import numpy as np import torch import matplotlib.pyplot as plt from scipy import linalg import os from tqdm import tqdm def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): """Numpy implementation of the Frechet Distance. The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) and X_2 ~ N(mu_2, C_2) is d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). Stable version by Dougal J. Sutherland. Params: -- mu1 : Numpy array containing the activations of a layer of the inception net (like returned by the function 'get_predictions') for generated samples. -- mu2 : The sample mean over activations, precalculated on an representative data set. -- sigma1: The covariance matrix over activations for generated samples. -- sigma2: The covariance matrix over activations, precalculated on an representative data set. Returns: -- : The Frechet Distance. """ mu1 = np.atleast_1d(mu1) mu2 = np.atleast_1d(mu2) sigma1 = np.atleast_2d(sigma1) sigma2 = np.atleast_2d(sigma2) assert mu1.shape == mu2.shape, \ 'Training and test mean vectors have different lengths' assert sigma1.shape == sigma2.shape, \ 'Training and test covariances have different dimensions' diff = mu1 - mu2 # Product might be almost singular covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) if not np.isfinite(covmean).all(): msg = ('fid calculation produces singular product; ' 'adding %s to diagonal of cov estimates') % eps print(msg) offset = np.eye(sigma1.shape[0]) * eps covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) # Numerical error might give slight imaginary component if np.iscomplexobj(covmean): if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): m = np.max(np.abs(covmean.imag)) raise ValueError('Imaginary component {}'.format(m)) covmean = covmean.real tr_covmean = np.trace(covmean) return (diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean) def calculate_activation_statistics(data): """Calculation of the statistics used by the FID. Params: -- files : List of image files paths -- model : Instance of inception model -- batch_size : The images numpy array is split into batches with batch size batch_size. A reasonable batch size depends on the hardware. -- dims : Dimensionality of features returned by Inception -- device : Device to run calculations -- num_workers : Number of parallel dataloader workers Returns: -- mu : The mean over samples of the activations of the pool_3 layer of the inception model. -- sigma : The covariance matrix of the activations of the pool_3 layer of the inception model. """ mu = np.mean(data, axis=0) sigma = np.cov(data, rowvar=False) return mu, sigma def calculate_diversity(data, first_indices, second_indices): diversity = 0 d = torch.FloatTensor(data) for first_idx, second_idx in zip(first_indices, second_indices): diversity += torch.dist(d[first_idx, :], d[second_idx, :]) diversity /= len(first_indices) return diversity d = np.load("feature.npy", allow_pickle=True)[()] d0 = d["train_data"] d1 = d["test_data"] d2 = d["gen_T5"] d3 = d["gen_GRU_T5"] d4 = d["LSTM_Des"] d5 = d["gen"] Mean, Std = np.mean(d0, 0), np.std(d0, 0) d0 = [(v - Mean[None, :]) / Std[None, :] for v in d0] d1 = [(v - Mean[None, :]) / Std[None, :] for v in d1] d2 = [(v - Mean[None, :]) / Std[None, :] for v in d2] d3 = [(v - Mean[None, :]) / Std[None, :] for v in d3] d4 = [(v - Mean[None, :]) / Std[None, :] for v in d4] d5 = [(v - Mean[None, :]) / Std[None, :] for v in d5] if not os.path.exists("viz"): os.mkdir("viz") d0 = np.array([v.flatten() for v in d0]) d1 = np.array([v.flatten() for v in d1]) d2 = np.array([v.flatten() for v in d2]) d3 = np.array([v.flatten() for v in d3]) d4 = np.array([v.flatten() for v in d4]) d5 = np.array([v.flatten() for v in d5]) print("Diversity") diversity_times = 10000 num_motions = len(d1) first_indices = np.random.randint(0, num_motions, diversity_times) second_indices = np.random.randint(0, num_motions, diversity_times) print(calculate_diversity(d1, first_indices, second_indices)) print(calculate_diversity(d2, first_indices, second_indices)) print(calculate_diversity(d3, first_indices, second_indices)) print(calculate_diversity(d4, first_indices, second_indices)) print(calculate_diversity(d5, first_indices, second_indices)) print("Diversity with action label") d = np.load("data.npy", allow_pickle=True)[()] label = dict() for i in range(6): label[i] = [] for i in range(len(d['test_label'])): label[d['test_label'][i]].append(i) diversity_times = 1000 first_indices = [] second_indices = [] for i in range(6): idx = np.random.randint(0, len(label[i]), diversity_times) for j in idx: first_indices.append(label[i][j]) idx = np.random.randint(0, len(label[i]), diversity_times) for j in idx: second_indices.append(label[i][j]) import random print(random.shuffle(second_indices)) print(calculate_diversity(d1, first_indices, second_indices)) print(calculate_diversity(d2, first_indices, second_indices)) print(calculate_diversity(d3, first_indices, second_indices)) print(calculate_diversity(d4, first_indices, second_indices)) print(calculate_diversity(d5, first_indices, second_indices)) print("FID with training") mu0, sigma0 = calculate_activation_statistics(d0) mu1, sigma1 = calculate_activation_statistics(d1) mu2, sigma2 = calculate_activation_statistics(d2) mu3, sigma3 = calculate_activation_statistics(d3) mu4, sigma4 = calculate_activation_statistics(d4) mu5, sigma5 = calculate_activation_statistics(d5) print(calculate_frechet_distance(mu0, sigma0, mu1, sigma1)) print(calculate_frechet_distance(mu0, sigma0, mu2, sigma2)) print(calculate_frechet_distance(mu0, sigma0, mu3, sigma3)) print(calculate_frechet_distance(mu0, sigma0, mu4, sigma4)) print(calculate_frechet_distance(mu0, sigma0, mu5, sigma5))