File size: 13,517 Bytes
293829f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d8e18a
 
 
 
 
 
293829f
0d8e18a
 
 
 
293829f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d8e18a
 
293829f
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
''' 
This script does conditional image generation on MNIST, using a diffusion model

This code is modified from,
https://github.com/cloneofsimo/minDiffusion

Diffusion model is based on DDPM,
https://arxiv.org/abs/2006.11239

The conditioning idea is taken from 'Classifier-Free Diffusion Guidance',
https://arxiv.org/abs/2207.12598

This technique also features in ImageGen 'Photorealistic Text-to-Image Diffusion Modelswith Deep Language Understanding',
https://arxiv.org/abs/2205.11487

'''
import random
from typing import Dict, Tuple
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import models, transforms
from torchvision.datasets import MNIST
from torchvision.utils import save_image, make_grid
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation, PillowWriter
import numpy as np
import os
import clip

class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout=0.1, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0).transpose(0, 1)
        self.register_buffer('pe', pe)

    def forward(self, x):
        # not used in the final model
        x = x + self.pe[:x.shape[0], :]
        return self.dropout(x)

class TimestepEmbedder(nn.Module):
    def __init__(self, latent_dim, sequence_pos_encoder):
        super().__init__()
        self.latent_dim = latent_dim
        self.sequence_pos_encoder = sequence_pos_encoder

        time_embed_dim = self.latent_dim
        self.time_embed = nn.Sequential(
            nn.Linear(self.latent_dim, time_embed_dim),
            nn.SiLU(),
            nn.Linear(time_embed_dim, time_embed_dim),
        )

    def forward(self, timesteps):
        return self.time_embed(self.sequence_pos_encoder.pe[timesteps]).permute(1, 0, 2)

class Transformer(nn.Module):
    def __init__(self, n_feature, n_textemb, latent_dim=256,
                 num_heads=4, ff_size=1024, dropout=0.1, activation='gelu',
                 num_layers=4, cond_mask_prob=0.1):
        super(Transformer, self).__init__()

        self.n_feature = n_feature
        self.n_textemb = n_textemb
        self.num_heads = num_heads
        self.ff_size = ff_size
        self.dropout = dropout
        self.activation = activation
        self.num_layers = num_layers
        self.latent_dim = latent_dim
        self.cond_mask_prob = cond_mask_prob

        self.embed_text = nn.Linear(self.n_textemb, self.latent_dim)

        self.input_process = nn.Linear(self.n_feature, self.latent_dim)

        seqTransEncoderlayer = nn.TransformerEncoderLayer(d_model=self.latent_dim,
                                                          nhead = self.num_heads,
                                                          dim_feedforward = self.ff_size,
                                                          dropout = self.dropout,
                                                          activation=self.activation)

        self.seqTransEncoder = nn.TransformerEncoder(seqTransEncoderlayer,
                                                     num_layers = self.num_layers)

        self.sequence_pos_encoder = PositionalEncoding(self.latent_dim, self.dropout)
        self.embed_timestep = TimestepEmbedder(self.latent_dim, self.sequence_pos_encoder)

        self.output_process = nn.Linear(self.latent_dim, self.n_feature)

    def mask_cond(self, cond, force_mask=False):
        bs, d = cond.shape
        if force_mask:
            return torch.zeros_like(cond)
        elif self.training and self.cond_mask_prob > 0.:
            mask = torch.bernoulli(torch.ones(bs, device=cond.device) * self.cond_mask_prob).view(bs, 1)  # 1-> use null_cond, 0-> use real cond
            return cond * (1. - mask)
        else:
            return cond

    def forward(self, x, emb_text, timesteps, force_mask=False):
        emb_time = self.embed_timestep(timesteps)

        emb_text = self.embed_text(self.mask_cond(emb_text, force_mask=force_mask))
        emb = (emb_time + emb_text)

        x = self.input_process(x.permute(1, 0, 2))

        xseq = torch.cat((emb, x), axis=0)
        xseq = self.sequence_pos_encoder(xseq)
        output = self.seqTransEncoder(xseq)[1:]

        return self.output_process(output).permute(1, 0, 2)



def ddpm_schedules(beta1, beta2, T):
    """
    Returns pre-computed schedules for DDPM sampling, training process.
    """
    assert beta1 < beta2 < 1.0, "beta1 and beta2 must be in (0, 1)"

    beta_t = (beta2 - beta1) * torch.arange(0, T + 1, dtype=torch.float32) / T + beta1
    sqrt_beta_t = torch.sqrt(beta_t)
    alpha_t = 1 - beta_t
    log_alpha_t = torch.log(alpha_t)
    alphabar_t = torch.cumsum(log_alpha_t, dim=0).exp()

    sqrtab = torch.sqrt(alphabar_t)
    oneover_sqrta = 1 / torch.sqrt(alpha_t)

    sqrtmab = torch.sqrt(1 - alphabar_t)
    mab_over_sqrtmab_inv = (1 - alpha_t) / sqrtmab

    return {
        "alpha_t": alpha_t,  # \alpha_t
        "oneover_sqrta": oneover_sqrta,  # 1/\sqrt{\alpha_t}
        "sqrt_beta_t": sqrt_beta_t,  # \sqrt{\beta_t}
        "alphabar_t": alphabar_t,  # \bar{\alpha_t}
        "sqrtab": sqrtab,  # \sqrt{\bar{\alpha_t}}
        "sqrtmab": sqrtmab,  # \sqrt{1-\bar{\alpha_t}}
        "mab_over_sqrtmab": mab_over_sqrtmab_inv,  # (1-\alpha_t)/\sqrt{1-\bar{\alpha_t}}
    }


class DDPM(nn.Module):
    def __init__(self, nn_model, betas, n_T, device):
        super(DDPM, self).__init__()
        self.nn_model = nn_model.to(device)

        # register_buffer allows accessing dictionary produced by ddpm_schedules
        # e.g. can access self.sqrtab later
        for k, v in ddpm_schedules(betas[0], betas[1], n_T).items():
            self.register_buffer(k, v)

        self.n_T = n_T
        self.device = device
        self.loss_mse = nn.MSELoss()

        self.count = [0] * n_T

    def forward(self, x, c):
        """
        this method is used in training, so samples t and noise randomly
        """

        _ts = torch.randint(1, self.n_T, (x.shape[0],)).to(self.device)  # t ~ Uniform(0, n_T)
        noise = torch.randn_like(x)  # eps ~ N(0, 1)

        for t in _ts:
            self.count[t] += 1

        x_t = (
            self.sqrtab[_ts, None, None] * x
            + self.sqrtmab[_ts, None, None] * noise
        )  # This is the x_t, which is sqrt(alphabar) x_0 + sqrt(1-alphabar) * eps
        # We should predict the "error term" from this x_t. Loss is what we return.

        # return MSE between added noise, and our predicted noise
        return self.loss_mse(noise, self.nn_model(x_t, c, _ts))

    def sample(self, n_sample, c, size, device, guide_w):
        # we follow the guidance sampling scheme described in 'Classifier-Free Diffusion Guidance'
        # to make the fwd passes efficient, we concat two versions of the dataset,
        # one with context_mask=0 and the other context_mask=1
        # we then mix the outputs with the guidance scale, w
        # where w>0 means more guidance

        x_i = torch.randn(n_sample, *size).to(device)  # x_T ~ N(0, 1), sample initial noise

        if c.shape[0] == 1:
            c_i = c.repeat(n_sample, 1).float()
        else:
            c_i = c.float()

        for i in tqdm(range(self.n_T, 0, -1)):
            t_is = torch.tensor(i).to(device).repeat(n_sample)

            # split predictions and compute weighting
            eps1 = self.nn_model(x_i, c_i, t_is)
            eps2 = self.nn_model(x_i, c_i, t_is, force_mask=True)
            eps = eps2 + guide_w * (eps1 - eps2)

            z = torch.randn(n_sample, *size).to(device) if i > 1 else 0


            x_i = (
                    self.oneover_sqrta[i] * (x_i - eps * self.mab_over_sqrtmab[i])
                    + self.sqrt_beta_t[i] * z
            )

        return x_i



import torch.utils.data as data
class camdataset(data.Dataset):
    def __init__(self, data, label):
        self.data = data
        self.label = label

    def __getitem__(self, index):
        text = np.random.choice(self.label[index], np.random.randint(1, len(self.label[index])+1), replace=False)

        d = self.data[index]
        d = np.concatenate((d, d[-1:].repeat(300-len(d), 0)), 0)

        return np.array(d, dtype="float32"), " ".join(text)

    def __len__(self):
        return len(self.data)


def train():
    data = np.load("data.npy", allow_pickle=True)[()]

    d = np.concatenate(data["cam"], 0)
    Mean, Std = np.mean(d, 0), np.std(d, 0)

    for i in range(len(data["cam"])):
        data["cam"][i] = (data["cam"][i] - Mean[None, :]) / (Std[None, :]+1e-8)

    # hardcoding these here
    n_epoch = 20000
    batch_size = 256
    n_T = 1000 # 500
    device = "cuda:0"
    n_feature = 5
    n_textemb = 512
    lrate = 1e-4
    save_model = True
    save_dir = './weight/'
    if not os.path.exists(save_dir):
        os.mkdir(save_dir)

    ddpm = DDPM(nn_model=Transformer(n_feature=n_feature, n_textemb=n_textemb), betas=(1e-4, 0.02), n_T=n_T, device=device)
    ddpm.to(device)

    optim = torch.optim.Adam(ddpm.parameters(), lr=lrate)

    dataloader = DataLoader(camdataset(data['cam'], data['info']), batch_size=batch_size, shuffle=True, num_workers=5)

    if not os.path.exists("result"):
        os.mkdir("result")

    device = "cuda" if torch.cuda.is_available() else "cpu"
    model, preprocess = clip.load("ViT-B/32", device=device)

    for ep in range(n_epoch):
        print(f'epoch {ep}')
        ddpm.train()

        # linear lrate decay
        optim.param_groups[0]['lr'] = lrate*(1-ep/n_epoch)

        pbar = tqdm(dataloader)
        loss_ema = None
        for x, c in pbar:
            optim.zero_grad()
            x = x.to(device)
            with torch.no_grad():
                c = clip.tokenize(c, truncate=True).to(device)
                c = model.encode_text(c).detach()

            loss = ddpm(x, c)
            loss.backward()
            if loss_ema is None:
                loss_ema = loss.item()
            else:
                loss_ema = 0.95 * loss_ema + 0.05 * loss.item()
            pbar.set_description(f"loss: {loss_ema:.4f}")
            optim.step()

        torch.save(ddpm.state_dict(), save_dir + f"latest.pth")
        if save_model and ep % 100 == 0:
            torch.save(ddpm.state_dict(), save_dir + f"model_{ep}.pth")
            print('saved model at ' + save_dir + f"model_{ep}.pth")

def set_seed(seed: int):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)


def gen(text: str, seed: int):
    set_seed(seed)
    
    script_dir = os.path.dirname(os.path.abspath(__file__))

    mean_std_path = os.path.join(script_dir, "..", "checkpoints", "Mean_Std.npy")

    latest_path = os.path.join(script_dir, "..", "checkpoints", "latest.pth") 

    if not os.path.exists(mean_std_path):
        data = np.load("data.npy", allow_pickle=True)[()]

        d = np.concatenate(data["cam"], 0)
        Mean, Std = np.mean(d, 0), np.std(d, 0)
        np.save("Mean_Std", {"Mean": Mean, "Std": Std})

    d = np.load(mean_std_path, allow_pickle=True)[()]
    Mean, Std = d["Mean"], d["Std"]

    n_T = 1000  # 500
    device = "cuda:0"
    n_feature = 5
    n_textemb = 512

    ddpm = DDPM(nn_model=Transformer(n_feature=n_feature, n_textemb=n_textemb), betas=(1e-4, 0.02), n_T=n_T,
                device=device)
    ddpm.to(device)

    # optionally load a model
    ddpm.load_state_dict(torch.load(latest_path))

    if not os.path.exists("gen"):
        os.mkdir("gen")

    device = "cuda" if torch.cuda.is_available() else "cpu"
    model, preprocess = clip.load("ViT-B/32", device=device)

    #text = ["The camera pans to the character. The camera switches from right front view to right back view. The character is at the middle center of the screen. The camera shoots at close shot."]

    result = []

    def smooth(x, winds=10, T=4):
        if T == 0:
            return x
        n_x = np.array(x)
        for i in range(len(x)):
            n_x[i] = np.mean(x[max(0, i - winds):min(len(x), i + winds), :], 0)
        return smooth(n_x, T=T - 1)

    with torch.no_grad():
        c = clip.tokenize(text, truncate=True).to(device)
        c = model.encode_text(c)

        sample = ddpm.sample(10, c, (300, n_feature), device, guide_w=2.0)
        sample = sample.detach().cpu().numpy()

        for j in range(len(sample)):
            s = smooth(sample[j] * Std[None, :] + Mean[None, :])
            result.append(s)
        return result
            # with open("gen/{}.txt".format(j), "w") as f:
            #     for i in range(len(s)):
            #         txt = ""
            #         for k in range(5):
            #             txt += str(s[i][k]) + " "
            #         f.write(txt+"\n")


def generate_CCD_sample(text: str, seed : int):
    return gen(text, seed)

if __name__ == "__main__":
    import sys
    mode = sys.argv[1]

    if mode == 'train':
        train()
    elif mode == 'gen':
        gen()
    else:
        print('Error, instruction {} is not in {train, gen}')