File size: 6,364 Bytes
293829f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
''' 
This script does conditional image generation on MNIST, using a diffusion model

This code is modified from,
https://github.com/cloneofsimo/minDiffusion

Diffusion model is based on DDPM,
https://arxiv.org/abs/2006.11239

The conditioning idea is taken from 'Classifier-Free Diffusion Guidance',
https://arxiv.org/abs/2207.12598

This technique also features in ImageGen 'Photorealistic Text-to-Image Diffusion Modelswith Deep Language Understanding',
https://arxiv.org/abs/2205.11487

'''

from typing import Dict, Tuple
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import models, transforms
from torchvision.datasets import MNIST
from torchvision.utils import save_image, make_grid
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation, PillowWriter
import numpy as np
import os
import clip

class LSTM(nn.Module):
    def __init__(self, input_size, hidden_size, output_size, embed_size=512, n_layer=1, bidirectional=False):
        super(LSTM, self).__init__()
        self.n_layer = n_layer
        self.bidirectional = bidirectional
        self.hidden_size = hidden_size

        self.num_directions = 2 if bidirectional else 1
        self.lstm = nn.LSTM(hidden_size, hidden_size, num_layers=n_layer, batch_first=True, bidirectional=bidirectional)

        self.encoder = nn.Sequential(nn.Linear(embed_size, hidden_size))

        self.decoder = nn.Sequential(nn.Linear(hidden_size, output_size))

        self.embed = nn.Sequential(nn.Linear(embed_size, embed_size))


    def initHidden(self, batch_size=1):
        h0 = torch.zeros(self.n_layer, batch_size, self.hidden_size, requires_grad=False).cuda()
        c0 = torch.zeros(self.n_layer, batch_size, self.hidden_size, requires_grad=False).cuda()
        return (h0, c0)

    def forward(self, input, embed):
        bs, length, n_feat = input.shape

        embed = self.embed(embed).unsqueeze(1).repeat(1, length, 1)

        hidden = self.initHidden(bs)
        output, hidden = self.lstm(embed, hidden)

        return self.decoder(output)

import torch.utils.data as data
class camdataset(data.Dataset):
    def __init__(self, data, label):
        self.data = data
        self.label = label

    def __getitem__(self, index):
        text = np.random.choice(self.label[index], np.random.randint(1, len(self.label[index])+1), replace=False)

        d = self.data[index]
        d = np.concatenate((d, d[-1:].repeat(300-len(d), 0)), 0)

        return np.array(d, dtype="float32"), " ".join(text)

    def __len__(self):
        return len(self.data)


def train():
    data = np.load("data.npy", allow_pickle=True)[()]

    d = np.concatenate(data["cam"], 0)
    Mean, Std = np.mean(d, 0), np.std(d, 0)

    for i in range(len(data["cam"])):
        data["cam"][i] = (data["cam"][i] - Mean[None, :]) / (Std[None, :] + 1e-8)

    # hardcoding these here
    n_epoch = 1000
    batch_size = 128
    device = "cuda:0"
    n_feature = 5
    lrate = 1e-4
    save_model = True
    save_dir = './result/'
    if not os.path.exists(save_dir):
        os.mkdir(save_dir)

    criterion = torch.nn.MSELoss()
    trans = LSTM(input_size=n_feature, hidden_size=512, output_size=n_feature)
    trans.to(device)

    optim = torch.optim.Adam(trans.parameters(), lr=lrate)

    dataloader = DataLoader(camdataset(data['cam'], data['info']), batch_size=batch_size, shuffle=True, num_workers=5)

    if not os.path.exists("result"):
        os.mkdir("result")

    device = "cuda" if torch.cuda.is_available() else "cpu"
    model, preprocess = clip.load("ViT-B/32", device=device)

    for ep in range(n_epoch):
        print(f'epoch {ep}')
        trans.train()

        # linear lrate decay
        optim.param_groups[0]['lr'] = lrate * (1 - ep / n_epoch)

        pbar = tqdm(dataloader)
        loss_ema = None
        for x, c in pbar:
            optim.zero_grad()
            x = x.to(device)
            with torch.no_grad():
                c = clip.tokenize(c, truncate=True).to(device)
                c = model.encode_text(c).float().detach()

            loss = criterion(trans(x, c), x)
            loss.backward()
            if loss_ema is None:
                loss_ema = loss.item()
            else:
                loss_ema = 0.95 * loss_ema + 0.05 * loss.item()
            pbar.set_description(f"loss: {loss_ema:.4f}")
            optim.step()

        torch.save(trans.state_dict(), save_dir + f"latest.pth")
        if save_model and ep % 100 == 0:

            torch.save(trans.state_dict(), save_dir + f"model_{ep}.pth")
            print('saved model at ' + save_dir + f"model_{ep}.pth")

def eval():
    if not os.path.exists("Mean_Std.npy"):
        data = np.load("data.npy", allow_pickle=True)[()]

        d = np.concatenate(data["cam"], 0)
        Mean, Std = np.mean(d, 0), np.std(d, 0)
        np.save("Mean_Std", {"Mean": Mean, "Std": Std})
    d = np.load("Mean_Std.npy", allow_pickle=True)[()]
    Mean, Std = d["Mean"], d["Std"]

    device = "cuda:0"
    n_feature = 5

    trans = LSTM(input_size=n_feature, hidden_size=512, output_size=n_feature)
    trans.to(device)

    # optionally load a model
    trans.load_state_dict(torch.load("./result/latest.pth"))

    if not os.path.exists("viz"):
        os.mkdir("viz")

    device = "cuda" if torch.cuda.is_available() else "cpu"
    model, preprocess = clip.load("ViT-B/32", device=device)

    d = np.load("test_prompt.npy", allow_pickle=True)[()]

    result = []
    for i in tqdm(range(0, len(d['info']), 100)):
        txt = d['info'][i:i + 100]
        text = [" ".join(v) for v in txt]

        with torch.no_grad():
            c = clip.tokenize(text, truncate=True).to(device)
            c = model.encode_text(c).float().detach()

            sample = trans(torch.zeros(len(c), 300, n_feature), c)
            sample = sample.detach().cpu().numpy()

            for j in range(len(text)):
                s = sample[j] * Std[None, :] + Mean[None, :]
                result.append(s)

        np.save("LSTM_test", {"result": result, "label": d["label"]})

if __name__ == "__main__":
    import sys
    mode = sys.argv[1]

    if mode == 'train':
        train()
    elif mode == 'eval':
        eval()
    else:
        print('Error, instruction {} is not in {train, eval}')