52
+ self.opt = opt
53
+ self.device = opt.device
54
+
55
+ self.text_encoder.to(opt.device)
56
+ self.motion_encoder.to(opt.device)
57
+ self.movement_encoder.to(opt.device)
58
+
59
+ self.text_encoder.eval()
60
+ self.motion_encoder.eval()
61
+ self.movement_encoder.eval()
62
+
63
+ # Please note that the results does not following the order of inputs
64
+ def get_co_embeddings(self, word_embs, pos_ohot, cap_lens, motions, m_lens):
65
+ with torch.no_grad():
66
+ word_embs = word_embs.detach().to(self.device).float()
67
+ pos_ohot = pos_ohot.detach().to(self.device).float()
68
+ motions = motions.detach().to(self.device).float()
69
+
70
+ '''Movement Encoding'''
71
+ movements = self.movement_encoder(motions[..., :-4]).detach()
72
+ m_lens = m_lens // self.opt.unit_length
73
+ motion_embedding = self.motion_encoder(movements, m_lens)
74
+
75
+ '''Text Encoding'''
76
+ text_embedding = self.text_encoder(word_embs, pos_ohot, cap_lens)
77
+ return text_embedding, motion_embedding
78
+
79
+ # Please note that the results does not following the order of inputs
80
+ def get_motion_embeddings(self, motions, m_lens):
81
+ with torch.no_grad():
82
+ motions = motions.detach().to(self.device).float()
83
+
84
+ align_idx = np.argsort(m_lens.data.tolist())[::-1].copy()
85
+ motions = motions[align_idx]
86
+ m_lens = m_lens[align_idx]
87
+
88
+ '''Movement Encoding'''
89
+ movements = self.movement_encoder(motions[..., :-4]).detach()
90
+ m_lens = m_lens // self.opt.unit_length
91
+ motion_embedding = self.motion_encoder(movements, m_lens)
92
+ return motion_embedding
generate_human_motion/VQTrans/models/modules.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from torch.nn.utils.rnn import pack_padded_sequence
4
+
5
+ def init_weight(m):
6
+ if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear) or isinstance(m, nn.ConvTranspose1d):
7
+ nn.init.xavier_normal_(m.weight)
8
+ # m.bias.data.fill_(0.01)
9
+ if m.bias is not None:
10
+ nn.init.constant_(m.bias, 0)
11
+
12
+
13
+ class MovementConvEncoder(nn.Module):
14
+ def __init__(self, input_size, hidden_size, output_size):
15
+ super(MovementConvEncoder, self).__init__()
16
+ self.main = nn.Sequential(
17
+ nn.Conv1d(input_size, hidden_size, 4, 2, 1),
18
+ nn.Dropout(0.2, inplace=True),
19
+ nn.LeakyReLU(0.2, inplace=True),
20
+ nn.Conv1d(hidden_size, output_size, 4, 2, 1),
21
+ nn.Dropout(0.2, inplace=True),
22
+ nn.LeakyReLU(0.2, inplace=True),
23
+ )
24
+ self.out_net = nn.Linear(output_size, output_size)
25
+ self.main.apply(init_weight)
26
+ self.out_net.apply(init_weight)
27
+
28
+ def forward(self, inputs):
29
+ inputs = inputs.permute(0, 2, 1)
30
+ outputs = self.main(inputs).permute(0, 2, 1)
31
+ # print(outputs.shape)
32
+ return self.out_net(outputs)
33
+
34
+
35
+
36
+ class TextEncoderBiGRUCo(nn.Module):
37
+ def __init__(self, word_size, pos_size, hidden_size, output_size, device):
38
+ super(TextEncoderBiGRUCo, self).__init__()
39
+ self.device = device
40
+
41
+ self.pos_emb = nn.Linear(pos_size, word_size)
42
+ self.input_emb = nn.Linear(word_size, hidden_size)
43
+ self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True)
44
+ self.output_net = nn.Sequential(
45
+ nn.Linear(hidden_size * 2, hidden_size),
46
+ nn.LayerNorm(hidden_size),
47
+ nn.LeakyReLU(0.2, inplace=True),
48
+ nn.Linear(hidden_size, output_size)
49
+ )
50
+
51
+ self.input_emb.apply(init_weight)
52
+ self.pos_emb.apply(init_weight)
53
+ self.output_net.apply(init_weight)
54
+ self.hidden_size = hidden_size
55
+ self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True))
56
+
57
+ # input(batch_size, seq_len, dim)
58
+ def forward(self, word_embs, pos_onehot, cap_lens):
59
+ num_samples = word_embs.shape[0]
60
+
61
+ pos_embs = self.pos_emb(pos_onehot)
62
+ inputs = word_embs + pos_embs
63
+ input_embs = self.input_emb(inputs)
64
+ hidden = self.hidden.repeat(1, num_samples, 1)
65
+
66
+ cap_lens = cap_lens.data.tolist()
67
+ emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True)
68
+
69
+ gru_seq, gru_last = self.gru(emb, hidden)
70
+
71
+ gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1)
72
+
73
+ return self.output_net(gru_last)
74
+
75
+
76
+ class MotionEncoderBiGRUCo(nn.Module):
77
+ def __init__(self, input_size, hidden_size, output_size, device):
78
+ super(MotionEncoderBiGRUCo, self).__init__()
79
+ self.device = device
80
+
81
+ self.input_emb = nn.Linear(input_size, hidden_size)
82
+ self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True)
83
+ self.output_net = nn.Sequential(
84
+ nn.Linear(hidden_size*2, hidden_size),
85
+ nn.LayerNorm(hidden_size),
86
+ nn.LeakyReLU(0.2, inplace=True),
87
+ nn.Linear(hidden_size, output_size)
88
+ )
89
+
90
+ self.input_emb.apply(init_weight)
91
+ self.output_net.apply(init_weight)
92
+ self.hidden_size = hidden_size
93
+ self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True))
94
+
95
+ # input(batch_size, seq_len, dim)
96
+ def forward(self, inputs, m_lens):
97
+ num_samples = inputs.shape[0]
98
+
99
+ input_embs = self.input_emb(inputs)
100
+ hidden = self.hidden.repeat(1, num_samples, 1)
101
+
102
+ cap_lens = m_lens.data.tolist()
103
+ emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True, enforce_sorted=False)
104
+
105
+ gru_seq, gru_last = self.gru(emb, hidden)
106
+
107
+ gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1)
108
+
109
+ return self.output_net(gru_last)
generate_human_motion/VQTrans/models/pos_encoding.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Various positional encodings for the transformer.
3
+ """
4
+ import math
5
+ import torch
6
+ from torch import nn
7
+
8
+ def PE1d_sincos(seq_length, dim):
9
+ """
10
+ :param d_model: dimension of the model
11
+ :param length: length of positions
12
+ :return: length*d_model position matrix
13
+ """
14
+ if dim % 2 != 0:
15
+ raise ValueError("Cannot use sin/cos positional encoding with "
16
+ "odd dim (got dim={:d})".format(dim))
17
+ pe = torch.zeros(seq_length, dim)
18
+ position = torch.arange(0, seq_length).unsqueeze(1)
19
+ div_term = torch.exp((torch.arange(0, dim, 2, dtype=torch.float) *
20
+ -(math.log(10000.0) / dim)))
21
+ pe[:, 0::2] = torch.sin(position.float() * div_term)
22
+ pe[:, 1::2] = torch.cos(position.float() * div_term)
23
+
24
+ return pe.unsqueeze(1)
25
+
26
+
27
+ class PositionEmbedding(nn.Module):
28
+ """
29
+ Absolute pos embedding (standard), learned.
30
+ """
31
+ def __init__(self, seq_length, dim, dropout, grad=False):
32
+ super().__init__()
33
+ self.embed = nn.Parameter(data=PE1d_sincos(seq_length, dim), requires_grad=grad)
34
+ self.dropout = nn.Dropout(p=dropout)
35
+
36
+ def forward(self, x):
37
+ # x.shape: bs, seq_len, feat_dim
38
+ l = x.shape[1]
39
+ x = x.permute(1, 0, 2) + self.embed[:l].expand(x.permute(1, 0, 2).shape)
40
+ x = self.dropout(x.permute(1, 0, 2))
41
+ return x
42
+
43
+
generate_human_motion/VQTrans/models/quantize_cnn.py ADDED
@@ -0,0 +1,415 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+
6
+ class QuantizeEMAReset(nn.Module):
7
+ def __init__(self, nb_code, code_dim, args):
8
+ super().__init__()
9
+ self.nb_code = nb_code
10
+ self.code_dim = code_dim
11
+ self.mu = args.mu
12
+ self.reset_codebook()
13
+
14
+ def reset_codebook(self):
15
+ self.init = False
16
+ self.code_sum = None
17
+ self.code_count = None
18
+ if torch.cuda.is_available():
19
+ self.register_buffer('codebook', torch.zeros(self.nb_code, self.code_dim).cuda())
20
+ else:
21
+ self.register_buffer('codebook', torch.zeros(self.nb_code, self.code_dim))
22
+
23
+ def _tile(self, x):
24
+ nb_code_x, code_dim = x.shape
25
+ if nb_code_x < self.nb_code:
26
+ n_repeats = (self.nb_code + nb_code_x - 1) // nb_code_x
27
+ std = 0.01 / np.sqrt(code_dim)
28
+ out = x.repeat(n_repeats, 1)
29
+ out = out + torch.randn_like(out) * std
30
+ else :
31
+ out = x
32
+ return out
33
+
34
+ def init_codebook(self, x):
35
+ out = self._tile(x)
36
+ self.codebook = out[:self.nb_code]
37
+ self.code_sum = self.codebook.clone()
38
+ self.code_count = torch.ones(self.nb_code, device=self.codebook.device)
39
+ self.init = True
40
+
41
+ @torch.no_grad()
42
+ def compute_perplexity(self, code_idx) :
43
+ # Calculate new centres
44
+ code_onehot = torch.zeros(self.nb_code, code_idx.shape[0], device=code_idx.device) # nb_code, N * L
45
+ code_onehot.scatter_(0, code_idx.view(1, code_idx.shape[0]), 1)
46
+
47
+ code_count = code_onehot.sum(dim=-1) # nb_code
48
+ prob = code_count / torch.sum(code_count)
49
+ perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
50
+ return perplexity
51
+
52
+ @torch.no_grad()
53
+ def update_codebook(self, x, code_idx):
54
+
55
+ code_onehot = torch.zeros(self.nb_code, x.shape[0], device=x.device) # nb_code, N * L
56
+ code_onehot.scatter_(0, code_idx.view(1, x.shape[0]), 1)
57
+
58
+ code_sum = torch.matmul(code_onehot, x) # nb_code, w
59
+ code_count = code_onehot.sum(dim=-1) # nb_code
60
+
61
+ out = self._tile(x)
62
+ code_rand = out[:self.nb_code]
63
+
64
+ # Update centres
65
+ self.code_sum = self.mu * self.code_sum + (1. - self.mu) * code_sum # w, nb_code
66
+ self.code_count = self.mu * self.code_count + (1. - self.mu) * code_count # nb_code
67
+
68
+ usage = (self.code_count.view(self.nb_code, 1) >= 1.0).float()
69
+ code_update = self.code_sum.view(self.nb_code, self.code_dim) / self.code_count.view(self.nb_code, 1)
70
+
71
+ self.codebook = usage * code_update + (1 - usage) * code_rand
72
+ prob = code_count / torch.sum(code_count)
73
+ perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
74
+
75
+
76
+ return perplexity
77
+
78
+ def preprocess(self, x):
79
+ # NCT -> NTC -> [NT, C]
80
+ x = x.permute(0, 2, 1).contiguous()
81
+ x = x.view(-1, x.shape[-1])
82
+ return x
83
+
84
+ def quantize(self, x):
85
+ # Calculate latent code x_l
86
+ k_w = self.codebook.t()
87
+ distance = torch.sum(x ** 2, dim=-1, keepdim=True) - 2 * torch.matmul(x, k_w) + torch.sum(k_w ** 2, dim=0,
88
+ keepdim=True) # (N * L, b)
89
+ _, code_idx = torch.min(distance, dim=-1)
90
+ return code_idx
91
+
92
+ def dequantize(self, code_idx):
93
+ x = F.embedding(code_idx, self.codebook)
94
+ return x
95
+
96
+
97
+ def forward(self, x):
98
+ N, width, T = x.shape
99
+
100
+ # Preprocess
101
+ x = self.preprocess(x)
102
+
103
+ # Init codebook if not inited
104
+ if self.training and not self.init:
105
+ self.init_codebook(x)
106
+
107
+ # quantize and dequantize through bottleneck
108
+ code_idx = self.quantize(x)
109
+ x_d = self.dequantize(code_idx)
110
+
111
+ # Update embeddings
112
+ if self.training:
113
+ perplexity = self.update_codebook(x, code_idx)
114
+ else :
115
+ perplexity = self.compute_perplexity(code_idx)
116
+
117
+ # Loss
118
+ commit_loss = F.mse_loss(x, x_d.detach())
119
+
120
+ # Passthrough
121
+ x_d = x + (x_d - x).detach()
122
+
123
+ # Postprocess
124
+ x_d = x_d.view(N, T, -1).permute(0, 2, 1).contiguous() #(N, DIM, T)
125
+
126
+ return x_d, commit_loss, perplexity
127
+
128
+
129
+
130
+ class Quantizer(nn.Module):
131
+ def __init__(self, n_e, e_dim, beta):
132
+ super(Quantizer, self).__init__()
133
+
134
+ self.e_dim = e_dim
135
+ self.n_e = n_e
136
+ self.beta = beta
137
+
138
+ self.embedding = nn.Embedding(self.n_e, self.e_dim)
139
+ self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
140
+
141
+ def forward(self, z):
142
+
143
+ N, width, T = z.shape
144
+ z = self.preprocess(z)
145
+ assert z.shape[-1] == self.e_dim
146
+ z_flattened = z.contiguous().view(-1, self.e_dim)
147
+
148
+ # B x V
149
+ d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
150
+ torch.sum(self.embedding.weight**2, dim=1) - 2 * \
151
+ torch.matmul(z_flattened, self.embedding.weight.t())
152
+ # B x 1
153
+ min_encoding_indices = torch.argmin(d, dim=1)
154
+ z_q = self.embedding(min_encoding_indices).view(z.shape)
155
+
156
+ # compute loss for embedding
157
+ loss = torch.mean((z_q - z.detach())**2) + self.beta * \
158
+ torch.mean((z_q.detach() - z)**2)
159
+
160
+ # preserve gradients
161
+ z_q = z + (z_q - z).detach()
162
+ z_q = z_q.view(N, T, -1).permute(0, 2, 1).contiguous() #(N, DIM, T)
163
+
164
+ min_encodings = F.one_hot(min_encoding_indices, self.n_e).type(z.dtype)
165
+ e_mean = torch.mean(min_encodings, dim=0)
166
+ perplexity = torch.exp(-torch.sum(e_mean*torch.log(e_mean + 1e-10)))
167
+ return z_q, loss, perplexity
168
+
169
+ def quantize(self, z):
170
+
171
+ assert z.shape[-1] == self.e_dim
172
+
173
+ # B x V
174
+ d = torch.sum(z ** 2, dim=1, keepdim=True) + \
175
+ torch.sum(self.embedding.weight ** 2, dim=1) - 2 * \
176
+ torch.matmul(z, self.embedding.weight.t())
177
+ # B x 1
178
+ min_encoding_indices = torch.argmin(d, dim=1)
179
+ return min_encoding_indices
180
+
181
+ def dequantize(self, indices):
182
+
183
+ index_flattened = indices.view(-1)
184
+ z_q = self.embedding(index_flattened)
185
+ z_q = z_q.view(indices.shape + (self.e_dim, )).contiguous()
186
+ return z_q
187
+
188
+ def preprocess(self, x):
189
+ # NCT -> NTC -> [NT, C]
190
+ x = x.permute(0, 2, 1).contiguous()
191
+ x = x.view(-1, x.shape[-1])
192
+ return x
193
+
194
+
195
+
196
+ class QuantizeReset(nn.Module):
197
+ def __init__(self, nb_code, code_dim, args):
198
+ super().__init__()
199
+ self.nb_code = nb_code
200
+ self.code_dim = code_dim
201
+ self.reset_codebook()
202
+ self.codebook = nn.Parameter(torch.randn(nb_code, code_dim))
203
+
204
+ def reset_codebook(self):
205
+ self.init = False
206
+ self.code_count = None
207
+
208
+ def _tile(self, x):
209
+ nb_code_x, code_dim = x.shape
210
+ if nb_code_x < self.nb_code:
211
+ n_repeats = (self.nb_code + nb_code_x - 1) // nb_code_x
212
+ std = 0.01 / np.sqrt(code_dim)
213
+ out = x.repeat(n_repeats, 1)
214
+ out = out + torch.randn_like(out) * std
215
+ else :
216
+ out = x
217
+ return out
218
+
219
+ def init_codebook(self, x):
220
+ out = self._tile(x)
221
+ self.codebook = nn.Parameter(out[:self.nb_code])
222
+ self.code_count = torch.ones(self.nb_code, device=self.codebook.device)
223
+ self.init = True
224
+
225
+ @torch.no_grad()
226
+ def compute_perplexity(self, code_idx) :
227
+ # Calculate new centres
228
+ code_onehot = torch.zeros(self.nb_code, code_idx.shape[0], device=code_idx.device) # nb_code, N * L
229
+ code_onehot.scatter_(0, code_idx.view(1, code_idx.shape[0]), 1)
230
+
231
+ code_count = code_onehot.sum(dim=-1) # nb_code
232
+ prob = code_count / torch.sum(code_count)
233
+ perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
234
+ return perplexity
235
+
236
+ def update_codebook(self, x, code_idx):
237
+
238
+ code_onehot = torch.zeros(self.nb_code, x.shape[0], device=x.device) # nb_code, N * L
239
+ code_onehot.scatter_(0, code_idx.view(1, x.shape[0]), 1)
240
+
241
+ code_count = code_onehot.sum(dim=-1) # nb_code
242
+
243
+ out = self._tile(x)
244
+ code_rand = out[:self.nb_code]
245
+
246
+ # Update centres
247
+ self.code_count = code_count # nb_code
248
+ usage = (self.code_count.view(self.nb_code, 1) >= 1.0).float()
249
+
250
+ self.codebook.data = usage * self.codebook.data + (1 - usage) * code_rand
251
+ prob = code_count / torch.sum(code_count)
252
+ perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
253
+
254
+
255
+ return perplexity
256
+
257
+ def preprocess(self, x):
258
+ # NCT -> NTC -> [NT, C]
259
+ x = x.permute(0, 2, 1).contiguous()
260
+ x = x.view(-1, x.shape[-1])
261
+ return x
262
+
263
+ def quantize(self, x):
264
+ # Calculate latent code x_l
265
+ k_w = self.codebook.t()
266
+ distance = torch.sum(x ** 2, dim=-1, keepdim=True) - 2 * torch.matmul(x, k_w) + torch.sum(k_w ** 2, dim=0,
267
+ keepdim=True) # (N * L, b)
268
+ _, code_idx = torch.min(distance, dim=-1)
269
+ return code_idx
270
+
271
+ def dequantize(self, code_idx):
272
+ x = F.embedding(code_idx, self.codebook)
273
+ return x
274
+
275
+
276
+ def forward(self, x):
277
+ N, width, T = x.shape
278
+ # Preprocess
279
+ x = self.preprocess(x)
280
+ # Init codebook if not inited
281
+ if self.training and not self.init:
282
+ self.init_codebook(x)
283
+ # quantize and dequantize through bottleneck
284
+ code_idx = self.quantize(x)
285
+ x_d = self.dequantize(code_idx)
286
+ # Update embeddings
287
+ if self.training:
288
+ perplexity = self.update_codebook(x, code_idx)
289
+ else :
290
+ perplexity = self.compute_perplexity(code_idx)
291
+
292
+ # Loss
293
+ commit_loss = F.mse_loss(x, x_d.detach())
294
+
295
+ # Passthrough
296
+ x_d = x + (x_d - x).detach()
297
+
298
+ # Postprocess
299
+ x_d = x_d.view(N, T, -1).permute(0, 2, 1).contiguous() #(N, DIM, T)
300
+
301
+ return x_d, commit_loss, perplexity
302
+
303
+ class QuantizeEMA(nn.Module):
304
+ def __init__(self, nb_code, code_dim, args):
305
+ super().__init__()
306
+ self.nb_code = nb_code
307
+ self.code_dim = code_dim
308
+ self.mu = 0.99
309
+ self.reset_codebook()
310
+
311
+ def reset_codebook(self):
312
+ self.init = False
313
+ self.code_sum = None
314
+ self.code_count = None
315
+ self.register_buffer('codebook', torch.zeros(self.nb_code, self.code_dim).cuda())
316
+
317
+ def _tile(self, x):
318
+ nb_code_x, code_dim = x.shape
319
+ if nb_code_x < self.nb_code:
320
+ n_repeats = (self.nb_code + nb_code_x - 1) // nb_code_x
321
+ std = 0.01 / np.sqrt(code_dim)
322
+ out = x.repeat(n_repeats, 1)
323
+ out = out + torch.randn_like(out) * std
324
+ else :
325
+ out = x
326
+ return out
327
+
328
+ def init_codebook(self, x):
329
+ out = self._tile(x)
330
+ self.codebook = out[:self.nb_code]
331
+ self.code_sum = self.codebook.clone()
332
+ self.code_count = torch.ones(self.nb_code, device=self.codebook.device)
333
+ self.init = True
334
+
335
+ @torch.no_grad()
336
+ def compute_perplexity(self, code_idx) :
337
+ # Calculate new centres
338
+ code_onehot = torch.zeros(self.nb_code, code_idx.shape[0], device=code_idx.device) # nb_code, N * L
339
+ code_onehot.scatter_(0, code_idx.view(1, code_idx.shape[0]), 1)
340
+
341
+ code_count = code_onehot.sum(dim=-1) # nb_code
342
+ prob = code_count / torch.sum(code_count)
343
+ perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
344
+ return perplexity
345
+
346
+ @torch.no_grad()
347
+ def update_codebook(self, x, code_idx):
348
+
349
+ code_onehot = torch.zeros(self.nb_code, x.shape[0], device=x.device) # nb_code, N * L
350
+ code_onehot.scatter_(0, code_idx.view(1, x.shape[0]), 1)
351
+
352
+ code_sum = torch.matmul(code_onehot, x) # nb_code, w
353
+ code_count = code_onehot.sum(dim=-1) # nb_code
354
+
355
+ # Update centres
356
+ self.code_sum = self.mu * self.code_sum + (1. - self.mu) * code_sum # w, nb_code
357
+ self.code_count = self.mu * self.code_count + (1. - self.mu) * code_count # nb_code
358
+
359
+ code_update = self.code_sum.view(self.nb_code, self.code_dim) / self.code_count.view(self.nb_code, 1)
360
+
361
+ self.codebook = code_update
362
+ prob = code_count / torch.sum(code_count)
363
+ perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
364
+
365
+ return perplexity
366
+
367
+ def preprocess(self, x):
368
+ # NCT -> NTC -> [NT, C]
369
+ x = x.permute(0, 2, 1).contiguous()
370
+ x = x.view(-1, x.shape[-1])
371
+ return x
372
+
373
+ def quantize(self, x):
374
+ # Calculate latent code x_l
375
+ k_w = self.codebook.t()
376
+ distance = torch.sum(x ** 2, dim=-1, keepdim=True) - 2 * torch.matmul(x, k_w) + torch.sum(k_w ** 2, dim=0,
377
+ keepdim=True) # (N * L, b)
378
+ _, code_idx = torch.min(distance, dim=-1)
379
+ return code_idx
380
+
381
+ def dequantize(self, code_idx):
382
+ x = F.embedding(code_idx, self.codebook)
383
+ return x
384
+
385
+
386
+ def forward(self, x):
387
+ N, width, T = x.shape
388
+
389
+ # Preprocess
390
+ x = self.preprocess(x)
391
+
392
+ # Init codebook if not inited
393
+ if self.training and not self.init:
394
+ self.init_codebook(x)
395
+
396
+ # quantize and dequantize through bottleneck
397
+ code_idx = self.quantize(x)
398
+ x_d = self.dequantize(code_idx)
399
+
400
+ # Update embeddings
401
+ if self.training:
402
+ perplexity = self.update_codebook(x, code_idx)
403
+ else :
404
+ perplexity = self.compute_perplexity(code_idx)
405
+
406
+ # Loss
407
+ commit_loss = F.mse_loss(x, x_d.detach())
408
+
409
+ # Passthrough
410
+ x_d = x + (x_d - x).detach()
411
+
412
+ # Postprocess
413
+ x_d = x_d.view(N, T, -1).permute(0, 2, 1).contiguous() #(N, DIM, T)
414
+
415
+ return x_d, commit_loss, perplexity
generate_human_motion/VQTrans/models/resnet.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import torch
3
+
4
+ class nonlinearity(nn.Module):
5
+ def __init__(self):
6
+ super().__init__()
7
+
8
+ def forward(self, x):
9
+ # swish
10
+ return x * torch.sigmoid(x)
11
+
12
+ class ResConv1DBlock(nn.Module):
13
+ def __init__(self, n_in, n_state, dilation=1, activation='silu', norm=None, dropout=None):
14
+ super().__init__()
15
+ padding = dilation
16
+ self.norm = norm
17
+ if norm == "LN":
18
+ self.norm1 = nn.LayerNorm(n_in)
19
+ self.norm2 = nn.LayerNorm(n_in)
20
+ elif norm == "GN":
21
+ self.norm1 = nn.GroupNorm(num_groups=32, num_channels=n_in, eps=1e-6, affine=True)
22
+ self.norm2 = nn.GroupNorm(num_groups=32, num_channels=n_in, eps=1e-6, affine=True)
23
+ elif norm == "BN":
24
+ self.norm1 = nn.BatchNorm1d(num_features=n_in, eps=1e-6, affine=True)
25
+ self.norm2 = nn.BatchNorm1d(num_features=n_in, eps=1e-6, affine=True)
26
+
27
+ else:
28
+ self.norm1 = nn.Identity()
29
+ self.norm2 = nn.Identity()
30
+
31
+ if activation == "relu":
32
+ self.activation1 = nn.ReLU()
33
+ self.activation2 = nn.ReLU()
34
+
35
+ elif activation == "silu":
36
+ self.activation1 = nonlinearity()
37
+ self.activation2 = nonlinearity()
38
+
39
+ elif activation == "gelu":
40
+ self.activation1 = nn.GELU()
41
+ self.activation2 = nn.GELU()
42
+
43
+
44
+
45
+ self.conv1 = nn.Conv1d(n_in, n_state, 3, 1, padding, dilation)
46
+ self.conv2 = nn.Conv1d(n_state, n_in, 1, 1, 0,)
47
+
48
+
49
+ def forward(self, x):
50
+ x_orig = x
51
+ if self.norm == "LN":
52
+ x = self.norm1(x.transpose(-2, -1))
53
+ x = self.activation1(x.transpose(-2, -1))
54
+ else:
55
+ x = self.norm1(x)
56
+ x = self.activation1(x)
57
+
58
+ x = self.conv1(x)
59
+
60
+ if self.norm == "LN":
61
+ x = self.norm2(x.transpose(-2, -1))
62
+ x = self.activation2(x.transpose(-2, -1))
63
+ else:
64
+ x = self.norm2(x)
65
+ x = self.activation2(x)
66
+
67
+ x = self.conv2(x)
68
+ x = x + x_orig
69
+ return x
70
+
71
+ class Resnet1D(nn.Module):
72
+ def __init__(self, n_in, n_depth, dilation_growth_rate=1, reverse_dilation=True, activation='relu', norm=None):
73
+ super().__init__()
74
+
75
+ blocks = [ResConv1DBlock(n_in, n_in, dilation=dilation_growth_rate ** depth, activation=activation, norm=norm) for depth in range(n_depth)]
76
+ if reverse_dilation:
77
+ blocks = blocks[::-1]
78
+
79
+ self.model = nn.Sequential(*blocks)
80
+
81
+ def forward(self, x):
82
+ return self.model(x)
generate_human_motion/VQTrans/models/rotation2xyz.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This code is based on https://github.com/Mathux/ACTOR.git
2
+ import torch
3
+ import VQTrans.utils.rotation_conversions as geometry
4
+
5
+
6
+ from smpl import SMPL, JOINTSTYPE_ROOT
7
+ # from .get_model import JOINTSTYPES
8
+ JOINTSTYPES = ["a2m", "a2mpl", "smpl", "vibe", "vertices"]
9
+
10
+
11
+ class Rotation2xyz:
12
+ def __init__(self, device, dataset='amass'):
13
+ self.device = device
14
+ self.dataset = dataset
15
+ self.smpl_model = SMPL().eval().to(device)
16
+
17
+ def __call__(self, x, mask, pose_rep, translation, glob,
18
+ jointstype, vertstrans, betas=None, beta=0,
19
+ glob_rot=None, get_rotations_back=False, **kwargs):
20
+ if pose_rep == "xyz":
21
+ return x
22
+
23
+ if mask is None:
24
+ mask = torch.ones((x.shape[0], x.shape[-1]), dtype=bool, device=x.device)
25
+
26
+ if not glob and glob_rot is None:
27
+ raise TypeError("You must specify global rotation if glob is False")
28
+
29
+ if jointstype not in JOINTSTYPES:
30
+ raise NotImplementedError("This jointstype is not implemented.")
31
+
32
+ if translation:
33
+ x_translations = x[:, -1, :3]
34
+ x_rotations = x[:, :-1]
35
+ else:
36
+ x_rotations = x
37
+
38
+ x_rotations = x_rotations.permute(0, 3, 1, 2)
39
+ nsamples, time, njoints, feats = x_rotations.shape
40
+
41
+ # Compute rotations (convert only masked sequences output)
42
+ if pose_rep == "rotvec":
43
+ rotations = geometry.axis_angle_to_matrix(x_rotations[mask])
44
+ elif pose_rep == "rotmat":
45
+ rotations = x_rotations[mask].view(-1, njoints, 3, 3)
46
+ elif pose_rep == "rotquat":
47
+ rotations = geometry.quaternion_to_matrix(x_rotations[mask])
48
+ elif pose_rep == "rot6d":
49
+ rotations = geometry.rotation_6d_to_matrix(x_rotations[mask])
50
+ else:
51
+ raise NotImplementedError("No geometry for this one.")
52
+
53
+ if not glob:
54
+ global_orient = torch.tensor(glob_rot, device=x.device)
55
+ global_orient = geometry.axis_angle_to_matrix(global_orient).view(1, 1, 3, 3)
56
+ global_orient = global_orient.repeat(len(rotations), 1, 1, 1)
57
+ else:
58
+ global_orient = rotations[:, 0]
59
+ rotations = rotations[:, 1:]
60
+
61
+ if betas is None:
62
+ betas = torch.zeros([rotations.shape[0], self.smpl_model.num_betas],
63
+ dtype=rotations.dtype, device=rotations.device)
64
+ betas[:, 1] = beta
65
+ # import ipdb; ipdb.set_trace()
66
+ out = self.smpl_model(body_pose=rotations, global_orient=global_orient, betas=betas)
67
+
68
+ # get the desirable joints
69
+ joints = out[jointstype]
70
+
71
+ x_xyz = torch.empty(nsamples, time, joints.shape[1], 3, device=x.device, dtype=x.dtype)
72
+ x_xyz[~mask] = 0
73
+ x_xyz[mask] = joints
74
+
75
+ x_xyz = x_xyz.permute(0, 2, 3, 1).contiguous()
76
+
77
+ # the first translation root at the origin on the prediction
78
+ if jointstype != "vertices":
79
+ rootindex = JOINTSTYPE_ROOT[jointstype]
80
+ x_xyz = x_xyz - x_xyz[:, [rootindex], :, :]
81
+
82
+ if translation and vertstrans:
83
+ # the first translation root at the origin
84
+ x_translations = x_translations - x_translations[:, :, [0]]
85
+
86
+ # add the translation to all the joints
87
+ x_xyz = x_xyz + x_translations[:, None, :, :]
88
+
89
+ if get_rotations_back:
90
+ return x_xyz, rotations, global_orient
91
+ else:
92
+ return x_xyz
generate_human_motion/VQTrans/models/smpl.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This code is based on https://github.com/Mathux/ACTOR.git
2
+ import numpy as np
3
+ import torch
4
+
5
+ import contextlib
6
+
7
+ from smplx import SMPLLayer as _SMPLLayer
8
+ from smplx.lbs import vertices2joints
9
+
10
+
11
+ # action2motion_joints = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 21, 24, 38]
12
+ # change 0 and 8
13
+ action2motion_joints = [8, 1, 2, 3, 4, 5, 6, 7, 0, 9, 10, 11, 12, 13, 14, 21, 24, 38]
14
+
15
+ from VQTrans.utils.config import SMPL_MODEL_PATH, JOINT_REGRESSOR_TRAIN_EXTRA
16
+
17
+ JOINTSTYPE_ROOT = {"a2m": 0, # action2motion
18
+ "smpl": 0,
19
+ "a2mpl": 0, # set(smpl, a2m)
20
+ "vibe": 8} # 0 is the 8 position: OP MidHip below
21
+
22
+ JOINT_MAP = {
23
+ 'OP Nose': 24, 'OP Neck': 12, 'OP RShoulder': 17,
24
+ 'OP RElbow': 19, 'OP RWrist': 21, 'OP LShoulder': 16,
25
+ 'OP LElbow': 18, 'OP LWrist': 20, 'OP MidHip': 0,
26
+ 'OP RHip': 2, 'OP RKnee': 5, 'OP RAnkle': 8,
27
+ 'OP LHip': 1, 'OP LKnee': 4, 'OP LAnkle': 7,
28
+ 'OP REye': 25, 'OP LEye': 26, 'OP REar': 27,
29
+ 'OP LEar': 28, 'OP LBigToe': 29, 'OP LSmallToe': 30,
30
+ 'OP LHeel': 31, 'OP RBigToe': 32, 'OP RSmallToe': 33, 'OP RHeel': 34,
31
+ 'Right Ankle': 8, 'Right Knee': 5, 'Right Hip': 45,
32
+ 'Left Hip': 46, 'Left Knee': 4, 'Left Ankle': 7,
33
+ 'Right Wrist': 21, 'Right Elbow': 19, 'Right Shoulder': 17,
34
+ 'Left Shoulder': 16, 'Left Elbow': 18, 'Left Wrist': 20,
35
+ 'Neck (LSP)': 47, 'Top of Head (LSP)': 48,
36
+ 'Pelvis (MPII)': 49, 'Thorax (MPII)': 50,
37
+ 'Spine (H36M)': 51, 'Jaw (H36M)': 52,
38
+ 'Head (H36M)': 53, 'Nose': 24, 'Left Eye': 26,
39
+ 'Right Eye': 25, 'Left Ear': 28, 'Right Ear': 27
40
+ }
41
+
42
+ JOINT_NAMES = [
43
+ 'OP Nose', 'OP Neck', 'OP RShoulder',
44
+ 'OP RElbow', 'OP RWrist', 'OP LShoulder',
45
+ 'OP LElbow', 'OP LWrist', 'OP MidHip',
46
+ 'OP RHip', 'OP RKnee', 'OP RAnkle',
47
+ 'OP LHip', 'OP LKnee', 'OP LAnkle',
48
+ 'OP REye', 'OP LEye', 'OP REar',
49
+ 'OP LEar', 'OP LBigToe', 'OP LSmallToe',
50
+ 'OP LHeel', 'OP RBigToe', 'OP RSmallToe', 'OP RHeel',
51
+ 'Right Ankle', 'Right Knee', 'Right Hip',
52
+ 'Left Hip', 'Left Knee', 'Left Ankle',
53
+ 'Right Wrist', 'Right Elbow', 'Right Shoulder',
54
+ 'Left Shoulder', 'Left Elbow', 'Left Wrist',
55
+ 'Neck (LSP)', 'Top of Head (LSP)',
56
+ 'Pelvis (MPII)', 'Thorax (MPII)',
57
+ 'Spine (H36M)', 'Jaw (H36M)',
58
+ 'Head (H36M)', 'Nose', 'Left Eye',
59
+ 'Right Eye', 'Left Ear', 'Right Ear'
60
+ ]
61
+
62
+
63
+ # adapted from VIBE/SPIN to output smpl_joints, vibe joints and action2motion joints
64
+ class SMPL(_SMPLLayer):
65
+ """ Extension of the official SMPL implementation to support more joints """
66
+
67
+ def __init__(self, model_path=SMPL_MODEL_PATH, **kwargs):
68
+ kwargs["model_path"] = model_path
69
+
70
+ # remove the verbosity for the 10-shapes beta parameters
71
+ with contextlib.redirect_stdout(None):
72
+ super(SMPL, self).__init__(**kwargs)
73
+
74
+ J_regressor_extra = np.load(JOINT_REGRESSOR_TRAIN_EXTRA)
75
+ self.register_buffer('J_regressor_extra', torch.tensor(J_regressor_extra, dtype=torch.float32))
76
+ vibe_indexes = np.array([JOINT_MAP[i] for i in JOINT_NAMES])
77
+ a2m_indexes = vibe_indexes[action2motion_joints]
78
+ smpl_indexes = np.arange(24)
79
+ a2mpl_indexes = np.unique(np.r_[smpl_indexes, a2m_indexes])
80
+
81
+ self.maps = {"vibe": vibe_indexes,
82
+ "a2m": a2m_indexes,
83
+ "smpl": smpl_indexes,
84
+ "a2mpl": a2mpl_indexes}
85
+
86
+ def forward(self, *args, **kwargs):
87
+ smpl_output = super(SMPL, self).forward(*args, **kwargs)
88
+
89
+ extra_joints = vertices2joints(self.J_regressor_extra, smpl_output.vertices)
90
+ all_joints = torch.cat([smpl_output.joints, extra_joints], dim=1)
91
+
92
+ output = {"vertices": smpl_output.vertices}
93
+
94
+ for joinstype, indexes in self.maps.items():
95
+ output[joinstype] = all_joints[:, indexes]
96
+
97
+ return output
generate_human_motion/VQTrans/models/t2m_trans.py ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ import torch.nn as nn
4
+ from torch.nn import functional as F
5
+ from torch.distributions import Categorical
6
+ import pos_encoding as pos_encoding
7
+
8
+ class Text2Motion_Transformer(nn.Module):
9
+
10
+ def __init__(self,
11
+ num_vq=1024,
12
+ embed_dim=512,
13
+ clip_dim=512,
14
+ block_size=16,
15
+ num_layers=2,
16
+ n_head=8,
17
+ drop_out_rate=0.1,
18
+ fc_rate=4):
19
+ super().__init__()
20
+ self.trans_base = CrossCondTransBase(num_vq, embed_dim, clip_dim, block_size, num_layers, n_head, drop_out_rate, fc_rate)
21
+ self.trans_head = CrossCondTransHead(num_vq, embed_dim, block_size, num_layers, n_head, drop_out_rate, fc_rate)
22
+ self.block_size = block_size
23
+ self.num_vq = num_vq
24
+
25
+ def get_block_size(self):
26
+ return self.block_size
27
+
28
+ def forward(self, idxs, clip_feature):
29
+ feat = self.trans_base(idxs, clip_feature)
30
+ logits = self.trans_head(feat)
31
+ return logits
32
+
33
+ def sample(self, clip_feature, if_categorial=False):
34
+ for k in range(self.block_size):
35
+ if k == 0:
36
+ x = []
37
+ else:
38
+ x = xs
39
+ logits = self.forward(x, clip_feature)
40
+ logits = logits[:, -1, :]
41
+ probs = F.softmax(logits, dim=-1)
42
+ if if_categorial:
43
+ dist = Categorical(probs)
44
+ idx = dist.sample()
45
+ if idx == self.num_vq:
46
+ break
47
+ idx = idx.unsqueeze(-1)
48
+ else:
49
+ _, idx = torch.topk(probs, k=1, dim=-1)
50
+ if idx[0] == self.num_vq:
51
+ break
52
+ # append to the sequence and continue
53
+ if k == 0:
54
+ xs = idx
55
+ else:
56
+ xs = torch.cat((xs, idx), dim=1)
57
+
58
+ if k == self.block_size - 1:
59
+ return xs[:, :-1]
60
+ return xs
61
+
62
+ class CausalCrossConditionalSelfAttention(nn.Module):
63
+
64
+ def __init__(self, embed_dim=512, block_size=16, n_head=8, drop_out_rate=0.1):
65
+ super().__init__()
66
+ assert embed_dim % 8 == 0
67
+ # key, query, value projections for all heads
68
+ self.key = nn.Linear(embed_dim, embed_dim)
69
+ self.query = nn.Linear(embed_dim, embed_dim)
70
+ self.value = nn.Linear(embed_dim, embed_dim)
71
+
72
+ self.attn_drop = nn.Dropout(drop_out_rate)
73
+ self.resid_drop = nn.Dropout(drop_out_rate)
74
+
75
+ self.proj = nn.Linear(embed_dim, embed_dim)
76
+ # causal mask to ensure that attention is only applied to the left in the input sequence
77
+ self.register_buffer("mask", torch.tril(torch.ones(block_size, block_size)).view(1, 1, block_size, block_size))
78
+ self.n_head = n_head
79
+
80
+ def forward(self, x):
81
+ B, T, C = x.size()
82
+
83
+ # calculate query, key, values for all heads in batch and move head forward to be the batch dim
84
+ k = self.key(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
85
+ q = self.query(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
86
+ v = self.value(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
87
+ # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
88
+ att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
89
+ att = att.masked_fill(self.mask[:,:,:T,:T] == 0, float('-inf'))
90
+ att = F.softmax(att, dim=-1)
91
+ att = self.attn_drop(att)
92
+ y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
93
+ y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
94
+
95
+ # output projection
96
+ y = self.resid_drop(self.proj(y))
97
+ return y
98
+
99
+ class Block(nn.Module):
100
+
101
+ def __init__(self, embed_dim=512, block_size=16, n_head=8, drop_out_rate=0.1, fc_rate=4):
102
+ super().__init__()
103
+ self.ln1 = nn.LayerNorm(embed_dim)
104
+ self.ln2 = nn.LayerNorm(embed_dim)
105
+ self.attn = CausalCrossConditionalSelfAttention(embed_dim, block_size, n_head, drop_out_rate)
106
+ self.mlp = nn.Sequential(
107
+ nn.Linear(embed_dim, fc_rate * embed_dim),
108
+ nn.GELU(),
109
+ nn.Linear(fc_rate * embed_dim, embed_dim),
110
+ nn.Dropout(drop_out_rate),
111
+ )
112
+
113
+ def forward(self, x):
114
+ x = x + self.attn(self.ln1(x))
115
+ x = x + self.mlp(self.ln2(x))
116
+ return x
117
+
118
+ class CrossCondTransBase(nn.Module):
119
+
120
+ def __init__(self,
121
+ num_vq=1024,
122
+ embed_dim=512,
123
+ clip_dim=512,
124
+ block_size=16,
125
+ num_layers=2,
126
+ n_head=8,
127
+ drop_out_rate=0.1,
128
+ fc_rate=4):
129
+ super().__init__()
130
+ self.tok_emb = nn.Embedding(num_vq + 2, embed_dim)
131
+ self.cond_emb = nn.Linear(clip_dim, embed_dim)
132
+ self.pos_embedding = nn.Embedding(block_size, embed_dim)
133
+ self.drop = nn.Dropout(drop_out_rate)
134
+ # transformer block
135
+ self.blocks = nn.Sequential(*[Block(embed_dim, block_size, n_head, drop_out_rate, fc_rate) for _ in range(num_layers)])
136
+ self.pos_embed = pos_encoding.PositionEmbedding(block_size, embed_dim, 0.0, False)
137
+
138
+ self.block_size = block_size
139
+
140
+ self.apply(self._init_weights)
141
+
142
+ def get_block_size(self):
143
+ return self.block_size
144
+
145
+ def _init_weights(self, module):
146
+ if isinstance(module, (nn.Linear, nn.Embedding)):
147
+ module.weight.data.normal_(mean=0.0, std=0.02)
148
+ if isinstance(module, nn.Linear) and module.bias is not None:
149
+ module.bias.data.zero_()
150
+ elif isinstance(module, nn.LayerNorm):
151
+ module.bias.data.zero_()
152
+ module.weight.data.fill_(1.0)
153
+
154
+ def forward(self, idx, clip_feature):
155
+ if len(idx) == 0:
156
+ token_embeddings = self.cond_emb(clip_feature).unsqueeze(1)
157
+ else:
158
+ b, t = idx.size()
159
+ assert t <= self.block_size, "Cannot forward, model block size is exhausted."
160
+ # forward the Trans model
161
+ token_embeddings = self.tok_emb(idx)
162
+ token_embeddings = torch.cat([self.cond_emb(clip_feature).unsqueeze(1), token_embeddings], dim=1)
163
+
164
+ x = self.pos_embed(token_embeddings)
165
+ x = self.blocks(x)
166
+
167
+ return x
168
+
169
+
170
+ class CrossCondTransHead(nn.Module):
171
+
172
+ def __init__(self,
173
+ num_vq=1024,
174
+ embed_dim=512,
175
+ block_size=16,
176
+ num_layers=2,
177
+ n_head=8,
178
+ drop_out_rate=0.1,
179
+ fc_rate=4):
180
+ super().__init__()
181
+
182
+ self.blocks = nn.Sequential(*[Block(embed_dim, block_size, n_head, drop_out_rate, fc_rate) for _ in range(num_layers)])
183
+ self.ln_f = nn.LayerNorm(embed_dim)
184
+ self.head = nn.Linear(embed_dim, num_vq + 1, bias=False)
185
+ self.block_size = block_size
186
+
187
+ self.apply(self._init_weights)
188
+
189
+ def get_block_size(self):
190
+ return self.block_size
191
+
192
+ def _init_weights(self, module):
193
+ if isinstance(module, (nn.Linear, nn.Embedding)):
194
+ module.weight.data.normal_(mean=0.0, std=0.02)
195
+ if isinstance(module, nn.Linear) and module.bias is not None:
196
+ module.bias.data.zero_()
197
+ elif isinstance(module, nn.LayerNorm):
198
+ module.bias.data.zero_()
199
+ module.weight.data.fill_(1.0)
200
+
201
+ def forward(self, x):
202
+ x = self.blocks(x)
203
+ x = self.ln_f(x)
204
+ logits = self.head(x)
205
+ return logits
206
+
207
+
208
+
209
+
210
+
211
+
generate_human_motion/VQTrans/models/vqvae.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ from encdec import Encoder, Decoder
3
+ from quantize_cnn import QuantizeEMAReset, Quantizer, QuantizeEMA, QuantizeReset
4
+
5
+
6
+ class VQVAE_251(nn.Module):
7
+ def __init__(self,
8
+ args,
9
+ nb_code=1024,
10
+ code_dim=512,
11
+ output_emb_width=512,
12
+ down_t=3,
13
+ stride_t=2,
14
+ width=512,
15
+ depth=3,
16
+ dilation_growth_rate=3,
17
+ activation='relu',
18
+ norm=None):
19
+
20
+ super().__init__()
21
+ self.code_dim = code_dim
22
+ self.num_code = nb_code
23
+ self.quant = args.quantizer
24
+ self.encoder = Encoder(251 if args.dataname == 'kit' else 263, output_emb_width, down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm)
25
+ self.decoder = Decoder(251 if args.dataname == 'kit' else 263, output_emb_width, down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm)
26
+ if args.quantizer == "ema_reset":
27
+ self.quantizer = QuantizeEMAReset(nb_code, code_dim, args)
28
+ elif args.quantizer == "orig":
29
+ self.quantizer = Quantizer(nb_code, code_dim, 1.0)
30
+ elif args.quantizer == "ema":
31
+ self.quantizer = QuantizeEMA(nb_code, code_dim, args)
32
+ elif args.quantizer == "reset":
33
+ self.quantizer = QuantizeReset(nb_code, code_dim, args)
34
+
35
+
36
+ def preprocess(self, x):
37
+ # (bs, T, Jx3) -> (bs, Jx3, T)
38
+ x = x.permute(0,2,1).float()
39
+ return x
40
+
41
+
42
+ def postprocess(self, x):
43
+ # (bs, Jx3, T) -> (bs, T, Jx3)
44
+ x = x.permute(0,2,1)
45
+ return x
46
+
47
+
48
+ def encode(self, x):
49
+ N, T, _ = x.shape
50
+ x_in = self.preprocess(x)
51
+ x_encoder = self.encoder(x_in)
52
+ x_encoder = self.postprocess(x_encoder)
53
+ x_encoder = x_encoder.contiguous().view(-1, x_encoder.shape[-1]) # (NT, C)
54
+ code_idx = self.quantizer.quantize(x_encoder)
55
+ code_idx = code_idx.view(N, -1)
56
+ return code_idx
57
+
58
+
59
+ def forward(self, x):
60
+
61
+ x_in = self.preprocess(x)
62
+ # Encode
63
+ x_encoder = self.encoder(x_in)
64
+
65
+ ## quantization
66
+ x_quantized, loss, perplexity = self.quantizer(x_encoder)
67
+
68
+ ## decoder
69
+ x_decoder = self.decoder(x_quantized)
70
+ x_out = self.postprocess(x_decoder)
71
+ return x_out, loss, perplexity
72
+
73
+
74
+ def forward_decoder(self, x):
75
+ x_d = self.quantizer.dequantize(x)
76
+ x_d = x_d.view(1, -1, self.code_dim).permute(0, 2, 1).contiguous()
77
+
78
+ # decoder
79
+ x_decoder = self.decoder(x_d)
80
+ x_out = self.postprocess(x_decoder)
81
+ return x_out
82
+
83
+
84
+
85
+ class HumanVQVAE(nn.Module):
86
+ def __init__(self,
87
+ args,
88
+ nb_code=512,
89
+ code_dim=512,
90
+ output_emb_width=512,
91
+ down_t=3,
92
+ stride_t=2,
93
+ width=512,
94
+ depth=3,
95
+ dilation_growth_rate=3,
96
+ activation='relu',
97
+ norm=None):
98
+
99
+ super().__init__()
100
+
101
+ self.nb_joints = 21 if args.dataname == 'kit' else 22
102
+ self.vqvae = VQVAE_251(args, nb_code, code_dim, output_emb_width, down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm)
103
+
104
+ def encode(self, x):
105
+ b, t, c = x.size()
106
+ quants = self.vqvae.encode(x) # (N, T)
107
+ return quants
108
+
109
+ def forward(self, x):
110
+
111
+ x_out, loss, perplexity = self.vqvae(x)
112
+
113
+ return x_out, loss, perplexity
114
+
115
+ def forward_decoder(self, x):
116
+ x_out = self.vqvae.forward_decoder(x)
117
+ return x_out
118
+
generate_human_motion/VQTrans/options/__pycache__/option_transformer.cpython-310.pyc ADDED
Binary file (3.24 kB). View file
 
generate_human_motion/VQTrans/options/get_eval_option.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from argparse import Namespace
2
+ import re
3
+ from os.path import join as pjoin
4
+
5
+
6
+ def is_float(numStr):
7
+ flag = False
8
+ numStr = str(numStr).strip().lstrip('-').lstrip('+')
9
+ try:
10
+ reg = re.compile(r'^[-+]?[0-9]+\.[0-9]+$')
11
+ res = reg.match(str(numStr))
12
+ if res:
13
+ flag = True
14
+ except Exception as ex:
15
+ print("is_float() - error: " + str(ex))
16
+ return flag
17
+
18
+
19
+ def is_number(numStr):
20
+ flag = False
21
+ numStr = str(numStr).strip().lstrip('-').lstrip('+')
22
+ if str(numStr).isdigit():
23
+ flag = True
24
+ return flag
25
+
26
+
27
+ def get_opt(opt_path, device):
28
+ opt = Namespace()
29
+ opt_dict = vars(opt)
30
+
31
+ skip = ('-------------- End ----------------',
32
+ '------------ Options -------------',
33
+ '\n')
34
+ print('Reading', opt_path)
35
+ with open(opt_path) as f:
36
+ for line in f:
37
+ if line.strip() not in skip:
38
+ # print(line.strip())
39
+ key, value = line.strip().split(': ')
40
+ if value in ('True', 'False'):
41
+ opt_dict[key] = (value == 'True')
42
+ # print(key, value)
43
+ elif is_float(value):
44
+ opt_dict[key] = float(value)
45
+ elif is_number(value):
46
+ opt_dict[key] = int(value)
47
+ else:
48
+ opt_dict[key] = str(value)
49
+
50
+ # print(opt)
51
+ opt_dict['which_epoch'] = 'finest'
52
+ opt.save_root = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.name)
53
+ opt.model_dir = pjoin(opt.save_root, 'model')
54
+ opt.meta_dir = pjoin(opt.save_root, 'meta')
55
+
56
+ if opt.dataset_name == 't2m':
57
+ opt.data_root = './dataset/HumanML3D/'
58
+ opt.motion_dir = pjoin(opt.data_root, 'new_joint_vecs')
59
+ opt.text_dir = pjoin(opt.data_root, 'texts')
60
+ opt.joints_num = 22
61
+ opt.dim_pose = 263
62
+ opt.max_motion_length = 196
63
+ opt.max_motion_frame = 196
64
+ opt.max_motion_token = 55
65
+ elif opt.dataset_name == 'kit':
66
+ opt.data_root = './dataset/KIT-ML/'
67
+ opt.motion_dir = pjoin(opt.data_root, 'new_joint_vecs')
68
+ opt.text_dir = pjoin(opt.data_root, 'texts')
69
+ opt.joints_num = 21
70
+ opt.dim_pose = 251
71
+ opt.max_motion_length = 196
72
+ opt.max_motion_frame = 196
73
+ opt.max_motion_token = 55
74
+ else:
75
+ raise KeyError('Dataset not recognized')
76
+
77
+ opt.dim_word = 300
78
+ opt.num_classes = 200 // opt.unit_length
79
+ opt.is_train = False
80
+ opt.is_continue = False
81
+ opt.device = device
82
+
83
+ return opt
generate_human_motion/VQTrans/options/option_transformer.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+
3
+ def get_args_parser():
4
+ parser = argparse.ArgumentParser(description='Optimal Transport AutoEncoder training for Amass',
5
+ add_help=True,
6
+ formatter_class=argparse.ArgumentDefaultsHelpFormatter)
7
+
8
+ ## dataloader
9
+
10
+ parser.add_argument('--dataname', type=str, default='kit', help='dataset directory')
11
+ parser.add_argument('--batch-size', default=128, type=int, help='batch size')
12
+ parser.add_argument('--fps', default=[20], nargs="+", type=int, help='frames per second')
13
+ parser.add_argument('--seq-len', type=int, default=64, help='training motion length')
14
+
15
+ ## optimization
16
+ parser.add_argument('--total-iter', default=100000, type=int, help='number of total iterations to run')
17
+ parser.add_argument('--warm-up-iter', default=1000, type=int, help='number of total iterations for warmup')
18
+ parser.add_argument('--lr', default=2e-4, type=float, help='max learning rate')
19
+ parser.add_argument('--lr-scheduler', default=[60000], nargs="+", type=int, help="learning rate schedule (iterations)")
20
+ parser.add_argument('--gamma', default=0.05, type=float, help="learning rate decay")
21
+
22
+ parser.add_argument('--weight-decay', default=1e-6, type=float, help='weight decay')
23
+ parser.add_argument('--decay-option',default='all', type=str, choices=['all', 'noVQ'], help='disable weight decay on codebook')
24
+ parser.add_argument('--optimizer',default='adamw', type=str, choices=['adam', 'adamw'], help='disable weight decay on codebook')
25
+
26
+ ## vqvae arch
27
+ parser.add_argument("--code-dim", type=int, default=512, help="embedding dimension")
28
+ parser.add_argument("--nb-code", type=int, default=512, help="nb of embedding")
29
+ parser.add_argument("--mu", type=float, default=0.99, help="exponential moving average to update the codebook")
30
+ parser.add_argument("--down-t", type=int, default=3, help="downsampling rate")
31
+ parser.add_argument("--stride-t", type=int, default=2, help="stride size")
32
+ parser.add_argument("--width", type=int, default=512, help="width of the network")
33
+ parser.add_argument("--depth", type=int, default=3, help="depth of the network")
34
+ parser.add_argument("--dilation-growth-rate", type=int, default=3, help="dilation growth rate")
35
+ parser.add_argument("--output-emb-width", type=int, default=512, help="output embedding width")
36
+ parser.add_argument('--vq-act', type=str, default='relu', choices = ['relu', 'silu', 'gelu'], help='dataset directory')
37
+
38
+ ## gpt arch
39
+ parser.add_argument("--block-size", type=int, default=25, help="seq len")
40
+ parser.add_argument("--embed-dim-gpt", type=int, default=512, help="embedding dimension")
41
+ parser.add_argument("--clip-dim", type=int, default=512, help="latent dimension in the clip feature")
42
+ parser.add_argument("--num-layers", type=int, default=2, help="nb of transformer layers")
43
+ parser.add_argument("--n-head-gpt", type=int, default=8, help="nb of heads")
44
+ parser.add_argument("--ff-rate", type=int, default=4, help="feedforward size")
45
+ parser.add_argument("--drop-out-rate", type=float, default=0.1, help="dropout ratio in the pos encoding")
46
+
47
+ ## quantizer
48
+ parser.add_argument("--quantizer", type=str, default='ema_reset', choices = ['ema', 'orig', 'ema_reset', 'reset'], help="eps for optimal transport")
49
+ parser.add_argument('--quantbeta', type=float, default=1.0, help='dataset directory')
50
+
51
+ ## resume
52
+ parser.add_argument("--resume-pth", type=str, default=None, help='resume vq pth')
53
+ parser.add_argument("--resume-trans", type=str, default=None, help='resume gpt pth')
54
+
55
+
56
+ ## output directory
57
+ parser.add_argument('--out-dir', type=str, default='output_GPT_Final/', help='output directory')
58
+ parser.add_argument('--exp-name', type=str, default='exp_debug', help='name of the experiment, will create a file inside out-dir')
59
+ parser.add_argument('--vq-name', type=str, default='exp_debug', help='name of the generated dataset .npy, will create a file inside out-dir')
60
+ ## other
61
+ parser.add_argument('--print-iter', default=200, type=int, help='print frequency')
62
+ parser.add_argument('--eval-iter', default=5000, type=int, help='evaluation frequency')
63
+ parser.add_argument('--seed', default=123, type=int, help='seed for initializing training. ')
64
+ parser.add_argument("--if-maxtest", action='store_true', help="test in max")
65
+ parser.add_argument('--pkeep', type=float, default=1.0, help='keep rate for gpt training')
66
+
67
+
68
+ return parser.parse_args()
generate_human_motion/VQTrans/options/option_vq.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+
3
+ def get_args_parser():
4
+ parser = argparse.ArgumentParser(description='Optimal Transport AutoEncoder training for AIST',
5
+ add_help=True,
6
+ formatter_class=argparse.ArgumentDefaultsHelpFormatter)
7
+
8
+ ## dataloader
9
+ parser.add_argument('--dataname', type=str, default='kit', help='dataset directory')
10
+ parser.add_argument('--batch-size', default=128, type=int, help='batch size')
11
+ parser.add_argument('--window-size', type=int, default=64, help='training motion length')
12
+
13
+ ## optimization
14
+ parser.add_argument('--total-iter', default=200000, type=int, help='number of total iterations to run')
15
+ parser.add_argument('--warm-up-iter', default=1000, type=int, help='number of total iterations for warmup')
16
+ parser.add_argument('--lr', default=2e-4, type=float, help='max learning rate')
17
+ parser.add_argument('--lr-scheduler', default=[50000, 400000], nargs="+", type=int, help="learning rate schedule (iterations)")
18
+ parser.add_argument('--gamma', default=0.05, type=float, help="learning rate decay")
19
+
20
+ parser.add_argument('--weight-decay', default=0.0, type=float, help='weight decay')
21
+ parser.add_argument("--commit", type=float, default=0.02, help="hyper-parameter for the commitment loss")
22
+ parser.add_argument('--loss-vel', type=float, default=0.1, help='hyper-parameter for the velocity loss')
23
+ parser.add_argument('--recons-loss', type=str, default='l2', help='reconstruction loss')
24
+
25
+ ## vqvae arch
26
+ parser.add_argument("--code-dim", type=int, default=512, help="embedding dimension")
27
+ parser.add_argument("--nb-code", type=int, default=512, help="nb of embedding")
28
+ parser.add_argument("--mu", type=float, default=0.99, help="exponential moving average to update the codebook")
29
+ parser.add_argument("--down-t", type=int, default=2, help="downsampling rate")
30
+ parser.add_argument("--stride-t", type=int, default=2, help="stride size")
31
+ parser.add_argument("--width", type=int, default=512, help="width of the network")
32
+ parser.add_argument("--depth", type=int, default=3, help="depth of the network")
33
+ parser.add_argument("--dilation-growth-rate", type=int, default=3, help="dilation growth rate")
34
+ parser.add_argument("--output-emb-width", type=int, default=512, help="output embedding width")
35
+ parser.add_argument('--vq-act', type=str, default='relu', choices = ['relu', 'silu', 'gelu'], help='dataset directory')
36
+ parser.add_argument('--vq-norm', type=str, default=None, help='dataset directory')
37
+
38
+ ## quantizer
39
+ parser.add_argument("--quantizer", type=str, default='ema_reset', choices = ['ema', 'orig', 'ema_reset', 'reset'], help="eps for optimal transport")
40
+ parser.add_argument('--beta', type=float, default=1.0, help='commitment loss in standard VQ')
41
+
42
+ ## resume
43
+ parser.add_argument("--resume-pth", type=str, default=None, help='resume pth for VQ')
44
+ parser.add_argument("--resume-gpt", type=str, default=None, help='resume pth for GPT')
45
+
46
+
47
+ ## output directory
48
+ parser.add_argument('--out-dir', type=str, default='output_vqfinal/', help='output directory')
49
+ parser.add_argument('--results-dir', type=str, default='visual_results/', help='output directory')
50
+ parser.add_argument('--visual-name', type=str, default='baseline', help='output directory')
51
+ parser.add_argument('--exp-name', type=str, default='exp_debug', help='name of the experiment, will create a file inside out-dir')
52
+ ## other
53
+ parser.add_argument('--print-iter', default=200, type=int, help='print frequency')
54
+ parser.add_argument('--eval-iter', default=1000, type=int, help='evaluation frequency')
55
+ parser.add_argument('--seed', default=123, type=int, help='seed for initializing training.')
56
+
57
+ parser.add_argument('--vis-gt', action='store_true', help='whether visualize GT motions')
58
+ parser.add_argument('--nb-vis', default=20, type=int, help='nb of visualizations')
59
+
60
+
61
+ return parser.parse_args()
generate_human_motion/VQTrans/output/02ab4ad275eda92f352e2ed8d942eeef_pred.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80236f3d1abbbbebe1d8c507192e43d4bc0a45530ba07878359aac3b32b497c8
3
+ size 10253253
generate_human_motion/VQTrans/output/06c27c738e874b23067c006f52e18ebc_pred.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4ae194ab73d235b8db97d33b8d16fa5992eebd0d8a827ec795441e6f6000295
3
+ size 4961733
generate_human_motion/VQTrans/output/0edd5f692aeec051d748dee0844f94e1_pred.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00eb8444c64fc2e33a9e19f66c0f2c8f104000da647c0aabc510a5bb46afd1a9
3
+ size 6946053
generate_human_motion/VQTrans/output/23cb7d0e26bb1646b3d386331971449c_pred.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e05998e1d4ac1eebcba89ec989112b6fcdb55c8cceeef2faea7cb564a381525
3
+ size 16206213