File size: 10,108 Bytes
3943768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import os
import json
import shutil
import subprocess

import torch
from accelerate import infer_auto_device_map, dispatch_model
from accelerate.utils import get_balanced_memory
from peft import PeftModel
from transformers import PreTrainedModel


def do_export():
    BASE_MODEL = 'h2oai/h2ogpt-4096-llama2-13b-chat'
    LORA_WEIGHTS = 'Llama-2-13b-chat-hf.h2oaiopenassistant_oasst1_h2ogpt_llama2_chat.1_epochs.b2aed9250804d815c258976c98ce968bacd88389.7'
    OUTPUT_NAME = "h2ogpt-oasst1-4096-llama2-13b"

    BASE_MODEL = 'meta-llama/Llama-2-7b-chat-hf'
    LORA_WEIGHTS = 'Llama-2-7b-chat-hf.h2oaiopenassistant_oasst1_h2ogpt_llama2_chat.1_epochs.0c6b906f73b5639fd1d53c74fecbc9cf64f0f225.8'
    OUTPUT_NAME = "h2ogpt-oasst1-4096-llama2-7b"

    BASE_MODEL = 'meta-llama/Llama-2-70b-chat-hf'
    LORA_WEIGHTS = 'Llama-2-70b-chat-hf.h2oaiopenassistant_oasst1_h2ogpt_llama2_chat.1_epochs.0c6b906f73b5639fd1d53c74fecbc9cf64f0f225.6'
    OUTPUT_NAME = "h2ogpt-oasst1-4096-llama2-70b"

    base_model = os.getenv('BASE_MODEL')
    output = os.getenv('MODEL')
    # for testing
    if base_model and output:
        BASE_MODEL = base_model
        LORA_WEIGHTS = output + ".lora"
        OUTPUT_NAME = output

    llama_type = "llama" in BASE_MODEL
    as_pytorch = False  # False -> HF

    from loaders import get_loaders
    model_loader, tokenizer_loader, conditional_type = (
        get_loaders(model_name=BASE_MODEL, reward_type=False, llama_type=llama_type))

    tokenizer = tokenizer_loader.from_pretrained(
        BASE_MODEL,
        local_files_only=False,
        resume_download=True,
    )
    tokenizer.save_pretrained(OUTPUT_NAME)

    base_model = model_loader(
        BASE_MODEL,
        load_in_8bit=False,
        trust_remote_code=True,
        torch_dtype=torch.float16,
        device_map={"": "cpu"},
    )

    print(base_model)
    if llama_type:
        layers = base_model.model.layers
        first_weight = layers[0].self_attn.q_proj.weight
    else:
        if any([x in BASE_MODEL.lower() for x in ["pythia", "h2ogpt", "gpt-neox"]]):
            layers = base_model.gpt_neox.base_model.layers
            first_weight = layers[0].attention.query_key_value.weight
        elif any([x in BASE_MODEL.lower() for x in ["falcon"]]):
            first_weight = base_model.transformer.h._modules['0'].self_attention.query_key_value.weight
        else:
            layers = base_model.transformer.base_model.h
            first_weight = layers[0].attn.q_proj.weight
    first_weight_old = first_weight.clone()

    lora_model = PeftModel.from_pretrained(
        base_model,
        LORA_WEIGHTS,
        device_map={"": "cpu"},
        torch_dtype=torch.float16,
    )

    assert torch.allclose(first_weight_old, first_weight)

    # merge weights TODO: include all lora_target_modules, not just default ones
    if llama_type:
        merged_model = lora_model.merge_and_unload()
        # for layer in lora_model.base_model.model.model.layers:
        #     layer.self_attn.q_proj.merge_weights = True
        #     layer.self_attn.k_proj.merge_weights = True
        #     layer.self_attn.v_proj.merge_weights = True
        #     layer.self_attn.o_proj.merge_weights = True
    else:
        if any([x in BASE_MODEL.lower() for x in ["pythia", "gpt-neox"]]):
            for layer in lora_model.base_model.gpt_neox.base_model.layers:
                layer.attention.query_key_value.merge_weights = True
            merged_model = lora_model
        else:
            merged_model = lora_model.merge_and_unload()
            # for layer in lora_model.base_model.transformer.base_model.h:
            #     layer.attn.q_proj.merge_weights = True
            #     layer.attn.v_proj.merge_weights = True

    # max_memory = get_balanced_memory(merged_model)
    # device_map = infer_auto_device_map(merged_model, max_memory=max_memory)
    # merged_model = dispatch_model(
    #     merged_model,
    #     device_map=device_map,
    # )
    merged_model.eval()
    print(merged_model)

    # did we do anything?
    assert not torch.allclose(first_weight_old, first_weight)

    merged_model_sd = merged_model.state_dict()

    if as_pytorch:
        # FIXME - might not be generic enough still
        params = {
            "dim": base_model.config.hidden_size,
            "n_heads": base_model.config.num_attention_heads,
            "n_layers": base_model.config.num_hidden_layers,
            "norm_eps": base_model.config.layer_norm_eps,
            "vocab_size": base_model.config.vocab_size,
        }
        n_layers = params["n_layers"]
        n_heads = params["n_heads"]
        dim = params["dim"]
        dims_per_head = dim // n_heads
        base = 10000.0
        inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))

        def permute(w):
            return (
                w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim)
            )


        def unpermute(w):
            return (
                w.view(n_heads, 2, dim // n_heads // 2, dim).transpose(1, 2).reshape(dim, dim)
            )


        def translate_state_dict_key(k):
            if "gpt-neoxt" in BASE_MODEL.lower():
                k = k.replace("gpt_neox.model.", "")
            else:
                k = k.replace("base_model.model.", "")
            if k == "model.embed_tokens.weight":
                return "tok_embeddings.weight"
            elif k == "model.norm.weight":
                return "norm.weight"
            elif k == "lm_head.weight":
                return "output.weight"
            elif k.startswith("model.layers."):
                layer = k.split(".")[2]
                if k.endswith(".self_attn.q_proj.weight"):
                    return f"layers.{layer}.attention.wq.weight"
                elif k.endswith(".self_attn.k_proj.weight"):
                    return f"layers.{layer}.attention.wk.weight"
                elif k.endswith(".self_attn.v_proj.weight"):
                    return f"layers.{layer}.attention.wv.weight"
                elif k.endswith(".self_attn.o_proj.weight"):
                    return f"layers.{layer}.attention.wo.weight"
                elif k.endswith(".mlp.gate_proj.weight"):
                    return f"layers.{layer}.feed_forward.w1.weight"
                elif k.endswith(".mlp.down_proj.weight"):
                    return f"layers.{layer}.feed_forward.w2.weight"
                elif k.endswith(".mlp.up_proj.weight"):
                    return f"layers.{layer}.feed_forward.w3.weight"
                elif k.endswith(".input_layernorm.weight"):
                    return f"layers.{layer}.attention_norm.weight"
                elif k.endswith(".post_attention_layernorm.weight"):
                    return f"layers.{layer}.ffn_norm.weight"
                elif k.endswith("rotary_emb.inv_freq") or "lora" in k:
                    return None
                else:
                    print(layer, k)
                    raise NotImplementedError
            else:
                print(k)
                raise NotImplementedError


        new_state_dict = {}
        for k, v in merged_model_sd.items():
            new_k = translate_state_dict_key(k)
            if new_k is not None:
                if "wq" in new_k or "wk" in new_k:
                    new_state_dict[new_k] = unpermute(v)
                else:
                    new_state_dict[new_k] = v

        os.makedirs("./ckpt", exist_ok=True)

        torch.save(new_state_dict, "./ckpt/consolidated.00.pth")

        with open("./ckpt/params.json", "w") as f:
            json.dump(params, f)
    else:
        # deloreanized_sd = {
        #     k.replace("base_model.model.", ""): v
        #     for k, v in merged_model_sd.items()
        #     if "lora" not in k
        # }
        merged_model.config.custom_pipelines = {
            "text-generation": {
              "impl": "h2oai_pipeline.H2OTextGenerationPipeline",
              "pt": "AutoModelForCausalLM"
            }
        }
        PreTrainedModel.save_pretrained(
            merged_model,
            OUTPUT_NAME,
            # state_dict=deloreanized_sd,
            # max_shard_size="5GB",
        )

    do_copy(OUTPUT_NAME)
    test_copy()


def do_copy(OUTPUT_NAME):
    dest_file = os.path.join(OUTPUT_NAME, "h2oai_pipeline.py")
    shutil.copyfile("src/h2oai_pipeline.py", dest_file)
    os.system("""sed -i 's/from stopping.*//g' %s""" % dest_file)
    os.system("""sed -i 's/from prompter.*//g' %s""" % dest_file)
    os.system("""sed -i 's/from prompter_utils.*//g' %s""" % dest_file)
    os.system("""cat %s >> %s""" % ('src/enums.py', dest_file))
    os.system("""cat %s >> %s""" % ('src/prompter_utils.py', dest_file))
    os.system("""cat %s >> %s""" % ('src/utils.py', dest_file))
    os.system("""cat %s|grep -v "from enums import PromptType"|grep -v "from stopping" | grep -v "from prompter_utils" | grep -v "from utils" >> %s""" % ('src/prompter.py', dest_file))
    os.system("""cat %s|grep -v "from enums import PromptType" >> %s""" % ('src/stopping.py', dest_file))


TEST_OUTPUT_NAME = "test_output"


def test_copy():
    if os.path.isdir(TEST_OUTPUT_NAME):
        shutil.rmtree(TEST_OUTPUT_NAME)
    os.makedirs(TEST_OUTPUT_NAME, exist_ok=False)
    do_copy(TEST_OUTPUT_NAME)
    shutil.copy('src/export_hf_checkpoint.py', TEST_OUTPUT_NAME)
    os.environ['DO_COPY_TEST'] = '1'
    os.chdir(TEST_OUTPUT_NAME)
    output = subprocess.check_output(['python', 'export_hf_checkpoint.py'])
    print(output)


def inner_test_copy():
    """
    pytest -s -v export_hf_checkpoint.py::test_copy
    :return:
    """
    # test imports
    # below supposed to look bad in pycharm, don't fix!
    from h2oai_pipeline import get_stopping, get_prompt, H2OTextGenerationPipeline
    assert get_stopping
    assert get_prompt
    assert H2OTextGenerationPipeline


if __name__ == '__main__':
    if os.getenv('DO_COPY_TEST'):
        inner_test_copy()
    else:
        do_export()
    # uncomment for raw isolated test, but test is done every time for each export now
    # test_copy()