File size: 7,454 Bytes
68720c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7b6843
 
 
 
68720c1
 
 
29ce656
 
 
68720c1
 
 
 
 
bbcccf9
68720c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5aaf3c
68720c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5aaf3c
68720c1
 
bbcccf9
 
68720c1
 
 
 
 
 
 
1c8c09a
68720c1
 
 
 
 
 
 
 
 
 
 
 
 
1c8c09a
68720c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5aaf3c
 
 
 
 
68720c1
 
 
 
 
f5aaf3c
68720c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5aaf3c
68720c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import spaces

from functools import partial
from typing import Any, Callable, Dict

import clip
import gradio as gr
from gradio_rerun import Rerun
import numpy as np
import trimesh
import rerun as rr
import torch

from utils.common_viz import init, get_batch
from utils.random_utils import set_random_seed
from utils.rerun import log_sample
from src.diffuser import Diffuser
from src.datasets.multimodal_dataset import MultimodalDataset

# ------------------------------------------------------------------------------------- #

batch_size, num_cams, num_verts = None, None, None

SAMPLE_IDS = [
    "2011_KAeAqaA0Llg_00005_00001",
    "2011_F_EuMeT2wBo_00014_00001",
    "2011_MCkKihQrNA4_00014_00000",
]
LABEL_TO_IDS = {
    "right": 0,
    "static": 1,
    "complex": 2,
}
EXAMPLES = [
    "While the character moves right, the camera trucks right.",
    "While the character moves right, the camera performs a push in.",
    "While the character moves right, the camera performs a pull out.",
    "Movement: shortArcShotRight Easing: easeInOutQuad Frames: 30 Camera Angle: birdsEyeView Shot Type: mediumShot Subject Index: 0",
    "Movement: fullZoomIn Easing: easeInOutSine Frames: 30 Camera Angle: highAngle Shot Type: closeUp",
    "Movement: pedestalDown Easing: easeOutExpo Frames: 30 Camera Angle: mediumAngle Shot Type: longShot",  # noqa
    "Movement: dollyIn Easing: easeOutBounce Frames: 30 Camera Angle: mediumAngle Shot Type: longShot",  # noqa
]
DEFAULT_TEXT = [
    "While the character moves right, the camera [...].",
    "Movement: dollyIn Easing: easeOutBounce Frames: 30 [...].",
    "Movement: shortArcShotRight Easing: easeInOutQuad  [...]. "
    "Movement: fullZoomIn Easing: easeInOutSine  [...].",
]

HEADER = """

<div align="center">
<h1 style='text-align: center'>E.T. the Exceptional Trajectories (Static Character Pose</h2>
<a href="https://robincourant.github.io/info/"><strong>Robin Courant</strong></a>

<a href="https://nicolas-dufour.github.io/"><strong>Nicolas Dufour</strong></a>

<a href="https://triocrossing.github.io/"><strong>Xi Wang</strong></a>

<a href="http://people.irisa.fr/Marc.Christie/"><strong>Marc Christie</strong></a>

<a href="https://vicky.kalogeiton.info/"><strong>Vicky Kalogeiton</strong></a>
</div>


<div align="center">
    <a href="https://www.lix.polytechnique.fr/vista/projects/2024_et_courant/" class="button"><b>[Webpage]</b></a> &nbsp;&nbsp;&nbsp;&nbsp;
    <a href="https://github.com/robincourant/DIRECTOR" class="button"><b>[DIRECTOR]</b></a> &nbsp;&nbsp;&nbsp;&nbsp;
    <a href="https://github.com/robincourant/CLaTr" class="button"><b>[CLaTr]</b></a> &nbsp;&nbsp;&nbsp;&nbsp;
    <a href="https://github.com/robincourant/the-exceptional-trajectories" class="button"><b>[Data]</b></a> &nbsp;&nbsp;&nbsp;&nbsp;
</div>

<br/>
"""

# ------------------------------------------------------------------------------------- #


def get_normals(vertices: torch.Tensor, faces: torch.Tensor) -> torch.Tensor:
    num_frames, num_faces = vertices.shape[0], faces.shape[-2]
    faces = faces.expand(num_frames, num_faces, 3)

    normals = [
        trimesh.Trimesh(vertices=v, faces=f, process=False).vertex_normals
        for v, f in zip(vertices, faces)
    ]
    normals = torch.from_numpy(np.stack(normals))

    return normals


@spaces.GPU
def generate(
    prompt: str,
    seed: int,
    guidance_weight: float,
    character_position: list,
    # ----------------------- #
    dataset: MultimodalDataset,
    device: torch.device,
    diffuser: Diffuser,
    clip_model: clip.model.CLIP,
) -> Dict[str, Any]:
    diffuser.to(device)
    clip_model.to(device)

    # Set arguments
    set_random_seed(seed)
    diffuser.gen_seeds = np.array([seed])
    diffuser.guidance_weight = guidance_weight

    # Inference
    sample_id = SAMPLE_IDS[0]  # Default to the first sample ID
    seq_feat = diffuser.net.model.clip_sequential

    batch = get_batch(prompt, sample_id, character_position, clip_model, dataset, seq_feat, device)

    with torch.no_grad():
        out = diffuser.predict_step(batch, 0)

    # Run visualization
    padding_mask = out["padding_mask"][0].to(bool).cpu()
    padded_traj = out["gen_samples"][0].cpu()
    traj = padded_traj[padding_mask]
    char_traj = out["char_feat"][0].cpu()
    padded_vertices = out["char_raw"]["char_vertices"][0]
    vertices = padded_vertices[padding_mask]
    faces = out["char_raw"]["char_faces"][0]
    normals = get_normals(vertices, faces)
    fx, fy, cx, cy = out["intrinsics"][0].cpu().numpy()
    K = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])
    caption = out["caption_raw"][0]

    rr.init(f"{sample_id}")
    rr.save(".tmp_gr.rrd")
    log_sample(
        root_name="world",
        traj=traj.numpy(),
        char_traj=char_traj.numpy(),
        K=K,
        vertices=vertices.numpy(),
        faces=faces.numpy(),
        normals=normals.numpy(),
        caption=caption,
        mesh_masks=None,
    )
    return "./.tmp_gr.rrd"


# ------------------------------------------------------------------------------------- #


def launch_app(gen_fn: Callable):
    theme = gr.themes.Default(primary_hue="blue", secondary_hue="gray")

    with gr.Blocks(theme=theme) as demo:
        gr.Markdown(HEADER)

        with gr.Row():
            with gr.Column(scale=3):
                with gr.Column(scale=2):
                    char_position = gr.Textbox(
                        placeholder="Enter character position as [x, y, z]",
                        show_label=True,
                        label="Character Position (3D vector)",
                        value="[0.0, 0.0, 0.0]",
                    )
                    text = gr.Textbox(
                        placeholder="Type the camera motion you want to generate",
                        show_label=True,
                        label="Text prompt",
                        value=DEFAULT_TEXT[0],
                    )
                    seed = gr.Number(value=33, label="Seed")
                    guidance = gr.Slider(0, 10, value=1.4, label="Guidance", step=0.1)

                with gr.Column(scale=1):
                    btn = gr.Button("Generate", variant="primary")

            with gr.Column(scale=2):
                examples = gr.Examples(
                    examples=[[x, None, None] for x in EXAMPLES],
                    inputs=[text],
                )

        with gr.Row():
            output = Rerun()

        def load_example(example_id):
            processed_example = examples.non_none_processed_examples[example_id]
            return gr.utils.resolve_singleton(processed_example)

        inputs = [text, seed, guidance, char_position]
        examples.dataset.click(
            load_example,
            inputs=[examples.dataset],
            outputs=examples.inputs_with_examples,
            show_progress=False,
            postprocess=False,
            queue=False,
        ).then(fn=gen_fn, inputs=inputs, outputs=[output])
        btn.click(fn=gen_fn, inputs=inputs, outputs=[output])
        text.submit(fn=gen_fn, inputs=inputs, outputs=[output])
    demo.queue().launch(share=False)


# ------------------------------------------------------------------------------------- #

diffuser, clip_model, dataset, device = init("config")
generate_sample = partial(
    generate,
    dataset=dataset,
    device=device,
    diffuser=diffuser,
    clip_model=clip_model,
)
launch_app(generate_sample)