File size: 6,326 Bytes
293829f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import numpy as np
import torch
import matplotlib.pyplot as plt
from scipy import linalg
import os
from tqdm import tqdm

def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
    """Numpy implementation of the Frechet Distance.
    The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
    and X_2 ~ N(mu_2, C_2) is
            d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
    Stable version by Dougal J. Sutherland.
    Params:
    -- mu1   : Numpy array containing the activations of a layer of the
               inception net (like returned by the function 'get_predictions')
               for generated samples.
    -- mu2   : The sample mean over activations, precalculated on an
               representative data set.
    -- sigma1: The covariance matrix over activations for generated samples.
    -- sigma2: The covariance matrix over activations, precalculated on an
               representative data set.
    Returns:
    --   : The Frechet Distance.
    """

    mu1 = np.atleast_1d(mu1)
    mu2 = np.atleast_1d(mu2)

    sigma1 = np.atleast_2d(sigma1)
    sigma2 = np.atleast_2d(sigma2)

    assert mu1.shape == mu2.shape, \
        'Training and test mean vectors have different lengths'
    assert sigma1.shape == sigma2.shape, \
        'Training and test covariances have different dimensions'

    diff = mu1 - mu2

    # Product might be almost singular
    covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
    if not np.isfinite(covmean).all():
        msg = ('fid calculation produces singular product; '
               'adding %s to diagonal of cov estimates') % eps
        print(msg)
        offset = np.eye(sigma1.shape[0]) * eps
        covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))

    # Numerical error might give slight imaginary component
    if np.iscomplexobj(covmean):
        if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
            m = np.max(np.abs(covmean.imag))
            raise ValueError('Imaginary component {}'.format(m))
        covmean = covmean.real

    tr_covmean = np.trace(covmean)

    return (diff.dot(diff) + np.trace(sigma1)
            + np.trace(sigma2) - 2 * tr_covmean)

def calculate_activation_statistics(data):
    """Calculation of the statistics used by the FID.
    Params:
    -- files       : List of image files paths
    -- model       : Instance of inception model
    -- batch_size  : The images numpy array is split into batches with
                     batch size batch_size. A reasonable batch size
                     depends on the hardware.
    -- dims        : Dimensionality of features returned by Inception
    -- device      : Device to run calculations
    -- num_workers : Number of parallel dataloader workers
    Returns:
    -- mu    : The mean over samples of the activations of the pool_3 layer of
               the inception model.
    -- sigma : The covariance matrix of the activations of the pool_3 layer of
               the inception model.
    """
    mu = np.mean(data, axis=0)
    sigma = np.cov(data, rowvar=False)
    return mu, sigma

def calculate_diversity(data, first_indices, second_indices):
    diversity = 0

    d = torch.FloatTensor(data)

    for first_idx, second_idx in zip(first_indices, second_indices):
        diversity += torch.dist(d[first_idx, :], d[second_idx, :])

    diversity /= len(first_indices)
    return diversity

d = np.load("feature.npy", allow_pickle=True)[()]

d0 = d["train_data"]
d1 = d["test_data"]
d2 = d["gen_T5"]
d3 = d["gen_GRU_T5"]
d4 = d["LSTM_Des"]
d5 = d["gen"]

Mean, Std = np.mean(d0, 0), np.std(d0, 0)
d0 = [(v - Mean[None, :]) / Std[None, :] for v in d0]
d1 = [(v - Mean[None, :]) / Std[None, :] for v in d1]
d2 = [(v - Mean[None, :]) / Std[None, :] for v in d2]
d3 = [(v - Mean[None, :]) / Std[None, :] for v in d3]
d4 = [(v - Mean[None, :]) / Std[None, :] for v in d4]
d5 = [(v - Mean[None, :]) / Std[None, :] for v in d5]

if not os.path.exists("viz"):
    os.mkdir("viz")


d0 = np.array([v.flatten() for v in d0])
d1 = np.array([v.flatten() for v in d1])
d2 = np.array([v.flatten() for v in d2])
d3 = np.array([v.flatten() for v in d3])
d4 = np.array([v.flatten() for v in d4])
d5 = np.array([v.flatten() for v in d5])

print("Diversity")

diversity_times = 10000
num_motions = len(d1)
first_indices = np.random.randint(0, num_motions, diversity_times)
second_indices = np.random.randint(0, num_motions, diversity_times)

print(calculate_diversity(d1, first_indices, second_indices))
print(calculate_diversity(d2, first_indices, second_indices))
print(calculate_diversity(d3, first_indices, second_indices))
print(calculate_diversity(d4, first_indices, second_indices))
print(calculate_diversity(d5, first_indices, second_indices))

print("Diversity with action label")

d = np.load("data.npy", allow_pickle=True)[()]

label = dict()
for i in range(6):
    label[i] = []
for i in range(len(d['test_label'])):
    label[d['test_label'][i]].append(i)

diversity_times = 1000
first_indices = []
second_indices = []
for i in range(6):
    idx = np.random.randint(0, len(label[i]), diversity_times)
    for j in idx:
        first_indices.append(label[i][j])
    idx = np.random.randint(0, len(label[i]), diversity_times)
    for j in idx:
        second_indices.append(label[i][j])

import random
print(random.shuffle(second_indices))

print(calculate_diversity(d1, first_indices, second_indices))
print(calculate_diversity(d2, first_indices, second_indices))
print(calculate_diversity(d3, first_indices, second_indices))
print(calculate_diversity(d4, first_indices, second_indices))
print(calculate_diversity(d5, first_indices, second_indices))


print("FID with training")

mu0, sigma0 = calculate_activation_statistics(d0)
mu1, sigma1 = calculate_activation_statistics(d1)
mu2, sigma2 = calculate_activation_statistics(d2)
mu3, sigma3 = calculate_activation_statistics(d3)
mu4, sigma4 = calculate_activation_statistics(d4)
mu5, sigma5 = calculate_activation_statistics(d5)

print(calculate_frechet_distance(mu0, sigma0, mu1, sigma1))
print(calculate_frechet_distance(mu0, sigma0, mu2, sigma2))
print(calculate_frechet_distance(mu0, sigma0, mu3, sigma3))
print(calculate_frechet_distance(mu0, sigma0, mu4, sigma4))
print(calculate_frechet_distance(mu0, sigma0, mu5, sigma5))