Unique3D / scripts /utils.py
abreza's picture
Update scripts/utils.py
f21e8dd verified
raw
history blame
10.4 kB
import torch
import numpy as np
from PIL import Image
import pymeshlab as ml
from pytorch3d.renderer import TexturesVertex
from pytorch3d.structures import Meshes
from rembg import new_session, remove
import trimesh
from typing import List, Tuple
import torch.nn.functional as F
# Constants
NEG_PROMPT = "sketch, sculpture, hand drawing, outline, single color, NSFW, lowres, bad anatomy, bad hands, text, error, missing fingers, yellow sleeves, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, (worst quality:1.4), (low quality:1.4)"
# CUDA Configuration
CUDA_PROVIDERS = [
('CUDAExecutionProvider', {
'device_id': 0,
'arena_extend_strategy': 'kSameAsRequested',
'gpu_mem_limit': 8 * 1024 * 1024 * 1024,
'cudnn_conv_algo_search': 'HEURISTIC',
})
]
# Initialize rembg session
rembg_session = new_session(providers=CUDA_PROVIDERS)
# Mesh Loading and Conversion Functions
def load_mesh_with_trimesh(file_name, file_type=None):
mesh = trimesh.load(file_name, file_type=file_type)
if isinstance(mesh, trimesh.Scene):
mesh = _process_trimesh_scene(mesh)
vertices = torch.from_numpy(mesh.vertices).T
faces = torch.from_numpy(mesh.faces).T
colors = _get_mesh_colors(mesh)
return vertices, faces, colors
def _process_trimesh_scene(mesh):
from io import BytesIO
with BytesIO() as f:
mesh.export(f, file_type="obj")
f.seek(0)
mesh = trimesh.load(f, file_type="obj")
if isinstance(mesh, trimesh.Scene):
mesh = trimesh.util.concatenate(
tuple(trimesh.Trimesh(vertices=g.vertices, faces=g.faces)
for g in mesh.geometry.values()))
return mesh
def _get_mesh_colors(mesh):
if mesh.visual is not None and hasattr(mesh.visual, 'vertex_colors'):
return torch.from_numpy(mesh.visual.vertex_colors)[..., :3].T / 255.
return torch.ones_like(mesh.vertices.T) * 0.5
# Mesh Conversion Functions
def meshlab_mesh_to_py3dmesh(mesh: ml.Mesh) -> Meshes:
verts = torch.from_numpy(mesh.vertex_matrix()).float()
faces = torch.from_numpy(mesh.face_matrix()).long()
colors = torch.from_numpy(mesh.vertex_color_matrix()[..., :3]).float()
textures = TexturesVertex(verts_features=[colors])
return Meshes(verts=[verts], faces=[faces], textures=textures)
def py3dmesh_to_meshlab_mesh(meshes: Meshes) -> ml.Mesh:
colors_in = F.pad(meshes.textures.verts_features_packed().cpu().float(), [0,1], value=1).numpy().astype(np.float64)
return ml.Mesh(
vertex_matrix=meshes.verts_packed().cpu().float().numpy().astype(np.float64),
face_matrix=meshes.faces_packed().cpu().long().numpy().astype(np.int32),
v_normals_matrix=meshes.verts_normals_packed().cpu().float().numpy().astype(np.float64),
v_color_matrix=colors_in)
# Normal Map Rotation Functions
def rotate_normalmap_by_angle(normal_map: np.ndarray, angle: float):
angle_rad = np.radians(angle)
R = np.array([
[np.cos(angle_rad), 0, np.sin(angle_rad)],
[0, 1, 0],
[-np.sin(angle_rad), 0, np.cos(angle_rad)]
])
return np.dot(normal_map.reshape(-1, 3), R.T).reshape(normal_map.shape)
def rotate_normals(normal_pils, return_types='np', rotate_direction=1):
n_views = len(normal_pils)
ret = []
for idx, rgba_normal in enumerate(normal_pils):
normal_np = _process_normal_map(rgba_normal, idx, n_views, rotate_direction)
ret.append(_format_output(normal_np, return_types))
return ret
def _process_normal_map(rgba_normal, idx, n_views, rotate_direction):
normal_np = np.array(rgba_normal)[:, :, :3] / 255 * 2 - 1
alpha_np = np.array(rgba_normal)[:, :, 3] / 255
normal_np = rotate_normalmap_by_angle(normal_np, rotate_direction * idx * (360 / n_views))
normal_np = (normal_np + 1) / 2 * alpha_np[..., None]
return np.concatenate([normal_np * 255, alpha_np[:, :, None] * 255], axis=-1)
def _format_output(normal_np, return_types):
if return_types == 'np':
return normal_np
elif return_types == 'pil':
return Image.fromarray(normal_np.astype(np.uint8))
else:
raise ValueError(f"return_types should be 'np' or 'pil', but got {return_types}")
# Background Change Functions
def change_bkgd(img_pils, new_bkgd=(0., 0., 0.)):
new_bkgd = np.array(new_bkgd).reshape(1, 1, 3)
return [_process_image(rgba_img, new_bkgd) for rgba_img in img_pils]
def _process_image(rgba_img, new_bkgd):
img_np = np.array(rgba_img)[:, :, :3] / 255
alpha_np = np.array(rgba_img)[:, :, 3] / 255
ori_bkgd = img_np[:1, :1]
alpha_np_clamp = np.clip(alpha_np, 1e-6, 1)
ori_img_np = (img_np - ori_bkgd * (1 - alpha_np[..., None])) / alpha_np_clamp[..., None]
img_np = np.where(alpha_np[..., None] > 0.05, ori_img_np * alpha_np[..., None] + new_bkgd * (1 - alpha_np[..., None]), new_bkgd)
rgba_img_np = np.concatenate([img_np * 255, alpha_np[..., None] * 255], axis=-1)
return Image.fromarray(rgba_img_np.astype(np.uint8))
# Mesh Cleaning Function
def simple_clean_mesh(pyml_mesh: ml.Mesh, apply_smooth=True, stepsmoothnum=1, apply_sub_divide=False, sub_divide_threshold=0.25):
ms = ml.MeshSet()
ms.add_mesh(pyml_mesh, "cube_mesh")
if apply_smooth:
ms.apply_filter("apply_coord_laplacian_smoothing", stepsmoothnum=stepsmoothnum, cotangentweight=False)
if apply_sub_divide:
ms.apply_filter("meshing_repair_non_manifold_vertices")
ms.apply_filter("meshing_repair_non_manifold_edges", method='Remove Faces')
ms.apply_filter("meshing_surface_subdivision_loop", iterations=2, threshold=ml.PercentageValue(sub_divide_threshold))
return meshlab_mesh_to_py3dmesh(ms.current_mesh())
# Image Processing Functions
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
new_size = max(width, height)
result = Image.new(pil_img.mode, (new_size, new_size), background_color)
offset = ((new_size - width) // 2, (new_size - height) // 2)
result.paste(pil_img, offset)
return result
def simple_preprocess(input_image, rembg_session=rembg_session, background_color=255):
RES = 2048
input_image.thumbnail([RES, RES], Image.Resampling.LANCZOS)
if input_image.mode != 'RGBA':
image_rem = input_image.convert('RGBA')
input_image = remove(image_rem, alpha_matting=False, session=rembg_session)
arr = np.asarray(input_image)
alpha = arr[:, :, -1]
x_nonzero, y_nonzero = np.nonzero(alpha > 60)
x_min, x_max = x_nonzero.min(), x_nonzero.max()
y_min, y_max = y_nonzero.min(), y_nonzero.max()
arr = arr[x_min:x_max+1, y_min:y_max+1]
input_image = Image.fromarray(arr)
return expand2square(input_image, (background_color, background_color, background_color, 0))
# Mesh Saving Functions
def save_py3dmesh_with_trimesh_fast(meshes: Meshes, save_glb_path, apply_sRGB_to_LinearRGB=True):
vertices = meshes.verts_packed().cpu().float().numpy()
triangles = meshes.faces_packed().cpu().long().numpy()
np_color = meshes.textures.verts_features_packed().cpu().float().numpy()
if save_glb_path.endswith(".glb"):
vertices[:, [0, 2]] = -vertices[:, [0, 2]]
if apply_sRGB_to_LinearRGB:
np_color = srgb_to_linear(np_color)
mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, vertex_colors=np_color)
mesh.remove_unreferenced_vertices()
mesh.export(save_glb_path)
if save_glb_path.endswith(".glb"):
fix_vert_color_glb(save_glb_path)
print(f"Saved to {save_glb_path}")
def save_glb_and_video(save_mesh_prefix: str, meshes: Meshes, with_timestamp=True, **kwargs) -> Tuple[str, str]:
import time
if '.' in save_mesh_prefix:
save_mesh_prefix = ".".join(save_mesh_prefix.split('.')[:-1])
if with_timestamp:
save_mesh_prefix = save_mesh_prefix + f"_{int(time.time())}"
ret_mesh = save_mesh_prefix + ".glb"
save_py3dmesh_with_trimesh_fast(meshes, ret_mesh)
return ret_mesh, None
# Utility Functions
def srgb_to_linear(c_srgb):
return np.where(c_srgb <= 0.04045, c_srgb / 12.92, ((c_srgb + 0.055) / 1.055) ** 2.4).clip(0, 1.)
def fix_vert_color_glb(mesh_path):
from pygltflib import GLTF2, Material, PbrMetallicRoughness
obj1 = GLTF2().load(mesh_path)
obj1.meshes[0].primitives[0].material = 0
obj1.materials.append(Material(
pbrMetallicRoughness = PbrMetallicRoughness(
baseColorFactor = [1.0, 1.0, 1.0, 1.0],
metallicFactor = 0.,
roughnessFactor = 1.0,
),
emissiveFactor = [0.0, 0.0, 0.0],
doubleSided = True,
))
obj1.save(mesh_path)
def init_target(img_pils, new_bkgd=(0., 0., 0.), device="cuda"):
new_bkgd = torch.tensor(new_bkgd, dtype=torch.float32).view(1, 1, 3).to(device)
imgs = torch.stack([torch.from_numpy(np.array(img, dtype=np.float32)) for img in img_pils]).to(device) / 255
img_nps, alpha_nps = imgs[..., :3], imgs[..., 3]
ori_bkgds = img_nps[:, :1, :1]
alpha_nps_clamp = torch.clamp(alpha_nps, 1e-6, 1)
ori_img_nps = (img_nps - ori_bkgds * (1 - alpha_nps.unsqueeze(-1))) / alpha_nps_clamp.unsqueeze(-1)
ori_img_nps = torch.clamp(ori_img_nps, 0, 1)
img_nps = torch.where(alpha_nps.unsqueeze(-1) > 0.05, ori_img_nps * alpha_nps.unsqueeze(-1) + new_bkgd * (1 - alpha_nps.unsqueeze(-1)), new_bkgd)
return torch.cat([img_nps, alpha_nps.unsqueeze(-1)], dim=-1)
def save_obj_and_video(save_mesh_prefix: str, meshes: Meshes, with_timestamp=True, **kwargs) -> Tuple[str, str]:
if '.' in save_mesh_prefix:
save_mesh_prefix = ".".join(save_mesh_prefix.split('.')[:-1])
if with_timestamp:
save_mesh_prefix = save_mesh_prefix + f"_{int(time.time())}"
ret_mesh = save_mesh_prefix + ".obj"
vertices = meshes.verts_packed().cpu().float().numpy()
triangles = meshes.faces_packed().cpu().long().numpy()
np_color = meshes.textures.verts_features_packed().cpu().float().numpy()
# Apply sRGB to LinearRGB conversion
np_color = srgb_to_linear(np_color)
mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, vertex_colors=np_color)
mesh.remove_unreferenced_vertices()
mesh.export(ret_mesh)
print(f"Saved to {ret_mesh}")
return ret_mesh, None