File size: 13,517 Bytes
293829f 0d8e18a 293829f 0d8e18a 293829f 0d8e18a 293829f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
'''
This script does conditional image generation on MNIST, using a diffusion model
This code is modified from,
https://github.com/cloneofsimo/minDiffusion
Diffusion model is based on DDPM,
https://arxiv.org/abs/2006.11239
The conditioning idea is taken from 'Classifier-Free Diffusion Guidance',
https://arxiv.org/abs/2207.12598
This technique also features in ImageGen 'Photorealistic Text-to-Image Diffusion Modelswith Deep Language Understanding',
https://arxiv.org/abs/2205.11487
'''
import random
from typing import Dict, Tuple
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import models, transforms
from torchvision.datasets import MNIST
from torchvision.utils import save_image, make_grid
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation, PillowWriter
import numpy as np
import os
import clip
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
# not used in the final model
x = x + self.pe[:x.shape[0], :]
return self.dropout(x)
class TimestepEmbedder(nn.Module):
def __init__(self, latent_dim, sequence_pos_encoder):
super().__init__()
self.latent_dim = latent_dim
self.sequence_pos_encoder = sequence_pos_encoder
time_embed_dim = self.latent_dim
self.time_embed = nn.Sequential(
nn.Linear(self.latent_dim, time_embed_dim),
nn.SiLU(),
nn.Linear(time_embed_dim, time_embed_dim),
)
def forward(self, timesteps):
return self.time_embed(self.sequence_pos_encoder.pe[timesteps]).permute(1, 0, 2)
class Transformer(nn.Module):
def __init__(self, n_feature, n_textemb, latent_dim=256,
num_heads=4, ff_size=1024, dropout=0.1, activation='gelu',
num_layers=4, cond_mask_prob=0.1):
super(Transformer, self).__init__()
self.n_feature = n_feature
self.n_textemb = n_textemb
self.num_heads = num_heads
self.ff_size = ff_size
self.dropout = dropout
self.activation = activation
self.num_layers = num_layers
self.latent_dim = latent_dim
self.cond_mask_prob = cond_mask_prob
self.embed_text = nn.Linear(self.n_textemb, self.latent_dim)
self.input_process = nn.Linear(self.n_feature, self.latent_dim)
seqTransEncoderlayer = nn.TransformerEncoderLayer(d_model=self.latent_dim,
nhead = self.num_heads,
dim_feedforward = self.ff_size,
dropout = self.dropout,
activation=self.activation)
self.seqTransEncoder = nn.TransformerEncoder(seqTransEncoderlayer,
num_layers = self.num_layers)
self.sequence_pos_encoder = PositionalEncoding(self.latent_dim, self.dropout)
self.embed_timestep = TimestepEmbedder(self.latent_dim, self.sequence_pos_encoder)
self.output_process = nn.Linear(self.latent_dim, self.n_feature)
def mask_cond(self, cond, force_mask=False):
bs, d = cond.shape
if force_mask:
return torch.zeros_like(cond)
elif self.training and self.cond_mask_prob > 0.:
mask = torch.bernoulli(torch.ones(bs, device=cond.device) * self.cond_mask_prob).view(bs, 1) # 1-> use null_cond, 0-> use real cond
return cond * (1. - mask)
else:
return cond
def forward(self, x, emb_text, timesteps, force_mask=False):
emb_time = self.embed_timestep(timesteps)
emb_text = self.embed_text(self.mask_cond(emb_text, force_mask=force_mask))
emb = (emb_time + emb_text)
x = self.input_process(x.permute(1, 0, 2))
xseq = torch.cat((emb, x), axis=0)
xseq = self.sequence_pos_encoder(xseq)
output = self.seqTransEncoder(xseq)[1:]
return self.output_process(output).permute(1, 0, 2)
def ddpm_schedules(beta1, beta2, T):
"""
Returns pre-computed schedules for DDPM sampling, training process.
"""
assert beta1 < beta2 < 1.0, "beta1 and beta2 must be in (0, 1)"
beta_t = (beta2 - beta1) * torch.arange(0, T + 1, dtype=torch.float32) / T + beta1
sqrt_beta_t = torch.sqrt(beta_t)
alpha_t = 1 - beta_t
log_alpha_t = torch.log(alpha_t)
alphabar_t = torch.cumsum(log_alpha_t, dim=0).exp()
sqrtab = torch.sqrt(alphabar_t)
oneover_sqrta = 1 / torch.sqrt(alpha_t)
sqrtmab = torch.sqrt(1 - alphabar_t)
mab_over_sqrtmab_inv = (1 - alpha_t) / sqrtmab
return {
"alpha_t": alpha_t, # \alpha_t
"oneover_sqrta": oneover_sqrta, # 1/\sqrt{\alpha_t}
"sqrt_beta_t": sqrt_beta_t, # \sqrt{\beta_t}
"alphabar_t": alphabar_t, # \bar{\alpha_t}
"sqrtab": sqrtab, # \sqrt{\bar{\alpha_t}}
"sqrtmab": sqrtmab, # \sqrt{1-\bar{\alpha_t}}
"mab_over_sqrtmab": mab_over_sqrtmab_inv, # (1-\alpha_t)/\sqrt{1-\bar{\alpha_t}}
}
class DDPM(nn.Module):
def __init__(self, nn_model, betas, n_T, device):
super(DDPM, self).__init__()
self.nn_model = nn_model.to(device)
# register_buffer allows accessing dictionary produced by ddpm_schedules
# e.g. can access self.sqrtab later
for k, v in ddpm_schedules(betas[0], betas[1], n_T).items():
self.register_buffer(k, v)
self.n_T = n_T
self.device = device
self.loss_mse = nn.MSELoss()
self.count = [0] * n_T
def forward(self, x, c):
"""
this method is used in training, so samples t and noise randomly
"""
_ts = torch.randint(1, self.n_T, (x.shape[0],)).to(self.device) # t ~ Uniform(0, n_T)
noise = torch.randn_like(x) # eps ~ N(0, 1)
for t in _ts:
self.count[t] += 1
x_t = (
self.sqrtab[_ts, None, None] * x
+ self.sqrtmab[_ts, None, None] * noise
) # This is the x_t, which is sqrt(alphabar) x_0 + sqrt(1-alphabar) * eps
# We should predict the "error term" from this x_t. Loss is what we return.
# return MSE between added noise, and our predicted noise
return self.loss_mse(noise, self.nn_model(x_t, c, _ts))
def sample(self, n_sample, c, size, device, guide_w):
# we follow the guidance sampling scheme described in 'Classifier-Free Diffusion Guidance'
# to make the fwd passes efficient, we concat two versions of the dataset,
# one with context_mask=0 and the other context_mask=1
# we then mix the outputs with the guidance scale, w
# where w>0 means more guidance
x_i = torch.randn(n_sample, *size).to(device) # x_T ~ N(0, 1), sample initial noise
if c.shape[0] == 1:
c_i = c.repeat(n_sample, 1).float()
else:
c_i = c.float()
for i in tqdm(range(self.n_T, 0, -1)):
t_is = torch.tensor(i).to(device).repeat(n_sample)
# split predictions and compute weighting
eps1 = self.nn_model(x_i, c_i, t_is)
eps2 = self.nn_model(x_i, c_i, t_is, force_mask=True)
eps = eps2 + guide_w * (eps1 - eps2)
z = torch.randn(n_sample, *size).to(device) if i > 1 else 0
x_i = (
self.oneover_sqrta[i] * (x_i - eps * self.mab_over_sqrtmab[i])
+ self.sqrt_beta_t[i] * z
)
return x_i
import torch.utils.data as data
class camdataset(data.Dataset):
def __init__(self, data, label):
self.data = data
self.label = label
def __getitem__(self, index):
text = np.random.choice(self.label[index], np.random.randint(1, len(self.label[index])+1), replace=False)
d = self.data[index]
d = np.concatenate((d, d[-1:].repeat(300-len(d), 0)), 0)
return np.array(d, dtype="float32"), " ".join(text)
def __len__(self):
return len(self.data)
def train():
data = np.load("data.npy", allow_pickle=True)[()]
d = np.concatenate(data["cam"], 0)
Mean, Std = np.mean(d, 0), np.std(d, 0)
for i in range(len(data["cam"])):
data["cam"][i] = (data["cam"][i] - Mean[None, :]) / (Std[None, :]+1e-8)
# hardcoding these here
n_epoch = 20000
batch_size = 256
n_T = 1000 # 500
device = "cuda:0"
n_feature = 5
n_textemb = 512
lrate = 1e-4
save_model = True
save_dir = './weight/'
if not os.path.exists(save_dir):
os.mkdir(save_dir)
ddpm = DDPM(nn_model=Transformer(n_feature=n_feature, n_textemb=n_textemb), betas=(1e-4, 0.02), n_T=n_T, device=device)
ddpm.to(device)
optim = torch.optim.Adam(ddpm.parameters(), lr=lrate)
dataloader = DataLoader(camdataset(data['cam'], data['info']), batch_size=batch_size, shuffle=True, num_workers=5)
if not os.path.exists("result"):
os.mkdir("result")
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device)
for ep in range(n_epoch):
print(f'epoch {ep}')
ddpm.train()
# linear lrate decay
optim.param_groups[0]['lr'] = lrate*(1-ep/n_epoch)
pbar = tqdm(dataloader)
loss_ema = None
for x, c in pbar:
optim.zero_grad()
x = x.to(device)
with torch.no_grad():
c = clip.tokenize(c, truncate=True).to(device)
c = model.encode_text(c).detach()
loss = ddpm(x, c)
loss.backward()
if loss_ema is None:
loss_ema = loss.item()
else:
loss_ema = 0.95 * loss_ema + 0.05 * loss.item()
pbar.set_description(f"loss: {loss_ema:.4f}")
optim.step()
torch.save(ddpm.state_dict(), save_dir + f"latest.pth")
if save_model and ep % 100 == 0:
torch.save(ddpm.state_dict(), save_dir + f"model_{ep}.pth")
print('saved model at ' + save_dir + f"model_{ep}.pth")
def set_seed(seed: int):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
def gen(text: str, seed: int):
set_seed(seed)
script_dir = os.path.dirname(os.path.abspath(__file__))
mean_std_path = os.path.join(script_dir, "..", "checkpoints", "Mean_Std.npy")
latest_path = os.path.join(script_dir, "..", "checkpoints", "latest.pth")
if not os.path.exists(mean_std_path):
data = np.load("data.npy", allow_pickle=True)[()]
d = np.concatenate(data["cam"], 0)
Mean, Std = np.mean(d, 0), np.std(d, 0)
np.save("Mean_Std", {"Mean": Mean, "Std": Std})
d = np.load(mean_std_path, allow_pickle=True)[()]
Mean, Std = d["Mean"], d["Std"]
n_T = 1000 # 500
device = "cuda:0"
n_feature = 5
n_textemb = 512
ddpm = DDPM(nn_model=Transformer(n_feature=n_feature, n_textemb=n_textemb), betas=(1e-4, 0.02), n_T=n_T,
device=device)
ddpm.to(device)
# optionally load a model
ddpm.load_state_dict(torch.load(latest_path))
if not os.path.exists("gen"):
os.mkdir("gen")
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device)
#text = ["The camera pans to the character. The camera switches from right front view to right back view. The character is at the middle center of the screen. The camera shoots at close shot."]
result = []
def smooth(x, winds=10, T=4):
if T == 0:
return x
n_x = np.array(x)
for i in range(len(x)):
n_x[i] = np.mean(x[max(0, i - winds):min(len(x), i + winds), :], 0)
return smooth(n_x, T=T - 1)
with torch.no_grad():
c = clip.tokenize(text, truncate=True).to(device)
c = model.encode_text(c)
sample = ddpm.sample(10, c, (300, n_feature), device, guide_w=2.0)
sample = sample.detach().cpu().numpy()
for j in range(len(sample)):
s = smooth(sample[j] * Std[None, :] + Mean[None, :])
result.append(s)
return result
# with open("gen/{}.txt".format(j), "w") as f:
# for i in range(len(s)):
# txt = ""
# for k in range(5):
# txt += str(s[i][k]) + " "
# f.write(txt+"\n")
def generate_CCD_sample(text: str, seed : int):
return gen(text, seed)
if __name__ == "__main__":
import sys
mode = sys.argv[1]
if mode == 'train':
train()
elif mode == 'gen':
gen()
else:
print('Error, instruction {} is not in {train, gen}')
|