|
import torch |
|
import torch.nn as nn |
|
from torch import Tensor |
|
import numpy as np |
|
from einops import rearrange |
|
|
|
from typing import Optional, List |
|
from torchtyping import TensorType |
|
from einops._torch_specific import allow_ops_in_compiled_graph |
|
|
|
allow_ops_in_compiled_graph() |
|
|
|
batch_size, num_cond_feats = None, None |
|
|
|
|
|
class FusedMLP(nn.Sequential): |
|
def __init__( |
|
self, |
|
dim_model: int, |
|
dropout: float, |
|
activation: nn.Module, |
|
hidden_layer_multiplier: int = 4, |
|
bias: bool = True, |
|
): |
|
super().__init__( |
|
nn.Linear(dim_model, dim_model * hidden_layer_multiplier, bias=bias), |
|
activation(), |
|
nn.Dropout(dropout), |
|
nn.Linear(dim_model * hidden_layer_multiplier, dim_model, bias=bias), |
|
) |
|
|
|
|
|
def _cast_if_autocast_enabled(tensor): |
|
if torch.is_autocast_enabled(): |
|
if tensor.device.type == "cuda": |
|
dtype = torch.get_autocast_gpu_dtype() |
|
elif tensor.device.type == "cpu": |
|
dtype = torch.get_autocast_cpu_dtype() |
|
else: |
|
raise NotImplementedError() |
|
return tensor.to(dtype=dtype) |
|
return tensor |
|
|
|
|
|
class LayerNorm16Bits(torch.nn.LayerNorm): |
|
""" |
|
16-bit friendly version of torch.nn.LayerNorm |
|
""" |
|
|
|
def __init__( |
|
self, |
|
normalized_shape, |
|
eps=1e-06, |
|
elementwise_affine=True, |
|
device=None, |
|
dtype=None, |
|
): |
|
super().__init__( |
|
normalized_shape=normalized_shape, |
|
eps=eps, |
|
elementwise_affine=elementwise_affine, |
|
device=device, |
|
dtype=dtype, |
|
) |
|
|
|
def forward(self, x): |
|
module_device = x.device |
|
downcast_x = _cast_if_autocast_enabled(x) |
|
downcast_weight = ( |
|
_cast_if_autocast_enabled(self.weight) |
|
if self.weight is not None |
|
else self.weight |
|
) |
|
downcast_bias = ( |
|
_cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias |
|
) |
|
with torch.autocast(enabled=False, device_type=module_device.type): |
|
return nn.functional.layer_norm( |
|
downcast_x, |
|
self.normalized_shape, |
|
downcast_weight, |
|
downcast_bias, |
|
self.eps, |
|
) |
|
|
|
|
|
class StochatichDepth(nn.Module): |
|
def __init__(self, p: float): |
|
super().__init__() |
|
self.survival_prob = 1.0 - p |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
if self.training and self.survival_prob < 1: |
|
mask = ( |
|
torch.empty(x.shape[0], 1, 1, device=x.device).uniform_() |
|
+ self.survival_prob |
|
) |
|
mask = mask.floor() |
|
if self.survival_prob > 0: |
|
mask = mask / self.survival_prob |
|
return x * mask |
|
else: |
|
return x |
|
|
|
|
|
class CrossAttentionOp(nn.Module): |
|
def __init__( |
|
self, attention_dim, num_heads, dim_q, dim_kv, use_biases=True, is_sa=False |
|
): |
|
super().__init__() |
|
self.dim_q = dim_q |
|
self.dim_kv = dim_kv |
|
self.attention_dim = attention_dim |
|
self.num_heads = num_heads |
|
self.use_biases = use_biases |
|
self.is_sa = is_sa |
|
if self.is_sa: |
|
self.qkv = nn.Linear(dim_q, attention_dim * 3, bias=use_biases) |
|
else: |
|
self.q = nn.Linear(dim_q, attention_dim, bias=use_biases) |
|
self.kv = nn.Linear(dim_kv, attention_dim * 2, bias=use_biases) |
|
self.out = nn.Linear(attention_dim, dim_q, bias=use_biases) |
|
|
|
def forward(self, x_to, x_from=None, attention_mask=None): |
|
if x_from is None: |
|
x_from = x_to |
|
if self.is_sa: |
|
q, k, v = self.qkv(x_to).chunk(3, dim=-1) |
|
else: |
|
q = self.q(x_to) |
|
k, v = self.kv(x_from).chunk(2, dim=-1) |
|
q = rearrange(q, "b n (h d) -> b h n d", h=self.num_heads) |
|
k = rearrange(k, "b n (h d) -> b h n d", h=self.num_heads) |
|
v = rearrange(v, "b n (h d) -> b h n d", h=self.num_heads) |
|
if attention_mask is not None: |
|
attention_mask = attention_mask.unsqueeze(1) |
|
x = torch.nn.functional.scaled_dot_product_attention( |
|
q, k, v, attn_mask=attention_mask |
|
) |
|
x = rearrange(x, "b h n d -> b n (h d)") |
|
x = self.out(x) |
|
return x |
|
|
|
|
|
class CrossAttentionBlock(nn.Module): |
|
def __init__( |
|
self, |
|
dim_q: int, |
|
dim_kv: int, |
|
num_heads: int, |
|
attention_dim: int = 0, |
|
mlp_multiplier: int = 4, |
|
dropout: float = 0.0, |
|
stochastic_depth: float = 0.0, |
|
use_biases: bool = True, |
|
retrieve_attention_scores: bool = False, |
|
use_layernorm16: bool = True, |
|
): |
|
super().__init__() |
|
layer_norm = ( |
|
nn.LayerNorm |
|
if not use_layernorm16 or retrieve_attention_scores |
|
else LayerNorm16Bits |
|
) |
|
self.retrieve_attention_scores = retrieve_attention_scores |
|
self.initial_to_ln = layer_norm(dim_q, eps=1e-6) |
|
attention_dim = min(dim_q, dim_kv) if attention_dim == 0 else attention_dim |
|
self.ca = CrossAttentionOp( |
|
attention_dim, num_heads, dim_q, dim_kv, is_sa=False, use_biases=use_biases |
|
) |
|
self.ca_stochastic_depth = StochatichDepth(stochastic_depth) |
|
self.middle_ln = layer_norm(dim_q, eps=1e-6) |
|
self.ffn = FusedMLP( |
|
dim_model=dim_q, |
|
dropout=dropout, |
|
activation=nn.GELU, |
|
hidden_layer_multiplier=mlp_multiplier, |
|
bias=use_biases, |
|
) |
|
self.ffn_stochastic_depth = StochatichDepth(stochastic_depth) |
|
|
|
def forward( |
|
self, |
|
to_tokens: Tensor, |
|
from_tokens: Tensor, |
|
to_token_mask: Optional[Tensor] = None, |
|
from_token_mask: Optional[Tensor] = None, |
|
) -> Tensor: |
|
if to_token_mask is None and from_token_mask is None: |
|
attention_mask = None |
|
else: |
|
if to_token_mask is None: |
|
to_token_mask = torch.ones( |
|
to_tokens.shape[0], |
|
to_tokens.shape[1], |
|
dtype=torch.bool, |
|
device=to_tokens.device, |
|
) |
|
if from_token_mask is None: |
|
from_token_mask = torch.ones( |
|
from_tokens.shape[0], |
|
from_tokens.shape[1], |
|
dtype=torch.bool, |
|
device=from_tokens.device, |
|
) |
|
attention_mask = from_token_mask.unsqueeze(1) * to_token_mask.unsqueeze(2) |
|
attention_output = self.ca( |
|
self.initial_to_ln(to_tokens), |
|
from_tokens, |
|
attention_mask=attention_mask, |
|
) |
|
to_tokens = to_tokens + self.ca_stochastic_depth(attention_output) |
|
to_tokens = to_tokens + self.ffn_stochastic_depth( |
|
self.ffn(self.middle_ln(to_tokens)) |
|
) |
|
return to_tokens |
|
|
|
|
|
class SelfAttentionBlock(nn.Module): |
|
def __init__( |
|
self, |
|
dim_qkv: int, |
|
num_heads: int, |
|
attention_dim: int = 0, |
|
mlp_multiplier: int = 4, |
|
dropout: float = 0.0, |
|
stochastic_depth: float = 0.0, |
|
use_biases: bool = True, |
|
use_layer_scale: bool = False, |
|
layer_scale_value: float = 0.0, |
|
use_layernorm16: bool = True, |
|
): |
|
super().__init__() |
|
layer_norm = LayerNorm16Bits if use_layernorm16 else nn.LayerNorm |
|
self.initial_ln = layer_norm(dim_qkv, eps=1e-6) |
|
attention_dim = dim_qkv if attention_dim == 0 else attention_dim |
|
self.sa = CrossAttentionOp( |
|
attention_dim, |
|
num_heads, |
|
dim_qkv, |
|
dim_qkv, |
|
is_sa=True, |
|
use_biases=use_biases, |
|
) |
|
self.sa_stochastic_depth = StochatichDepth(stochastic_depth) |
|
self.middle_ln = layer_norm(dim_qkv, eps=1e-6) |
|
self.ffn = FusedMLP( |
|
dim_model=dim_qkv, |
|
dropout=dropout, |
|
activation=nn.GELU, |
|
hidden_layer_multiplier=mlp_multiplier, |
|
bias=use_biases, |
|
) |
|
self.ffn_stochastic_depth = StochatichDepth(stochastic_depth) |
|
self.use_layer_scale = use_layer_scale |
|
if use_layer_scale: |
|
self.layer_scale_1 = nn.Parameter( |
|
torch.ones(dim_qkv) * layer_scale_value, requires_grad=True |
|
) |
|
self.layer_scale_2 = nn.Parameter( |
|
torch.ones(dim_qkv) * layer_scale_value, requires_grad=True |
|
) |
|
|
|
def forward( |
|
self, |
|
tokens: torch.Tensor, |
|
token_mask: Optional[torch.Tensor] = None, |
|
): |
|
if token_mask is None: |
|
attention_mask = None |
|
else: |
|
attention_mask = token_mask.unsqueeze(1) * torch.ones( |
|
tokens.shape[0], |
|
tokens.shape[1], |
|
1, |
|
dtype=torch.bool, |
|
device=tokens.device, |
|
) |
|
attention_output = self.sa( |
|
self.initial_ln(tokens), |
|
attention_mask=attention_mask, |
|
) |
|
if self.use_layer_scale: |
|
tokens = tokens + self.sa_stochastic_depth( |
|
self.layer_scale_1 * attention_output |
|
) |
|
tokens = tokens + self.ffn_stochastic_depth( |
|
self.layer_scale_2 * self.ffn(self.middle_ln(tokens)) |
|
) |
|
else: |
|
tokens = tokens + self.sa_stochastic_depth(attention_output) |
|
tokens = tokens + self.ffn_stochastic_depth( |
|
self.ffn(self.middle_ln(tokens)) |
|
) |
|
return tokens |
|
|
|
|
|
class AdaLNSABlock(nn.Module): |
|
def __init__( |
|
self, |
|
dim_qkv: int, |
|
dim_cond: int, |
|
num_heads: int, |
|
attention_dim: int = 0, |
|
mlp_multiplier: int = 4, |
|
dropout: float = 0.0, |
|
stochastic_depth: float = 0.0, |
|
use_biases: bool = True, |
|
use_layer_scale: bool = False, |
|
layer_scale_value: float = 0.1, |
|
use_layernorm16: bool = True, |
|
): |
|
super().__init__() |
|
layer_norm = LayerNorm16Bits if use_layernorm16 else nn.LayerNorm |
|
self.initial_ln = layer_norm(dim_qkv, eps=1e-6, elementwise_affine=False) |
|
attention_dim = dim_qkv if attention_dim == 0 else attention_dim |
|
self.adaln_modulation = nn.Sequential( |
|
nn.SiLU(), |
|
nn.Linear(dim_cond, dim_qkv * 6, bias=use_biases), |
|
) |
|
|
|
nn.init.zeros_(self.adaln_modulation[1].weight) |
|
nn.init.zeros_(self.adaln_modulation[1].bias) |
|
|
|
self.sa = CrossAttentionOp( |
|
attention_dim, |
|
num_heads, |
|
dim_qkv, |
|
dim_qkv, |
|
is_sa=True, |
|
use_biases=use_biases, |
|
) |
|
self.sa_stochastic_depth = StochatichDepth(stochastic_depth) |
|
self.middle_ln = layer_norm(dim_qkv, eps=1e-6, elementwise_affine=False) |
|
self.ffn = FusedMLP( |
|
dim_model=dim_qkv, |
|
dropout=dropout, |
|
activation=nn.GELU, |
|
hidden_layer_multiplier=mlp_multiplier, |
|
bias=use_biases, |
|
) |
|
self.ffn_stochastic_depth = StochatichDepth(stochastic_depth) |
|
self.use_layer_scale = use_layer_scale |
|
if use_layer_scale: |
|
self.layer_scale_1 = nn.Parameter( |
|
torch.ones(dim_qkv) * layer_scale_value, requires_grad=True |
|
) |
|
self.layer_scale_2 = nn.Parameter( |
|
torch.ones(dim_qkv) * layer_scale_value, requires_grad=True |
|
) |
|
|
|
def forward( |
|
self, |
|
tokens: torch.Tensor, |
|
cond: torch.Tensor, |
|
token_mask: Optional[torch.Tensor] = None, |
|
): |
|
if token_mask is None: |
|
attention_mask = None |
|
else: |
|
attention_mask = token_mask.unsqueeze(1) * torch.ones( |
|
tokens.shape[0], |
|
tokens.shape[1], |
|
1, |
|
dtype=torch.bool, |
|
device=tokens.device, |
|
) |
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( |
|
self.adaln_modulation(cond).chunk(6, dim=-1) |
|
) |
|
attention_output = self.sa( |
|
modulate_shift_and_scale(self.initial_ln(tokens), shift_msa, scale_msa), |
|
attention_mask=attention_mask, |
|
) |
|
if self.use_layer_scale: |
|
tokens = tokens + self.sa_stochastic_depth( |
|
gate_msa.unsqueeze(1) * self.layer_scale_1 * attention_output |
|
) |
|
tokens = tokens + self.ffn_stochastic_depth( |
|
gate_mlp.unsqueeze(1) |
|
* self.layer_scale_2 |
|
* self.ffn( |
|
modulate_shift_and_scale( |
|
self.middle_ln(tokens), shift_mlp, scale_mlp |
|
) |
|
) |
|
) |
|
else: |
|
tokens = tokens + gate_msa.unsqueeze(1) * self.sa_stochastic_depth( |
|
attention_output |
|
) |
|
tokens = tokens + self.ffn_stochastic_depth( |
|
gate_mlp.unsqueeze(1) |
|
* self.ffn( |
|
modulate_shift_and_scale( |
|
self.middle_ln(tokens), shift_mlp, scale_mlp |
|
) |
|
) |
|
) |
|
return tokens |
|
|
|
|
|
class CrossAttentionSABlock(nn.Module): |
|
def __init__( |
|
self, |
|
dim_qkv: int, |
|
dim_cond: int, |
|
num_heads: int, |
|
attention_dim: int = 0, |
|
mlp_multiplier: int = 4, |
|
dropout: float = 0.0, |
|
stochastic_depth: float = 0.0, |
|
use_biases: bool = True, |
|
use_layer_scale: bool = False, |
|
layer_scale_value: float = 0.0, |
|
use_layernorm16: bool = True, |
|
): |
|
super().__init__() |
|
layer_norm = LayerNorm16Bits if use_layernorm16 else nn.LayerNorm |
|
attention_dim = dim_qkv if attention_dim == 0 else attention_dim |
|
self.ca = CrossAttentionOp( |
|
attention_dim, |
|
num_heads, |
|
dim_qkv, |
|
dim_cond, |
|
is_sa=False, |
|
use_biases=use_biases, |
|
) |
|
self.ca_stochastic_depth = StochatichDepth(stochastic_depth) |
|
self.ca_ln = layer_norm(dim_qkv, eps=1e-6) |
|
|
|
self.initial_ln = layer_norm(dim_qkv, eps=1e-6) |
|
attention_dim = dim_qkv if attention_dim == 0 else attention_dim |
|
|
|
self.sa = CrossAttentionOp( |
|
attention_dim, |
|
num_heads, |
|
dim_qkv, |
|
dim_qkv, |
|
is_sa=True, |
|
use_biases=use_biases, |
|
) |
|
self.sa_stochastic_depth = StochatichDepth(stochastic_depth) |
|
self.middle_ln = layer_norm(dim_qkv, eps=1e-6) |
|
self.ffn = FusedMLP( |
|
dim_model=dim_qkv, |
|
dropout=dropout, |
|
activation=nn.GELU, |
|
hidden_layer_multiplier=mlp_multiplier, |
|
bias=use_biases, |
|
) |
|
self.ffn_stochastic_depth = StochatichDepth(stochastic_depth) |
|
self.use_layer_scale = use_layer_scale |
|
if use_layer_scale: |
|
self.layer_scale_1 = nn.Parameter( |
|
torch.ones(dim_qkv) * layer_scale_value, requires_grad=True |
|
) |
|
self.layer_scale_2 = nn.Parameter( |
|
torch.ones(dim_qkv) * layer_scale_value, requires_grad=True |
|
) |
|
|
|
def forward( |
|
self, |
|
tokens: torch.Tensor, |
|
cond: torch.Tensor, |
|
token_mask: Optional[torch.Tensor] = None, |
|
cond_mask: Optional[torch.Tensor] = None, |
|
): |
|
if cond_mask is None: |
|
cond_attention_mask = None |
|
else: |
|
cond_attention_mask = torch.ones( |
|
cond.shape[0], |
|
1, |
|
cond.shape[1], |
|
dtype=torch.bool, |
|
device=tokens.device, |
|
) * token_mask.unsqueeze(2) |
|
if token_mask is None: |
|
attention_mask = None |
|
else: |
|
attention_mask = token_mask.unsqueeze(1) * torch.ones( |
|
tokens.shape[0], |
|
tokens.shape[1], |
|
1, |
|
dtype=torch.bool, |
|
device=tokens.device, |
|
) |
|
ca_output = self.ca( |
|
self.ca_ln(tokens), |
|
cond, |
|
attention_mask=cond_attention_mask, |
|
) |
|
ca_output = torch.nan_to_num( |
|
ca_output, nan=0.0, posinf=0.0, neginf=0.0 |
|
) |
|
tokens = tokens + self.ca_stochastic_depth(ca_output) |
|
attention_output = self.sa( |
|
self.initial_ln(tokens), |
|
attention_mask=attention_mask, |
|
) |
|
if self.use_layer_scale: |
|
tokens = tokens + self.sa_stochastic_depth( |
|
self.layer_scale_1 * attention_output |
|
) |
|
tokens = tokens + self.ffn_stochastic_depth( |
|
self.layer_scale_2 * self.ffn(self.middle_ln(tokens)) |
|
) |
|
else: |
|
tokens = tokens + self.sa_stochastic_depth(attention_output) |
|
tokens = tokens + self.ffn_stochastic_depth( |
|
self.ffn(self.middle_ln(tokens)) |
|
) |
|
return tokens |
|
|
|
|
|
class CAAdaLNSABlock(nn.Module): |
|
def __init__( |
|
self, |
|
dim_qkv: int, |
|
dim_cond: int, |
|
num_heads: int, |
|
attention_dim: int = 0, |
|
mlp_multiplier: int = 4, |
|
dropout: float = 0.0, |
|
stochastic_depth: float = 0.0, |
|
use_biases: bool = True, |
|
use_layer_scale: bool = False, |
|
layer_scale_value: float = 0.1, |
|
use_layernorm16: bool = True, |
|
): |
|
super().__init__() |
|
layer_norm = LayerNorm16Bits if use_layernorm16 else nn.LayerNorm |
|
self.ca = CrossAttentionOp( |
|
attention_dim, |
|
num_heads, |
|
dim_qkv, |
|
dim_cond, |
|
is_sa=False, |
|
use_biases=use_biases, |
|
) |
|
self.ca_stochastic_depth = StochatichDepth(stochastic_depth) |
|
self.ca_ln = layer_norm(dim_qkv, eps=1e-6) |
|
self.initial_ln = layer_norm(dim_qkv, eps=1e-6) |
|
attention_dim = dim_qkv if attention_dim == 0 else attention_dim |
|
self.adaln_modulation = nn.Sequential( |
|
nn.SiLU(), |
|
nn.Linear(dim_cond, dim_qkv * 6, bias=use_biases), |
|
) |
|
|
|
nn.init.zeros_(self.adaln_modulation[1].weight) |
|
nn.init.zeros_(self.adaln_modulation[1].bias) |
|
|
|
self.sa = CrossAttentionOp( |
|
attention_dim, |
|
num_heads, |
|
dim_qkv, |
|
dim_qkv, |
|
is_sa=True, |
|
use_biases=use_biases, |
|
) |
|
self.sa_stochastic_depth = StochatichDepth(stochastic_depth) |
|
self.middle_ln = layer_norm(dim_qkv, eps=1e-6) |
|
self.ffn = FusedMLP( |
|
dim_model=dim_qkv, |
|
dropout=dropout, |
|
activation=nn.GELU, |
|
hidden_layer_multiplier=mlp_multiplier, |
|
bias=use_biases, |
|
) |
|
self.ffn_stochastic_depth = StochatichDepth(stochastic_depth) |
|
self.use_layer_scale = use_layer_scale |
|
if use_layer_scale: |
|
self.layer_scale_1 = nn.Parameter( |
|
torch.ones(dim_qkv) * layer_scale_value, requires_grad=True |
|
) |
|
self.layer_scale_2 = nn.Parameter( |
|
torch.ones(dim_qkv) * layer_scale_value, requires_grad=True |
|
) |
|
|
|
def forward( |
|
self, |
|
tokens: torch.Tensor, |
|
cond_1: torch.Tensor, |
|
cond_2: torch.Tensor, |
|
cond_1_mask: Optional[torch.Tensor] = None, |
|
token_mask: Optional[torch.Tensor] = None, |
|
): |
|
if token_mask is None and cond_1_mask is None: |
|
cond_attention_mask = None |
|
elif token_mask is None: |
|
cond_attention_mask = cond_1_mask.unsqueeze(1) * torch.ones( |
|
cond_1.shape[0], |
|
cond_1.shape[1], |
|
1, |
|
dtype=torch.bool, |
|
device=cond_1.device, |
|
) |
|
elif cond_1_mask is None: |
|
cond_attention_mask = torch.ones( |
|
tokens.shape[0], |
|
1, |
|
tokens.shape[1], |
|
dtype=torch.bool, |
|
device=tokens.device, |
|
) * token_mask.unsqueeze(2) |
|
else: |
|
cond_attention_mask = cond_1_mask.unsqueeze(1) * token_mask.unsqueeze(2) |
|
if token_mask is None: |
|
attention_mask = None |
|
else: |
|
attention_mask = token_mask.unsqueeze(1) * torch.ones( |
|
tokens.shape[0], |
|
tokens.shape[1], |
|
1, |
|
dtype=torch.bool, |
|
device=tokens.device, |
|
) |
|
ca_output = self.ca( |
|
self.ca_ln(tokens), |
|
cond_1, |
|
attention_mask=cond_attention_mask, |
|
) |
|
ca_output = torch.nan_to_num(ca_output, nan=0.0, posinf=0.0, neginf=0.0) |
|
tokens = tokens + self.ca_stochastic_depth(ca_output) |
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( |
|
self.adaln_modulation(cond_2).chunk(6, dim=-1) |
|
) |
|
attention_output = self.sa( |
|
modulate_shift_and_scale(self.initial_ln(tokens), shift_msa, scale_msa), |
|
attention_mask=attention_mask, |
|
) |
|
if self.use_layer_scale: |
|
tokens = tokens + self.sa_stochastic_depth( |
|
gate_msa.unsqueeze(1) * self.layer_scale_1 * attention_output |
|
) |
|
tokens = tokens + self.ffn_stochastic_depth( |
|
gate_mlp.unsqueeze(1) |
|
* self.layer_scale_2 |
|
* self.ffn( |
|
modulate_shift_and_scale( |
|
self.middle_ln(tokens), shift_mlp, scale_mlp |
|
) |
|
) |
|
) |
|
else: |
|
tokens = tokens + gate_msa.unsqueeze(1) * self.sa_stochastic_depth( |
|
attention_output |
|
) |
|
tokens = tokens + self.ffn_stochastic_depth( |
|
gate_mlp.unsqueeze(1) |
|
* self.ffn( |
|
modulate_shift_and_scale( |
|
self.middle_ln(tokens), shift_mlp, scale_mlp |
|
) |
|
) |
|
) |
|
return tokens |
|
|
|
|
|
class PositionalEmbedding(nn.Module): |
|
""" |
|
Taken from https://github.com/NVlabs/edm |
|
""" |
|
|
|
def __init__(self, num_channels, max_positions=10000, endpoint=False): |
|
super().__init__() |
|
self.num_channels = num_channels |
|
self.max_positions = max_positions |
|
self.endpoint = endpoint |
|
freqs = torch.arange(start=0, end=self.num_channels // 2, dtype=torch.float32) |
|
freqs = 2 * freqs / self.num_channels |
|
freqs = (1 / self.max_positions) ** freqs |
|
self.register_buffer("freqs", freqs) |
|
|
|
def forward(self, x): |
|
x = torch.outer(x, self.freqs) |
|
out = torch.cat([x.cos(), x.sin()], dim=1) |
|
return out.to(x.dtype) |
|
|
|
|
|
class PositionalEncoding(nn.Module): |
|
def __init__(self, d_model, dropout=0.0, max_len=10000): |
|
super().__init__() |
|
self.dropout = nn.Dropout(p=dropout) |
|
|
|
pe = torch.zeros(max_len, d_model) |
|
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) |
|
div_term = torch.exp( |
|
torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model) |
|
) |
|
pe[:, 0::2] = torch.sin(position * div_term) |
|
pe[:, 1::2] = torch.cos(position * div_term) |
|
pe = pe.unsqueeze(0) |
|
|
|
self.register_buffer("pe", pe) |
|
|
|
def forward(self, x): |
|
|
|
x = x + self.pe[:, : x.shape[1], :] |
|
return self.dropout(x) |
|
|
|
|
|
class TimeEmbedder(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
time_scaling: float, |
|
expansion: int = 4, |
|
): |
|
super().__init__() |
|
self.encode_time = PositionalEmbedding(num_channels=dim, endpoint=True) |
|
|
|
self.time_scaling = time_scaling |
|
self.map_time = nn.Sequential( |
|
nn.Linear(dim, dim * expansion), |
|
nn.SiLU(), |
|
nn.Linear(dim * expansion, dim * expansion), |
|
) |
|
|
|
def forward(self, t: Tensor) -> Tensor: |
|
time = self.encode_time(t * self.time_scaling) |
|
time_mean = time.mean(dim=-1, keepdim=True) |
|
time_std = time.std(dim=-1, keepdim=True) |
|
time = (time - time_mean) / time_std |
|
return self.map_time(time) |
|
|
|
|
|
def modulate_shift_and_scale(x: Tensor, shift: Tensor, scale: Tensor) -> Tensor: |
|
return x * (1 + scale).unsqueeze(1) + shift.unsqueeze(1) |
|
|
|
|
|
|
|
|
|
|
|
class BaseDirector(nn.Module): |
|
def __init__( |
|
self, |
|
name: str, |
|
num_feats: int, |
|
num_cond_feats: int, |
|
num_cams: int, |
|
latent_dim: int, |
|
mlp_multiplier: int, |
|
num_layers: int, |
|
num_heads: int, |
|
dropout: float, |
|
stochastic_depth: float, |
|
label_dropout: float, |
|
num_rawfeats: int, |
|
clip_sequential: bool = False, |
|
cond_sequential: bool = False, |
|
device: str = "cuda", |
|
**kwargs, |
|
): |
|
super().__init__() |
|
self.name = name |
|
self.label_dropout = label_dropout |
|
self.num_rawfeats = num_rawfeats |
|
self.num_feats = num_feats |
|
self.num_cams = num_cams |
|
self.clip_sequential = clip_sequential |
|
self.cond_sequential = cond_sequential |
|
self.use_layernorm16 = device == "cuda" |
|
|
|
self.input_projection = nn.Sequential( |
|
nn.Linear(num_feats, latent_dim), |
|
PositionalEncoding(latent_dim), |
|
) |
|
self.time_embedding = TimeEmbedder(latent_dim // 4, time_scaling=1000) |
|
self.init_conds_mappings(num_cond_feats, latent_dim) |
|
self.init_backbone( |
|
num_layers, latent_dim, mlp_multiplier, num_heads, dropout, stochastic_depth |
|
) |
|
self.init_output_projection(num_feats, latent_dim) |
|
|
|
def forward( |
|
self, |
|
x: Tensor, |
|
timesteps: Tensor, |
|
y: List[Tensor] = None, |
|
mask: Tensor = None, |
|
) -> Tensor: |
|
mask = mask.logical_not() if mask is not None else None |
|
x = rearrange(x, "b c n -> b n c") |
|
x = self.input_projection(x) |
|
t = self.time_embedding(timesteps) |
|
if y is not None: |
|
y = self.mask_cond(y) |
|
y = self.cond_mapping(y, mask, t) |
|
|
|
x = self.backbone(x, y, mask) |
|
x = self.output_projection(x, y) |
|
return rearrange(x, "b n c -> b c n") |
|
|
|
def init_conds_mappings(self, num_cond_feats, latent_dim): |
|
raise NotImplementedError( |
|
"This method should be implemented in the derived class" |
|
) |
|
|
|
def init_backbone(self): |
|
raise NotImplementedError( |
|
"This method should be implemented in the derived class" |
|
) |
|
|
|
def cond_mapping(self, cond: List[Tensor], mask: Tensor, t: Tensor) -> Tensor: |
|
raise NotImplementedError( |
|
"This method should be implemented in the derived class" |
|
) |
|
|
|
def backbone(self, x: Tensor, y: Tensor, mask: Tensor) -> Tensor: |
|
raise NotImplementedError( |
|
"This method should be implemented in the derived class" |
|
) |
|
|
|
def mask_cond( |
|
self, cond: List[TensorType["batch_size", "num_cond_feats"]] |
|
) -> TensorType["batch_size", "num_cond_feats"]: |
|
bs = cond[0].shape[0] |
|
if self.training and self.label_dropout > 0.0: |
|
|
|
prob = torch.ones(bs, device=cond[0].device) * self.label_dropout |
|
masked_cond = [] |
|
common_mask = torch.bernoulli(prob) |
|
for _cond in cond: |
|
modality_mask = torch.bernoulli(prob) |
|
mask = torch.clip(common_mask + modality_mask, 0, 1) |
|
mask = mask.view(bs, 1, 1) if _cond.dim() == 3 else mask.view(bs, 1) |
|
masked_cond.append(_cond * (1.0 - mask)) |
|
return masked_cond |
|
else: |
|
return cond |
|
|
|
def init_output_projection(self, num_feats, latent_dim): |
|
raise NotImplementedError( |
|
"This method should be implemented in the derived class" |
|
) |
|
|
|
def output_projection(self, x: Tensor, y: Tensor) -> Tensor: |
|
raise NotImplementedError( |
|
"This method should be implemented in the derived class" |
|
) |
|
|
|
|
|
class AdaLNDirector(BaseDirector): |
|
def __init__( |
|
self, |
|
name: str, |
|
num_feats: int, |
|
num_cond_feats: int, |
|
num_cams: int, |
|
latent_dim: int, |
|
mlp_multiplier: int, |
|
num_layers: int, |
|
num_heads: int, |
|
dropout: float, |
|
stochastic_depth: float, |
|
label_dropout: float, |
|
num_rawfeats: int, |
|
clip_sequential: bool = False, |
|
cond_sequential: bool = False, |
|
device: str = "cuda", |
|
**kwargs, |
|
): |
|
super().__init__( |
|
name=name, |
|
num_feats=num_feats, |
|
num_cond_feats=num_cond_feats, |
|
num_cams=num_cams, |
|
latent_dim=latent_dim, |
|
mlp_multiplier=mlp_multiplier, |
|
num_layers=num_layers, |
|
num_heads=num_heads, |
|
dropout=dropout, |
|
stochastic_depth=stochastic_depth, |
|
label_dropout=label_dropout, |
|
num_rawfeats=num_rawfeats, |
|
clip_sequential=clip_sequential, |
|
cond_sequential=cond_sequential, |
|
device=device, |
|
) |
|
assert not (clip_sequential and cond_sequential) |
|
|
|
def init_conds_mappings(self, num_cond_feats, latent_dim): |
|
self.joint_cond_projection = nn.Linear(sum(num_cond_feats), latent_dim) |
|
|
|
def cond_mapping(self, cond: List[Tensor], mask: Tensor, t: Tensor) -> Tensor: |
|
c_emb = torch.cat(cond, dim=-1) |
|
return self.joint_cond_projection(c_emb) + t |
|
|
|
def init_backbone( |
|
self, |
|
num_layers, |
|
latent_dim, |
|
mlp_multiplier, |
|
num_heads, |
|
dropout, |
|
stochastic_depth, |
|
): |
|
self.backbone_module = nn.ModuleList( |
|
[ |
|
AdaLNSABlock( |
|
dim_qkv=latent_dim, |
|
dim_cond=latent_dim, |
|
num_heads=num_heads, |
|
mlp_multiplier=mlp_multiplier, |
|
dropout=dropout, |
|
stochastic_depth=stochastic_depth, |
|
use_layernorm16=self.use_layernorm16, |
|
) |
|
for _ in range(num_layers) |
|
] |
|
) |
|
|
|
def backbone(self, x: Tensor, y: Tensor, mask: Tensor) -> Tensor: |
|
for block in self.backbone_module: |
|
x = block(x, y, mask) |
|
return x |
|
|
|
def init_output_projection(self, num_feats, latent_dim): |
|
layer_norm = LayerNorm16Bits if self.use_layernorm16 else nn.LayerNorm |
|
|
|
self.final_norm = layer_norm(latent_dim, eps=1e-6, elementwise_affine=False) |
|
self.final_linear = nn.Linear(latent_dim, num_feats, bias=True) |
|
self.final_adaln = nn.Sequential( |
|
nn.SiLU(), |
|
nn.Linear(latent_dim, latent_dim * 2, bias=True), |
|
) |
|
|
|
nn.init.zeros_(self.final_adaln[1].weight) |
|
nn.init.zeros_(self.final_adaln[1].bias) |
|
|
|
def output_projection(self, x: Tensor, y: Tensor) -> Tensor: |
|
shift, scale = self.final_adaln(y).chunk(2, dim=-1) |
|
x = modulate_shift_and_scale(self.final_norm(x), shift, scale) |
|
return self.final_linear(x) |
|
|
|
|
|
class CrossAttentionDirector(BaseDirector): |
|
def __init__( |
|
self, |
|
name: str, |
|
num_feats: int, |
|
num_cond_feats: int, |
|
num_cams: int, |
|
latent_dim: int, |
|
mlp_multiplier: int, |
|
num_layers: int, |
|
num_heads: int, |
|
dropout: float, |
|
stochastic_depth: float, |
|
label_dropout: float, |
|
num_rawfeats: int, |
|
num_text_registers: int, |
|
clip_sequential: bool = True, |
|
cond_sequential: bool = True, |
|
device: str = "cuda", |
|
**kwargs, |
|
): |
|
self.num_text_registers = num_text_registers |
|
self.num_heads = num_heads |
|
self.dropout = dropout |
|
self.mlp_multiplier = mlp_multiplier |
|
self.stochastic_depth = stochastic_depth |
|
super().__init__( |
|
name=name, |
|
num_feats=num_feats, |
|
num_cond_feats=num_cond_feats, |
|
num_cams=num_cams, |
|
latent_dim=latent_dim, |
|
mlp_multiplier=mlp_multiplier, |
|
num_layers=num_layers, |
|
num_heads=num_heads, |
|
dropout=dropout, |
|
stochastic_depth=stochastic_depth, |
|
label_dropout=label_dropout, |
|
num_rawfeats=num_rawfeats, |
|
clip_sequential=clip_sequential, |
|
cond_sequential=cond_sequential, |
|
device=device, |
|
) |
|
assert clip_sequential and cond_sequential |
|
|
|
def init_conds_mappings(self, num_cond_feats, latent_dim): |
|
self.cond_projection = nn.ModuleList( |
|
[nn.Linear(num_cond_feat, latent_dim) for num_cond_feat in num_cond_feats] |
|
) |
|
self.cond_registers = nn.Parameter( |
|
torch.randn(self.num_text_registers, latent_dim), requires_grad=True |
|
) |
|
nn.init.trunc_normal_(self.cond_registers, std=0.02, a=-2 * 0.02, b=2 * 0.02) |
|
self.cond_sa = nn.ModuleList( |
|
[ |
|
SelfAttentionBlock( |
|
dim_qkv=latent_dim, |
|
num_heads=self.num_heads, |
|
mlp_multiplier=self.mlp_multiplier, |
|
dropout=self.dropout, |
|
stochastic_depth=self.stochastic_depth, |
|
use_layernorm16=self.use_layernorm16, |
|
) |
|
for _ in range(2) |
|
] |
|
) |
|
self.cond_positional_embedding = PositionalEncoding(latent_dim, max_len=10000) |
|
|
|
def cond_mapping(self, cond: List[Tensor], mask: Tensor, t: Tensor) -> Tensor: |
|
batch_size = cond[0].shape[0] |
|
cond_emb = [ |
|
cond_proj(rearrange(c, "b c n -> b n c")) |
|
for cond_proj, c in zip(self.cond_projection, cond) |
|
] |
|
cond_emb = [ |
|
self.cond_registers.unsqueeze(0).expand(batch_size, -1, -1), |
|
t.unsqueeze(1), |
|
] + cond_emb |
|
cond_emb = torch.cat(cond_emb, dim=1) |
|
cond_emb = self.cond_positional_embedding(cond_emb) |
|
for block in self.cond_sa: |
|
cond_emb = block(cond_emb) |
|
return cond_emb |
|
|
|
def init_backbone( |
|
self, |
|
num_layers, |
|
latent_dim, |
|
mlp_multiplier, |
|
num_heads, |
|
dropout, |
|
stochastic_depth, |
|
): |
|
self.backbone_module = nn.ModuleList( |
|
[ |
|
CrossAttentionSABlock( |
|
dim_qkv=latent_dim, |
|
dim_cond=latent_dim, |
|
num_heads=num_heads, |
|
mlp_multiplier=mlp_multiplier, |
|
dropout=dropout, |
|
stochastic_depth=stochastic_depth, |
|
use_layernorm16=self.use_layernorm16, |
|
) |
|
for _ in range(num_layers) |
|
] |
|
) |
|
|
|
def backbone(self, x: Tensor, y: Tensor, mask: Tensor) -> Tensor: |
|
for block in self.backbone_module: |
|
x = block(x, y, mask, None) |
|
return x |
|
|
|
def init_output_projection(self, num_feats, latent_dim): |
|
layer_norm = LayerNorm16Bits if self.use_layernorm16 else nn.LayerNorm |
|
|
|
self.final_norm = layer_norm(latent_dim, eps=1e-6) |
|
self.final_linear = nn.Linear(latent_dim, num_feats, bias=True) |
|
|
|
def output_projection(self, x: Tensor, y: Tensor) -> Tensor: |
|
return self.final_linear(self.final_norm(x)) |
|
|
|
|
|
class InContextDirector(BaseDirector): |
|
def __init__( |
|
self, |
|
name: str, |
|
num_feats: int, |
|
num_cond_feats: int, |
|
num_cams: int, |
|
latent_dim: int, |
|
mlp_multiplier: int, |
|
num_layers: int, |
|
num_heads: int, |
|
dropout: float, |
|
stochastic_depth: float, |
|
label_dropout: float, |
|
num_rawfeats: int, |
|
clip_sequential: bool = False, |
|
cond_sequential: bool = False, |
|
device: str = "cuda", |
|
**kwargs, |
|
): |
|
super().__init__( |
|
name=name, |
|
num_feats=num_feats, |
|
num_cond_feats=num_cond_feats, |
|
num_cams=num_cams, |
|
latent_dim=latent_dim, |
|
mlp_multiplier=mlp_multiplier, |
|
num_layers=num_layers, |
|
num_heads=num_heads, |
|
dropout=dropout, |
|
stochastic_depth=stochastic_depth, |
|
label_dropout=label_dropout, |
|
num_rawfeats=num_rawfeats, |
|
clip_sequential=clip_sequential, |
|
cond_sequential=cond_sequential, |
|
device=device, |
|
) |
|
|
|
def init_conds_mappings(self, num_cond_feats, latent_dim): |
|
self.cond_projection = nn.ModuleList( |
|
[nn.Linear(num_cond_feat, latent_dim) for num_cond_feat in num_cond_feats] |
|
) |
|
|
|
def cond_mapping(self, cond: List[Tensor], mask: Tensor, t: Tensor) -> Tensor: |
|
for i in range(len(cond)): |
|
if cond[i].dim() == 3: |
|
cond[i] = rearrange(cond[i], "b c n -> b n c") |
|
cond_emb = [cond_proj(c) for cond_proj, c in zip(self.cond_projection, cond)] |
|
cond_emb = [c.unsqueeze(1) if c.dim() == 2 else cond_emb for c in cond_emb] |
|
cond_emb = torch.cat([t.unsqueeze(1)] + cond_emb, dim=1) |
|
return cond_emb |
|
|
|
def init_backbone( |
|
self, |
|
num_layers, |
|
latent_dim, |
|
mlp_multiplier, |
|
num_heads, |
|
dropout, |
|
stochastic_depth, |
|
): |
|
self.backbone_module = nn.ModuleList( |
|
[ |
|
SelfAttentionBlock( |
|
dim_qkv=latent_dim, |
|
num_heads=num_heads, |
|
mlp_multiplier=mlp_multiplier, |
|
dropout=dropout, |
|
stochastic_depth=stochastic_depth, |
|
use_layernorm16=self.use_layernorm16, |
|
) |
|
for _ in range(num_layers) |
|
] |
|
) |
|
|
|
def backbone(self, x: Tensor, y: Tensor, mask: Tensor) -> Tensor: |
|
bs, n_y, _ = y.shape |
|
mask = torch.cat([torch.ones(bs, n_y, device=y.device), mask], dim=1) |
|
x = torch.cat([y, x], dim=1) |
|
for block in self.backbone_module: |
|
x = block(x, mask) |
|
return x |
|
|
|
def init_output_projection(self, num_feats, latent_dim): |
|
layer_norm = LayerNorm16Bits if self.use_layernorm16 else nn.LayerNorm |
|
|
|
self.final_norm = layer_norm(latent_dim, eps=1e-6) |
|
self.final_linear = nn.Linear(latent_dim, num_feats, bias=True) |
|
|
|
def output_projection(self, x: Tensor, y: Tensor) -> Tensor: |
|
num_y = y.shape[1] |
|
x = x[:, num_y:] |
|
return self.final_linear(self.final_norm(x)) |
|
|