File size: 9,055 Bytes
1c54d21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# Copyright (c) Facebook, Inc. and its affiliates.

# pyre-unsafe

import numpy as np
from typing import Dict, List, Optional
import fvcore.nn.weight_init as weight_init
import torch
import torch.nn as nn
from torch.nn import functional as F

from detectron2.layers import Conv2d, ShapeSpec, get_norm
from detectron2.modeling import ROI_HEADS_REGISTRY, StandardROIHeads
from detectron2.modeling.poolers import ROIPooler
from detectron2.modeling.roi_heads import select_foreground_proposals
from detectron2.structures import ImageList, Instances

from .. import (
    build_densepose_data_filter,
    build_densepose_embedder,
    build_densepose_head,
    build_densepose_losses,
    build_densepose_predictor,
    densepose_inference,
)


class Decoder(nn.Module):
    """
    A semantic segmentation head described in detail in the Panoptic Feature Pyramid Networks paper
    (https://arxiv.org/abs/1901.02446). It takes FPN features as input and merges information from
    all levels of the FPN into single output.
    """

    def __init__(self, cfg, input_shape: Dict[str, ShapeSpec], in_features):
        super(Decoder, self).__init__()

        # fmt: off
        self.in_features      = in_features
        feature_strides       = {k: v.stride for k, v in input_shape.items()}
        feature_channels      = {k: v.channels for k, v in input_shape.items()}
        num_classes           = cfg.MODEL.ROI_DENSEPOSE_HEAD.DECODER_NUM_CLASSES
        conv_dims             = cfg.MODEL.ROI_DENSEPOSE_HEAD.DECODER_CONV_DIMS
        self.common_stride    = cfg.MODEL.ROI_DENSEPOSE_HEAD.DECODER_COMMON_STRIDE
        norm                  = cfg.MODEL.ROI_DENSEPOSE_HEAD.DECODER_NORM
        # fmt: on

        self.scale_heads = []
        for in_feature in self.in_features:
            head_ops = []
            head_length = max(
                1, int(np.log2(feature_strides[in_feature]) - np.log2(self.common_stride))
            )
            for k in range(head_length):
                conv = Conv2d(
                    feature_channels[in_feature] if k == 0 else conv_dims,
                    conv_dims,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                    bias=not norm,
                    norm=get_norm(norm, conv_dims),
                    activation=F.relu,
                )
                weight_init.c2_msra_fill(conv)
                head_ops.append(conv)
                if feature_strides[in_feature] != self.common_stride:
                    head_ops.append(
                        nn.Upsample(scale_factor=2, mode="bilinear", align_corners=False)
                    )
            self.scale_heads.append(nn.Sequential(*head_ops))
            self.add_module(in_feature, self.scale_heads[-1])
        self.predictor = Conv2d(conv_dims, num_classes, kernel_size=1, stride=1, padding=0)
        weight_init.c2_msra_fill(self.predictor)

    def forward(self, features: List[torch.Tensor]):
        for i, _ in enumerate(self.in_features):
            if i == 0:
                x = self.scale_heads[i](features[i])
            else:
                x = x + self.scale_heads[i](features[i])
        x = self.predictor(x)
        return x


@ROI_HEADS_REGISTRY.register()
class DensePoseROIHeads(StandardROIHeads):
    """
    A Standard ROIHeads which contains an addition of DensePose head.
    """

    def __init__(self, cfg, input_shape):
        super().__init__(cfg, input_shape)
        self._init_densepose_head(cfg, input_shape)

    def _init_densepose_head(self, cfg, input_shape):
        # fmt: off
        self.densepose_on          = cfg.MODEL.DENSEPOSE_ON
        if not self.densepose_on:
            return
        self.densepose_data_filter = build_densepose_data_filter(cfg)
        dp_pooler_resolution       = cfg.MODEL.ROI_DENSEPOSE_HEAD.POOLER_RESOLUTION
        dp_pooler_sampling_ratio   = cfg.MODEL.ROI_DENSEPOSE_HEAD.POOLER_SAMPLING_RATIO
        dp_pooler_type             = cfg.MODEL.ROI_DENSEPOSE_HEAD.POOLER_TYPE
        self.use_decoder           = cfg.MODEL.ROI_DENSEPOSE_HEAD.DECODER_ON
        # fmt: on
        if self.use_decoder:
            dp_pooler_scales = (1.0 / input_shape[self.in_features[0]].stride,)
        else:
            dp_pooler_scales = tuple(1.0 / input_shape[k].stride for k in self.in_features)
        in_channels = [input_shape[f].channels for f in self.in_features][0]

        if self.use_decoder:
            self.decoder = Decoder(cfg, input_shape, self.in_features)

        self.densepose_pooler = ROIPooler(
            output_size=dp_pooler_resolution,
            scales=dp_pooler_scales,
            sampling_ratio=dp_pooler_sampling_ratio,
            pooler_type=dp_pooler_type,
        )
        self.densepose_head = build_densepose_head(cfg, in_channels)
        self.densepose_predictor = build_densepose_predictor(
            cfg, self.densepose_head.n_out_channels
        )
        self.densepose_losses = build_densepose_losses(cfg)
        self.embedder = build_densepose_embedder(cfg)

    def _forward_densepose(self, features: Dict[str, torch.Tensor], instances: List[Instances]):
        """
        Forward logic of the densepose prediction branch.

        Args:
            features (dict[str, Tensor]): input data as a mapping from feature
                map name to tensor. Axis 0 represents the number of images `N` in
                the input data; axes 1-3 are channels, height, and width, which may
                vary between feature maps (e.g., if a feature pyramid is used).
            instances (list[Instances]): length `N` list of `Instances`. The i-th
                `Instances` contains instances for the i-th input image,
                In training, they can be the proposals.
                In inference, they can be the predicted boxes.

        Returns:
            In training, a dict of losses.
            In inference, update `instances` with new fields "densepose" and return it.
        """
        if not self.densepose_on:
            return {} if self.training else instances

        features_list = [features[f] for f in self.in_features]
        if self.training:
            proposals, _ = select_foreground_proposals(instances, self.num_classes)
            features_list, proposals = self.densepose_data_filter(features_list, proposals)
            if len(proposals) > 0:
                proposal_boxes = [x.proposal_boxes for x in proposals]

                if self.use_decoder:
                    features_list = [self.decoder(features_list)]

                features_dp = self.densepose_pooler(features_list, proposal_boxes)
                densepose_head_outputs = self.densepose_head(features_dp)
                densepose_predictor_outputs = self.densepose_predictor(densepose_head_outputs)
                densepose_loss_dict = self.densepose_losses(
                    proposals, densepose_predictor_outputs, embedder=self.embedder
                )
                return densepose_loss_dict
        else:
            pred_boxes = [x.pred_boxes for x in instances]

            if self.use_decoder:
                features_list = [self.decoder(features_list)]

            features_dp = self.densepose_pooler(features_list, pred_boxes)
            if len(features_dp) > 0:
                densepose_head_outputs = self.densepose_head(features_dp)
                densepose_predictor_outputs = self.densepose_predictor(densepose_head_outputs)
            else:
                densepose_predictor_outputs = None

            densepose_inference(densepose_predictor_outputs, instances)
            return instances

    def forward(
        self,
        images: ImageList,
        features: Dict[str, torch.Tensor],
        proposals: List[Instances],
        targets: Optional[List[Instances]] = None,
    ):
        instances, losses = super().forward(images, features, proposals, targets)
        del targets, images

        if self.training:
            losses.update(self._forward_densepose(features, instances))
        return instances, losses

    def forward_with_given_boxes(
        self, features: Dict[str, torch.Tensor], instances: List[Instances]
    ):
        """
        Use the given boxes in `instances` to produce other (non-box) per-ROI outputs.

        This is useful for downstream tasks where a box is known, but need to obtain
        other attributes (outputs of other heads).
        Test-time augmentation also uses this.

        Args:
            features: same as in `forward()`
            instances (list[Instances]): instances to predict other outputs. Expect the keys
                "pred_boxes" and "pred_classes" to exist.

        Returns:
            instances (list[Instances]):
                the same `Instances` objects, with extra
                fields such as `pred_masks` or `pred_keypoints`.
        """

        instances = super().forward_with_given_boxes(features, instances)
        instances = self._forward_densepose(features, instances)
        return instances