File size: 25,044 Bytes
3943768 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 |
import json
import shutil
import sys
import tempfile
import time
import uuid
import pytest
import os
import ast
# to avoid copy-paste, only other external reference besides main() (for local_server=True)
from tests.utils import wrap_test_forked
def launch_openai_server():
from openai_server.server_start import run
from openai_server.server import app as openai_app
run(is_openai_server=True, workers=1, app=openai_app)
def test_openai_server():
# for manual separate OpenAI server on existing h2oGPT, run (choose vllm:ip:port and/or base_model):
# Shell 1: CUDA_VISIBLE_DEVICES=0 python generate.py --verbose=True --score_model=None --pre_load_embedding_model=False --gradio_offline_level=2 --base_model=h2oai/h2o-danube2-1.8b-chat --inference_server=vllm:ip:port --max_seq_len=4096 --save_dir=duder1 --verbose --concurrency_count=64 --openai_server=False --add_disk_models_to_ui=False
# Shell 2: pytest -s -v openai_server/test_openai_server.py::test_openai_server # once client done, hit CTRL-C, should pass
# Shell 3: pytest -s -v openai_server/test_openai_server.py::test_openai_client_test2 # should pass
# for rest of tests:
# Shell 1: pytest -s -v openai_server/test_openai_server.py -k 'serverless or needs_server or has_server or serverless'
launch_openai_server()
# repeat0 = 100 # e.g. to test concurrency
repeat0 = 1
@pytest.mark.needs_server
@pytest.mark.parametrize("stream_output", [False, True])
@pytest.mark.parametrize("chat", [False, True])
@pytest.mark.parametrize("local_server", [False])
@wrap_test_forked
def test_openai_client_test2(stream_output, chat, local_server):
prompt = "Who are you?"
api_key = 'EMPTY'
enforce_h2ogpt_api_key = False
repeat = 1
openai_workers = 1
run_openai_client(stream_output, chat, local_server, openai_workers, prompt, api_key, enforce_h2ogpt_api_key,
repeat)
@pytest.mark.has_server
@pytest.mark.parametrize("stream_output", [False, True])
@pytest.mark.parametrize("chat", [False, True])
@pytest.mark.parametrize("local_server", [True]) # choose False if start local server
@pytest.mark.parametrize("openai_workers", [1, 0]) # choose 0 to test multi-worker case
@pytest.mark.parametrize("prompt", ["Who are you?", "Tell a very long kid's story about birds."])
@pytest.mark.parametrize("api_key", [None, "EMPTY", os.environ.get('H2OGPT_H2OGPT_KEY', 'EMPTY')])
@pytest.mark.parametrize("enforce_h2ogpt_api_key", [False, True])
@pytest.mark.parametrize("repeat", list(range(0, repeat0)))
@wrap_test_forked
def test_openai_client(stream_output, chat, local_server, openai_workers, prompt, api_key, enforce_h2ogpt_api_key,
repeat):
run_openai_client(stream_output, chat, local_server, openai_workers, prompt, api_key, enforce_h2ogpt_api_key,
repeat)
def run_openai_client(stream_output, chat, local_server, openai_workers, prompt, api_key, enforce_h2ogpt_api_key,
repeat):
base_model = 'h2oai/h2o-danube2-1.8b-chat'
# base_model = 'gemini-pro'
# base_model = 'claude-3-5-sonnet-20240620'
if local_server:
from src.gen import main
main(base_model=base_model,
# inference_server='anthropic',
chat=False,
stream_output=stream_output, gradio=True,
num_beams=1, block_gradio_exit=False,
add_disk_models_to_ui=False,
enable_tts=False,
enable_stt=False,
enforce_h2ogpt_api_key=enforce_h2ogpt_api_key,
# or use file with h2ogpt_api_keys=h2ogpt_api_keys.json
h2ogpt_api_keys=[api_key] if api_key else None,
openai_workers=openai_workers,
)
time.sleep(10)
else:
# RUN something
# e.g. CUDA_VISIBLE_DEVICES=0 python generate.py --verbose=True --score_model=None --gradio_offline_level=2 --base_model=h2oai/h2o-danube2-1.8b-chat --inference_server=vllm:IP:port --max_seq_len=4096 --save_dir=duder1 --verbose --openai_server=True --concurency_count=64
pass
# api_key = "EMPTY" # if gradio/openai server not keyed. Can't pass '' itself, leads to httpcore.LocalProtocolError: Illegal header value b'Bearer '
# Setting H2OGPT_H2OGPT_KEY does not key h2oGPT, just passes along key to gradio inference server, so empty key is valid test regardless of the H2OGPT_H2OGPT_KEY value
# api_key = os.environ.get('H2OGPT_H2OGPT_KEY', 'EMPTY') # if keyed and have this in env with same key
print('api_key: %s' % api_key)
# below should be consistent with server prefix, host, and port
base_url = 'http://localhost:5000/v1'
verbose = True
system_prompt = "You are a helpful assistant."
chat_conversation = []
add_chat_history_to_context = True
client_kwargs = dict(model=base_model,
max_tokens=200,
stream=stream_output)
from openai import OpenAI, AsyncOpenAI
client_args = dict(base_url=base_url, api_key=api_key)
openai_client = OpenAI(**client_args)
async_client = AsyncOpenAI(**client_args)
try:
run_test_chat(chat, openai_client, async_client, system_prompt, chat_conversation, add_chat_history_to_context,
prompt, client_kwargs, stream_output, verbose, base_model)
except AssertionError as e:
if enforce_h2ogpt_api_key and api_key is None:
print("Expected to fail since no key but enforcing.")
else:
raise AssertionError(str(e))
except Exception as e:
raise RuntimeError(str(e))
# MODELS
model_info = openai_client.models.retrieve(base_model)
assert model_info.id == base_model
model_list = openai_client.models.list()
assert base_model in [x.id for x in model_list.data]
os.system('pkill -f server_start.py --signal 9')
os.system('pkill -f "h2ogpt/bin/python -c from multiprocessing" --signal 9')
def run_test_chat(chat, openai_client, async_client, system_prompt, chat_conversation, add_chat_history_to_context,
prompt, client_kwargs, stream_output, verbose, base_model):
# COMPLETION
if chat:
client = openai_client.chat.completions
async_client = async_client.chat.completions
messages0 = []
if system_prompt:
messages0.append({"role": "system", "content": system_prompt})
if chat_conversation and add_chat_history_to_context:
for message1 in chat_conversation:
if len(message1) == 2:
messages0.append(
{'role': 'user', 'content': message1[0] if message1[0] is not None else ''})
messages0.append(
{'role': 'assistant', 'content': message1[1] if message1[1] is not None else ''})
messages0.append({'role': 'user', 'content': prompt if prompt is not None else ''})
client_kwargs.update(dict(messages=messages0))
else:
client = openai_client.completions
async_client = async_client.completions
client_kwargs.update(dict(prompt=prompt))
responses = client.create(**client_kwargs)
if not stream_output:
if chat:
text = responses.choices[0].message.content
else:
text = responses.choices[0].text
print(text)
else:
collected_events = []
text = ''
for event in responses:
collected_events.append(event) # save the event response
if chat:
delta = event.choices[0].delta.content
else:
delta = event.choices[0].text # extract the text
text += delta # append the text
if verbose:
print('delta: %s' % delta)
print(text)
if base_model == 'gemini-pro':
if "Who" in prompt:
assert 'Google' in text or 'model' in text
else:
assert 'birds' in text
else:
if "Who" in prompt:
assert 'OpenAI' in text or 'chatbot' in text or 'model' in text or 'AI' in text
else:
assert 'birds' in text
def show_plot_from_ids(usage, client):
if not hasattr(usage, 'file_ids') or not usage.file_ids:
return None
file_ids = usage.file_ids
list_response = client.files.list().data
assert isinstance(list_response, list)
response_dict = {item.id: {key: value for key, value in dict(item).items() if key != 'id'} for item in
list_response}
test_dir = 'openai_files_testing_%s' % str(uuid.uuid4())
if os.path.exists(test_dir):
shutil.rmtree(test_dir)
os.makedirs(test_dir, exist_ok=True)
files = []
for file_id in file_ids:
test_filename = os.path.join(test_dir, os.path.basename(response_dict[file_id]['filename']))
content = client.files.content(file_id).content
with open(test_filename, 'wb') as f:
f.write(content)
files.append(test_filename)
images = [x for x in files if x.endswith('.png') or x.endswith('.jpeg')]
print(files)
print(images, file=sys.stderr)
from PIL import Image
im = Image.open(images[0])
print("START SHOW IMAGE: %s" % images[0], file=sys.stderr)
im.show()
print("FINISH SHOW IMAGE", file=sys.stderr)
return images
# NOTE: Should test with --force_streaming_on_to_handle_timeouts=False and --force_streaming_on_to_handle_timeouts=True
@pytest.mark.needs_server
def test_autogen():
if os.path.exists('./openai_files'):
shutil.rmtree('./openai_files')
from openai import OpenAI
client = OpenAI(base_url='http://0.0.0.0:5004/v1')
# prompt = "2+2="
import datetime
today = datetime.datetime.now().strftime("%Y-%m-%d")
prompt = f"Today is {today}. Write Python code to plot TSLA's and META's stock price gains YTD vs. time per week, and save the plot to a file named 'stock_gains.png'."
print("chat non-streaming", file=sys.stderr)
messages = [
{
"role": "user",
"content": prompt,
}
]
# model = "mistralai/Mistral-7B-Instruct-v0.3"
model = "gpt-4o"
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=0.0,
max_tokens=2048,
extra_body=dict(use_agent=True),
)
text = response.choices[0].message.content
print(text, file=sys.stderr)
assert show_plot_from_ids(response.usage, client) is not None
print("chat streaming", file=sys.stderr)
responses = client.chat.completions.create(
model=model,
messages=messages,
stream=True,
max_tokens=4096,
extra_body=dict(use_agent=True),
)
text = ''
usages = []
for chunk in responses:
delta = chunk.choices[0].delta.content
if chunk.usage is not None:
usages.append(chunk.usage)
if delta:
text += delta
print(delta, end='')
print(text)
assert len(usages) == 1
assert show_plot_from_ids(usages[0], client) is not None
####
print("text non-streaming", file=sys.stderr)
responses = client.completions.create(
model=model,
# response_format=dict(type=response_format), Text Completions API can't handle
prompt=prompt,
stream=False,
max_tokens=4096,
extra_body=dict(use_agent=True),
)
text = responses.choices[0].text
print(text)
assert show_plot_from_ids(responses.usage, client) is not None
print("text streaming", file=sys.stderr)
responses = client.completions.create(
model=model,
# response_format=dict(type=response_format), Text Completions API can't handle
prompt=prompt,
stream=True,
max_tokens=4096,
extra_body=dict(use_agent=True),
)
collected_events = []
usages = []
for event in responses:
collected_events.append(event) # save the event response
if event.usage is not None:
usages.append(event.usage)
delta = event.choices[0].text # extract the text
text += delta # append the text
if delta:
print(delta, end='')
print(text)
assert len(usages) == 1
assert show_plot_from_ids(usages[0], client) is not None
@pytest.fixture(scope="module")
def text_file():
base_path = os.getenv('H2OGPT_OPENAI_BASE_FILE_PATH', './openai_files/')
if base_path and base_path != './' and base_path != '.' and base_path != '/':
shutil.rmtree(base_path)
# Create a sample file for testing
file_content = b"Sample file content"
filename = "test_file.txt"
with open(filename, "wb") as f:
f.write(file_content)
yield filename
os.remove(filename)
@pytest.fixture(scope="module")
def pdf_file():
base_path = os.getenv('H2OGPT_OPENAI_BASE_FILE_PATH', './openai_files/')
if base_path and base_path != './' and base_path != '.' and base_path != '/':
shutil.rmtree(base_path)
# Create a sample file for testing
filename = "test_file.pdf"
shutil.copy('tests/2403.09629.pdf', filename)
yield filename
os.remove(filename)
@pytest.fixture(scope="module")
def image_file():
base_path = os.getenv('H2OGPT_OPENAI_BASE_FILE_PATH', './openai_files/')
if base_path and base_path != './' and base_path != '.' and base_path != '/':
shutil.rmtree(base_path)
# Create a sample file for testing
filename = "test_file.png"
shutil.copy('tests/dental.png', filename)
yield filename
os.remove(filename)
@pytest.fixture(scope="module")
def python_file():
base_path = os.getenv('H2OGPT_OPENAI_BASE_FILE_PATH', './openai_files/')
if base_path and base_path != './' and base_path != '.' and base_path != '/':
shutil.rmtree(base_path)
filename = "test_file.py"
shutil.copy('src/gen.py', filename)
yield filename
os.remove(filename)
@pytest.fixture(scope="module")
def video_file():
base_path = os.getenv('H2OGPT_OPENAI_BASE_FILE_PATH', './openai_files/')
if base_path and base_path != './' and base_path != '.' and base_path != '/':
shutil.rmtree(base_path)
filename = "test_file.mp4"
shutil.copy('tests/videotest.mp4', filename)
yield filename
os.remove(filename)
@pytest.mark.needs_server
@pytest.mark.parametrize("test_file", ["text_file", "pdf_file", "image_file", "python_file", "video_file"])
def test_file_operations(request, test_file):
test_file_type = test_file
test_file = request.getfixturevalue(test_file)
if test_file_type == "text_file":
ext = '.txt'
elif test_file_type == "pdf_file":
ext = '.pdf'
elif test_file_type == "image_file":
ext = '.png'
elif test_file_type == "python_file":
ext = '.py'
elif test_file_type == "video_file":
ext = '.mp4'
else:
raise ValueError("no such file %s" % test_file_type)
api_key = "EMPTY"
base_url = "http://0.0.0.0:5000/v1"
from openai import OpenAI
client = OpenAI(base_url=base_url, api_key=api_key)
# Test file upload
with open(test_file, "rb") as f:
upload_response = client.files.create(file=f, purpose="assistants")
print(upload_response)
assert upload_response.id
assert upload_response.object == "file"
assert upload_response.purpose == "assistants"
assert upload_response.created_at
assert upload_response.bytes > 5
assert upload_response.filename == "test_file%s" % ext
file_id = upload_response.id
# Test list files
list_response = client.files.list().data
assert isinstance(list_response, list)
assert list_response[0].id == file_id
assert list_response[0].object == "file"
assert list_response[0].purpose == "assistants"
assert list_response[0].created_at
assert list_response[0].bytes > 5
assert list_response[0].filename == "test_file%s" % ext
# Test retrieve file
retrieve_response = client.files.retrieve(file_id)
assert retrieve_response.id == file_id
assert retrieve_response.object == "file"
# Test retrieve file content
content = client.files.content(file_id).content
check_content(content, test_file_type, test_file)
content = client.files.content(file_id, extra_body=dict(stream=True)).content
check_content(content, test_file_type, test_file)
# Test delete file
delete_response = client.files.delete(file_id)
assert delete_response.id == file_id
assert delete_response.object == "file"
assert delete_response.deleted is True
def check_content(content, test_file_type, test_file):
if test_file_type in ["text_file", "python_file"]:
# old
with open(test_file, 'rb') as f:
old_content = f.read()
# new
assert content.decode('utf-8') == old_content.decode('utf-8')
elif test_file_type == 'pdf_file':
import fitz
# old
assert fitz.open(test_file).is_pdf
# new
with tempfile.NamedTemporaryFile() as tmp_file:
new_file = tmp_file.name
with open(new_file, 'wb') as f:
f.write(content)
assert fitz.open(new_file).is_pdf
elif test_file_type == 'image_file':
from PIL import Image
# old
assert Image.open(test_file).format == 'PNG'
# new
with tempfile.NamedTemporaryFile() as tmp_file:
new_file = tmp_file.name
with open(new_file, 'wb') as f:
f.write(content)
assert Image.open(new_file).format == 'PNG'
elif test_file_type == 'video_file':
import cv2
# old
cap = cv2.VideoCapture(test_file)
if not cap.isOpened():
return False
# Check if we can read the first frame
ret, frame = cap.read()
if not ret:
return False
cap.release()
# new
with tempfile.NamedTemporaryFile() as tmp_file:
new_file = tmp_file.name
with open(new_file, 'wb') as f:
f.write(content)
cap = cv2.VideoCapture(new_file)
if not cap.isOpened():
return False
# Check if we can read the first frame
ret, frame = cap.read()
if not ret:
return False
cap.release()
@pytest.mark.serverless
def test_return_generator():
import typing
def generator_function() -> typing.Generator[str, None, str]:
yield "Intermediate result 1"
yield "Intermediate result 2"
return "Final Result"
# Example usage
gen = generator_function()
# Consume the generator
ret_dict = None
try:
while True:
value = next(gen)
print(value)
except StopIteration as e:
ret_dict = e.value
# Get the final return value
assert ret_dict == "Final Result"
@pytest.mark.needs_server
def test_tool_use():
from openai import OpenAI
import json
model1 = 'gpt-4o'
client = OpenAI(base_url='http://localhost:5000/v1', api_key='EMPTY')
# client = OpenAI()
# Example dummy function hard coded to return the same weather
# In production, this could be your backend API or an external API
def get_current_weather(location, unit="fahrenheit"):
"""Get the current weather in a given location"""
if "tokyo" in location.lower():
return json.dumps({"location": "Tokyo", "temperature": "10", "unit": unit})
elif "san francisco" in location.lower():
return json.dumps(
{"location": "San Francisco", "temperature": "72" if unit == "fahrenheit" else "25", "unit": unit})
elif "paris" in location.lower():
return json.dumps({"location": "Paris", "temperature": "22", "unit": unit})
else:
return json.dumps({"location": location, "temperature": "unknown"})
def run_conversation(model):
# Step 1: send the conversation and available functions to the model
messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}]
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location", "unit"],
},
},
}
]
model_info = client.models.retrieve(model)
assert model_info.id == model
model_list = client.models.list()
assert model in [x.id for x in model_list.data]
response = client.chat.completions.create(
model=model,
messages=messages,
tools=tools,
tool_choice="auto", # auto is default, but we'll be explicit
)
response_message = response.choices[0].message
tool_calls = response_message.tool_calls
# Step 2: check if the model wanted to call a function
if tool_calls:
# Step 3: call the function
# Note: the JSON response may not always be valid; be sure to handle errors
available_functions = {
"get_current_weather": get_current_weather,
} # only one function in this example, but you can have multiple
messages.append(response_message) # extend conversation with assistant's reply
# Step 4: send the info for each function call and function response to the model
for tool_call in tool_calls:
function_name = tool_call.function.name
function_to_call = available_functions[function_name]
function_args = json.loads(tool_call.function.arguments)
function_response = function_to_call(
location=function_args.get("location"),
unit=function_args.get("unit"),
)
messages.append(
{
"tool_call_id": tool_call.id,
"role": "tool",
"name": function_name,
"content": function_response,
}
) # extend conversation with function response
second_response = client.chat.completions.create(
model=model,
messages=messages,
) # get a new response from the model where it can see the function response
print(second_response)
return second_response.choices[0].message.content
print(run_conversation(model1))
@pytest.mark.needs_server
def test_tool_use2():
from openai import OpenAI
import json
model = 'gpt-4o'
client = OpenAI(base_url='http://localhost:5000/v1', api_key='EMPTY')
# client = OpenAI()
prompt = """"# Tool Name
get_current_weather
# Tool Description:
Get the current weather in a given location
# Prompt
What's the weather like in San Francisco, Tokyo, and Paris?
Choose the single tool that best solves the task inferred from the prompt. Never choose more than one tool, i.e. act like parallel_tool_calls=False. If no tool is a good fit, then only choose the noop tool.
"""
messages = [{"role": "user", "content": prompt}]
tools = [{'type': 'function',
'function': {'name': 'get_current_weather', 'description': 'Get the current weather in a given location',
'parameters': {'type': 'object', 'properties': {'location': {'type': 'string',
'description': 'The city and state, e.g. San Francisco, CA'},
'unit': {'type': 'string',
'enum': ['celsius', 'fahrenheit']}},
'required': ['location']}}}]
response = client.chat.completions.create(
model=model,
messages=messages,
tools=tools,
# parallel_tool_calls=False,
tool_choice="auto", # auto is default, but we'll be explicit
)
response_message = response.choices[0].message
tool_calls = response_message.tool_calls
assert tool_calls
if __name__ == '__main__':
launch_openai_server()
|