File size: 81,501 Bytes
3943768 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 |
from __future__ import annotations
import atexit
import concurrent
import copy
import difflib
import re
import threading
import traceback
import os
import time
import urllib.parse
import uuid
import warnings
from concurrent.futures import Future
from datetime import timedelta
from enum import Enum
from functools import lru_cache
from pathlib import Path
from typing import Callable, Generator, Any, Union, List, Dict, Literal, Tuple
import ast
import inspect
import numpy as np
try:
from gradio_utils.yield_utils import ReturnType
except (ImportError, ModuleNotFoundError):
try:
from yield_utils import ReturnType
except (ImportError, ModuleNotFoundError):
try:
from src.yield_utils import ReturnType
except (ImportError, ModuleNotFoundError):
from .src.yield_utils import ReturnType
os.environ["HF_HUB_DISABLE_TELEMETRY"] = "1"
from huggingface_hub import SpaceStage
from huggingface_hub.utils import (
build_hf_headers,
)
from gradio_client import utils
from importlib.metadata import distribution, PackageNotFoundError
lock = threading.Lock()
try:
assert distribution("gradio_client") is not None
have_gradio_client = True
from packaging import version
client_version = distribution("gradio_client").version
is_gradio_client_version7plus = version.parse(client_version) >= version.parse(
"0.7.0"
)
except (PackageNotFoundError, AssertionError):
have_gradio_client = False
is_gradio_client_version7plus = False
from gradio_client.client import Job, DEFAULT_TEMP_DIR, Endpoint
from gradio_client import Client
def check_job(job, timeout=0.0, raise_exception=True, verbose=False):
try:
e = job.exception(timeout=timeout)
except concurrent.futures.TimeoutError:
# not enough time to determine
if verbose:
print("not enough time to determine job status: %s" % timeout)
e = None
if e:
# raise before complain about empty response if some error hit
if raise_exception:
raise RuntimeError(traceback.format_exception(e))
else:
return e
# Local copy of minimal version from h2oGPT server
class LangChainAction(Enum):
"""LangChain action"""
QUERY = "Query"
SUMMARIZE_MAP = "Summarize"
EXTRACT = "Extract"
pre_prompt_query0 = "Pay attention and remember the information below, which will help to answer the question or imperative after the context ends."
prompt_query0 = "According to only the information in the document sources provided within the context above: "
pre_prompt_summary0 = """"""
prompt_summary0 = "Using only the information in the document sources above, write a condensed and concise well-structured Markdown summary of key results."
pre_prompt_extraction0 = (
"""In order to extract information, pay attention to the following text."""
)
prompt_extraction0 = (
"Using only the information in the document sources above, extract "
)
hyde_llm_prompt0 = "Answer this question with vibrant details in order for some NLP embedding model to use that answer as better query than original question: "
client_version = distribution("gradio_client").version
old_gradio = version.parse(client_version) <= version.parse("0.6.1")
class CommonClient:
def question(self, instruction, *args, **kwargs) -> str:
"""
Prompt LLM (direct to LLM with instruct prompting required for instruct models) and get response
"""
kwargs["instruction"] = kwargs.get("instruction", instruction)
kwargs["langchain_action"] = LangChainAction.QUERY.value
kwargs["langchain_mode"] = "LLM"
ret = ""
for ret1 in self.query_or_summarize_or_extract(*args, **kwargs):
ret = ret1.reply
return ret
def question_stream(
self, instruction, *args, **kwargs
) -> Generator[ReturnType, None, None]:
"""
Prompt LLM (direct to LLM with instruct prompting required for instruct models) and get response
"""
kwargs["instruction"] = kwargs.get("instruction", instruction)
kwargs["langchain_action"] = LangChainAction.QUERY.value
kwargs["langchain_mode"] = "LLM"
ret = yield from self.query_or_summarize_or_extract(*args, **kwargs)
return ret
def query(self, query, *args, **kwargs) -> str:
"""
Search for documents matching a query, then ask that query to LLM with those documents
"""
kwargs["instruction"] = kwargs.get("instruction", query)
kwargs["langchain_action"] = LangChainAction.QUERY.value
ret = ""
for ret1 in self.query_or_summarize_or_extract(*args, **kwargs):
ret = ret1.reply
return ret
def query_stream(self, query, *args, **kwargs) -> Generator[ReturnType, None, None]:
"""
Search for documents matching a query, then ask that query to LLM with those documents
"""
kwargs["instruction"] = kwargs.get("instruction", query)
kwargs["langchain_action"] = LangChainAction.QUERY.value
ret = yield from self.query_or_summarize_or_extract(*args, **kwargs)
return ret
def summarize(self, *args, query=None, focus=None, **kwargs) -> str:
"""
Search for documents matching a focus, then ask a query to LLM with those documents
If focus "" or None, no similarity search is done and all documents (up to top_k_docs) are used
"""
kwargs["prompt_summary"] = kwargs.get(
"prompt_summary", query or prompt_summary0
)
kwargs["instruction"] = kwargs.get("instruction", focus)
kwargs["langchain_action"] = LangChainAction.SUMMARIZE_MAP.value
ret = ""
for ret1 in self.query_or_summarize_or_extract(*args, **kwargs):
ret = ret1.reply
return ret
def summarize_stream(self, *args, query=None, focus=None, **kwargs) -> str:
"""
Search for documents matching a focus, then ask a query to LLM with those documents
If focus "" or None, no similarity search is done and all documents (up to top_k_docs) are used
"""
kwargs["prompt_summary"] = kwargs.get(
"prompt_summary", query or prompt_summary0
)
kwargs["instruction"] = kwargs.get("instruction", focus)
kwargs["langchain_action"] = LangChainAction.SUMMARIZE_MAP.value
ret = yield from self.query_or_summarize_or_extract(*args, **kwargs)
return ret
def extract(self, *args, query=None, focus=None, **kwargs) -> list[str]:
"""
Search for documents matching a focus, then ask a query to LLM with those documents
If focus "" or None, no similarity search is done and all documents (up to top_k_docs) are used
"""
kwargs["prompt_extraction"] = kwargs.get(
"prompt_extraction", query or prompt_extraction0
)
kwargs["instruction"] = kwargs.get("instruction", focus)
kwargs["langchain_action"] = LangChainAction.EXTRACT.value
ret = ""
for ret1 in self.query_or_summarize_or_extract(*args, **kwargs):
ret = ret1.reply
return ret
def extract_stream(self, *args, query=None, focus=None, **kwargs) -> list[str]:
"""
Search for documents matching a focus, then ask a query to LLM with those documents
If focus "" or None, no similarity search is done and all documents (up to top_k_docs) are used
"""
kwargs["prompt_extraction"] = kwargs.get(
"prompt_extraction", query or prompt_extraction0
)
kwargs["instruction"] = kwargs.get("instruction", focus)
kwargs["langchain_action"] = LangChainAction.EXTRACT.value
ret = yield from self.query_or_summarize_or_extract(*args, **kwargs)
return ret
def get_client_kwargs(self, **kwargs):
client_kwargs = {}
try:
from src.evaluate_params import eval_func_param_names
except (ImportError, ModuleNotFoundError):
try:
from evaluate_params import eval_func_param_names
except (ImportError, ModuleNotFoundError):
from .src.evaluate_params import eval_func_param_names
for k in eval_func_param_names:
if k in kwargs:
client_kwargs[k] = kwargs[k]
if os.getenv("HARD_ASSERTS"):
fun_kwargs = {
k: v.default
for k, v in dict(
inspect.signature(self.query_or_summarize_or_extract).parameters
).items()
}
diff = set(eval_func_param_names).difference(fun_kwargs)
assert len(diff) == 0, (
"Add query_or_summarize_or_extract entries: %s" % diff
)
extra_query_params = [
"file",
"bad_error_string",
"print_info",
"asserts",
"url",
"prompt_extraction",
"model",
"text",
"print_error",
"pre_prompt_extraction",
"embed",
"print_warning",
"sanitize_llm",
]
diff = set(fun_kwargs).difference(
eval_func_param_names + extra_query_params
)
assert len(diff) == 0, "Add eval_func_params entries: %s" % diff
return client_kwargs
def get_query_kwargs(self, **kwargs):
fun_dict = dict(
inspect.signature(self.query_or_summarize_or_extract).parameters
).items()
fun_kwargs = {k: kwargs.get(k, v.default) for k, v in fun_dict}
return fun_kwargs
@staticmethod
def check_error(res_dict):
actual_llm = ""
try:
actual_llm = res_dict["save_dict"]["display_name"]
except:
pass
if "error" in res_dict and res_dict["error"]:
raise RuntimeError(f"Error from LLM {actual_llm}: {res_dict['error']}")
if "error_ex" in res_dict and res_dict["error_ex"]:
raise RuntimeError(
f"Error Traceback from LLM {actual_llm}: {res_dict['error_ex']}"
)
if "response" not in res_dict:
raise ValueError(f"No response from LLM {actual_llm}")
def query_or_summarize_or_extract(
self,
print_error=print,
print_info=print,
print_warning=print,
bad_error_string=None,
sanitize_llm=None,
h2ogpt_key: str = None,
instruction: str = "",
text: list[str] | str | None = None,
file: list[str] | str | None = None,
url: list[str] | str | None = None,
embed: bool = True,
chunk: bool = True,
chunk_size: int = 512,
langchain_mode: str = None,
langchain_action: str | None = None,
langchain_agents: List[str] = [],
top_k_docs: int = 10,
document_choice: Union[str, List[str]] = "All",
document_subset: str = "Relevant",
document_source_substrings: Union[str, List[str]] = [],
document_source_substrings_op: str = "and",
document_content_substrings: Union[str, List[str]] = [],
document_content_substrings_op: str = "and",
system_prompt: str | None = "",
pre_prompt_query: str | None = pre_prompt_query0,
prompt_query: str | None = prompt_query0,
pre_prompt_summary: str | None = pre_prompt_summary0,
prompt_summary: str | None = prompt_summary0,
pre_prompt_extraction: str | None = pre_prompt_extraction0,
prompt_extraction: str | None = prompt_extraction0,
hyde_llm_prompt: str | None = hyde_llm_prompt0,
all_docs_start_prompt: str | None = None,
all_docs_finish_prompt: str | None = None,
user_prompt_for_fake_system_prompt: str = None,
json_object_prompt: str = None,
json_object_prompt_simpler: str = None,
json_code_prompt: str = None,
json_code_prompt_if_no_schema: str = None,
json_schema_instruction: str = None,
json_preserve_system_prompt: bool = False,
json_object_post_prompt_reminder: str = None,
json_code_post_prompt_reminder: str = None,
json_code2_post_prompt_reminder: str = None,
model: str | int | None = None,
model_lock: dict | None = None,
stream_output: bool = False,
enable_caching: bool = False,
do_sample: bool = False,
seed: int | None = 0,
temperature: float = 0.0,
top_p: float = 1.0,
top_k: int = 40,
# 1.07 causes issues still with more repetition
repetition_penalty: float = 1.0,
penalty_alpha: float = 0.0,
max_time: int = 360,
max_new_tokens: int = 1024,
add_search_to_context: bool = False,
chat_conversation: list[tuple[str, str]] | None = None,
text_context_list: list[str] | None = None,
docs_ordering_type: str | None = None,
min_max_new_tokens: int = 512,
max_input_tokens: int = -1,
max_total_input_tokens: int = -1,
docs_token_handling: str = "split_or_merge",
docs_joiner: str = "\n\n",
hyde_level: int = 0,
hyde_template: str = None,
hyde_show_only_final: bool = True,
doc_json_mode: bool = False,
metadata_in_context: list = [],
image_file: Union[str, list] = None,
image_control: str = None,
images_num_max: int = None,
image_resolution: tuple = None,
image_format: str = None,
rotate_align_resize_image: bool = None,
video_frame_period: int = None,
image_batch_image_prompt: str = None,
image_batch_final_prompt: str = None,
image_batch_stream: bool = None,
visible_vision_models: Union[str, int, list] = None,
video_file: Union[str, list] = None,
response_format: str = "text",
guided_json: Union[str, dict] = "",
guided_regex: str = "",
guided_choice: List[str] | None = None,
guided_grammar: str = "",
guided_whitespace_pattern: str = None,
prompt_type: Union[int, str] = None,
prompt_dict: Dict = None,
chat_template: str = None,
jq_schema=".[]",
llava_prompt: str = "auto",
image_audio_loaders: list = None,
url_loaders: list = None,
pdf_loaders: list = None,
extract_frames: int = 10,
add_chat_history_to_context: bool = True,
chatbot_role: str = "None", # "Female AI Assistant",
speaker: str = "None", # "SLT (female)",
tts_language: str = "autodetect",
tts_speed: float = 1.0,
visible_image_models: List[str] = [],
image_size: str = "1024x1024",
image_quality: str = 'standard',
image_guidance_scale: float = 3.0,
image_num_inference_steps: int = 30,
visible_models: Union[str, int, list] = None,
client_metadata: str = '',
# don't use the below (no doc string stuff) block
num_return_sequences: int = None,
chat: bool = True,
min_new_tokens: int = None,
early_stopping: Union[bool, str] = None,
iinput: str = "",
iinput_nochat: str = "",
instruction_nochat: str = "",
context: str = "",
num_beams: int = 1,
asserts: bool = False,
do_lock: bool = False,
) -> Generator[ReturnType, None, None]:
"""
Query or Summarize or Extract using h2oGPT
Args:
instruction: Query for LLM chat. Used for similarity search
For query, prompt template is:
"{pre_prompt_query}
\"\"\"
{content}
\"\"\"
{prompt_query}{instruction}"
If added to summarization, prompt template is
"{pre_prompt_summary}
\"\"\"
{content}
\"\"\"
Focusing on {instruction}, {prompt_summary}"
text: textual content or list of such contents
file: a local file to upload or files to upload
url: a url to give or urls to use
embed: whether to embed content uploaded
:param langchain_mode: "LLM" to talk to LLM with no docs, "MyData" for personal docs, "UserData" for shared docs, etc.
:param langchain_action: Action to take, "Query" or "Summarize" or "Extract"
:param langchain_agents: Which agents to use, if any
:param top_k_docs: number of document parts.
When doing query, number of chunks
When doing summarization, not related to vectorDB chunks that are not used
E.g. if PDF, then number of pages
:param chunk: whether to chunk sources for document Q/A
:param chunk_size: Size in characters of chunks
:param document_choice: Which documents ("All" means all) -- need to use upload_api API call to get server's name if want to select
:param document_subset: Type of query, see src/gen.py
:param document_source_substrings: See gen.py
:param document_source_substrings_op: See gen.py
:param document_content_substrings: See gen.py
:param document_content_substrings_op: See gen.py
:param system_prompt: pass system prompt to models that support it.
If 'auto' or None, then use automatic version
If '', then use no system prompt (default)
:param pre_prompt_query: Prompt that comes before document part
:param prompt_query: Prompt that comes after document part
:param pre_prompt_summary: Prompt that comes before document part
None makes h2oGPT internally use its defaults
E.g. "In order to write a concise single-paragraph or bulleted list summary, pay attention to the following text"
:param prompt_summary: Prompt that comes after document part
None makes h2oGPT internally use its defaults
E.g. "Using only the text above, write a condensed and concise summary of key results (preferably as bullet points):\n"
i.e. for some internal document part fstring, the template looks like:
template = "%s
\"\"\"
%s
\"\"\"
%s" % (pre_prompt_summary, fstring, prompt_summary)
:param hyde_llm_prompt: hyde prompt for first step when using LLM
:param all_docs_start_prompt: start of document block
:param all_docs_finish_prompt: finish of document block
:param user_prompt_for_fake_system_prompt: user part of pre-conversation if LLM doesn't handle system prompt
:param json_object_prompt: prompt for getting LLM to do JSON object
:param json_object_prompt_simpler: simpler of "" for MistralAI
:param json_code_prompt: prompt for getting LLm to do JSON in code block
:param json_code_prompt_if_no_schema: prompt for getting LLM to do JSON in code block if no schema
:param json_schema_instruction: prompt for LLM to use schema
:param json_preserve_system_prompt: Whether to preserve system prompt for json mode
:param json_object_post_prompt_reminder: json object reminder about JSON
:param json_code_post_prompt_reminder: json code w/ schema reminder about JSON
:param json_code2_post_prompt_reminder: json code wo/ schema reminder about JSON
:param h2ogpt_key: Access Key to h2oGPT server (if not already set in client at init time)
:param model: base_model name or integer index of model_lock on h2oGPT server
None results in use of first (0th index) model in server
to get list of models do client.list_models()
:param model_lock: dict of states or single state, with dict of things like inference server, to use when using dynamic LLM (not from existing model lock on h2oGPT)
:param pre_prompt_extraction: Same as pre_prompt_summary but for when doing extraction
:param prompt_extraction: Same as prompt_summary but for when doing extraction
:param do_sample: see src/gen.py
:param seed: see src/gen.py
:param temperature: see src/gen.py
:param top_p: see src/gen.py
:param top_k: see src/gen.py
:param repetition_penalty: see src/gen.py
:param penalty_alpha: see src/gen.py
:param max_new_tokens: see src/gen.py
:param min_max_new_tokens: see src/gen.py
:param max_input_tokens: see src/gen.py
:param max_total_input_tokens: see src/gen.py
:param stream_output: Whether to stream output
:param enable_caching: Whether to enable caching
:param max_time: how long to take
:param add_search_to_context: Whether to do web search and add results to context
:param chat_conversation: List of tuples for (human, bot) conversation that will be pre-appended to an (instruction, None) case for a query
:param text_context_list: List of strings to add to context for non-database version of document Q/A for faster handling via API etc.
Forces LangChain code path and uses as many entries in list as possible given max_seq_len, with first assumed to be most relevant and to go near prompt.
:param docs_ordering_type: By default uses 'reverse_ucurve_sort' for optimal retrieval
:param max_input_tokens: Max input tokens to place into model context for each LLM call
-1 means auto, fully fill context for query, and fill by original document chunk for summarization
>=0 means use that to limit context filling to that many tokens
:param max_total_input_tokens: like max_input_tokens but instead of per LLM call, applies across all LLM calls for single summarization/extraction action
:param max_new_tokens: Maximum new tokens
:param min_max_new_tokens: minimum value for max_new_tokens when auto-adjusting for content of prompt, docs, etc.
:param docs_token_handling: 'chunk' means fill context with top_k_docs (limited by max_input_tokens or model_max_len) chunks for query
or top_k_docs original document chunks summarization
None or 'split_or_merge' means same as 'chunk' for query, while for summarization merges documents to fill up to max_input_tokens or model_max_len tokens
:param docs_joiner: string to join lists of text when doing split_or_merge. None means '\n\n'
:param hyde_level: 0-3 for HYDE.
0 uses just query to find similarity with docs
1 uses query + pure LLM response to find similarity with docs
2: uses query + LLM response using docs to find similarity with docs
3+: etc.
:param hyde_template: see src/gen.py
:param hyde_show_only_final: see src/gen.py
:param doc_json_mode: see src/gen.py
:param metadata_in_context: see src/gen.py
:param image_file: Initial image for UI (or actual image for CLI) Vision Q/A. Or list of images for some models
:param image_control: Initial image for UI Image Control
:param images_num_max: Max. number of images per LLM call
:param image_resolution: Resolution of any images
:param image_format: Image format
:param rotate_align_resize_image: Whether to apply rotation, alignment, resize before giving to LLM
:param video_frame_period: Period of frames to use from video
:param image_batch_image_prompt: Prompt used to query image only if doing batching of images
:param image_batch_final_prompt: Prompt used to query result of batching of images
:param image_batch_stream: Whether to stream batching of images.
:param visible_vision_models: Model to use for vision, e.g. if base LLM has no vision
If 'auto', then use CLI value, else use model display name given here
:param video_file: DO NOT USE FOR API, put images, videos, urls, and youtube urls in image_file as list
:param response_format: text or json_object or json_code
# https://github.com/vllm-project/vllm/blob/a3c226e7eb19b976a937e745f3867eb05f809278/vllm/entrypoints/openai/protocol.py#L117-L135
:param guided_json: str or dict of JSON schema
:param guided_regex:
:param guided_choice: list of strings to have LLM choose from
:param guided_grammar:
:param guided_whitespace_pattern:
:param prompt_type: type of prompt, usually matched to fine-tuned model or plain for foundational model
:param prompt_dict: If prompt_type=custom, then expects (some) items returned by get_prompt(..., return_dict=True)
:param chat_template: jinja HF transformers chat_template to use. '' or None means no change to template
:param jq_schema: control json loader
By default '.[]' ingests everything in brute-force way, but better to match your schema
See: https://python.langchain.com/docs/modules/data_connection/document_loaders/json#using-jsonloader
:param extract_frames: How many unique frames to extract from video (if 0, then just do audio if audio type file as well)
:param llava_prompt: Prompt passed to LLaVa for querying the image
:param image_audio_loaders: which loaders to use for image and audio parsing (None means default)
:param url_loaders: which loaders to use for url parsing (None means default)
:param pdf_loaders: which loaders to use for pdf parsing (None means default)
:param add_chat_history_to_context: Include chat context when performing action
Not supported when using CLI mode
:param chatbot_role: Default role for coqui models. If 'None', then don't by default speak when launching h2oGPT for coqui model choice.
:param speaker: Default speaker for microsoft models If 'None', then don't by default speak when launching h2oGPT for microsoft model choice.
:param tts_language: Default language for coqui models
:param tts_speed: Default speed of TTS, < 1.0 (needs rubberband) for slower than normal, > 1.0 for faster. Tries to keep fixed pitch.
:param visible_image_models: Which image gen models to include
:param image_size
:param image_quality
:param image_guidance_scale
:param image_num_inference_steps
:param visible_models: Which models in model_lock list to show by default
Takes integers of position in model_lock (model_states) list or strings of base_model names
Ignored if model_lock not used
For nochat API, this is single item within a list for model by name or by index in model_lock
If None, then just use first model in model_lock list
If model_lock not set, use model selected by CLI --base_model etc.
Note that unlike h2ogpt_key, this visible_models only applies to this running h2oGPT server,
and the value is not used to access the inference server.
If need a visible_models for an inference server, then use --model_lock and group together.
:param client_metadata:
:param asserts: whether to do asserts to ensure handling is correct
Returns: summary/answer: str or extraction List[str]
"""
if self.config is None:
self.setup()
if self.persist:
client = self
else:
client = self.clone()
try:
h2ogpt_key = h2ogpt_key or self.h2ogpt_key
client.h2ogpt_key = h2ogpt_key
if model is not None and visible_models is None:
visible_models = model
client.check_model(model)
# chunking not used here
# MyData specifies scratch space, only persisted for this individual client call
langchain_mode = langchain_mode or "MyData"
loaders = tuple([None, None, None, None, None, None])
doc_options = tuple([langchain_mode, chunk, chunk_size, embed])
asserts |= bool(os.getenv("HARD_ASSERTS", False))
if (
text
and isinstance(text, list)
and not file
and not url
and not text_context_list
):
# then can do optimized text-only path
text_context_list = text
text = None
res = []
if text:
t0 = time.time()
res = client.predict(
text, *doc_options, *loaders, h2ogpt_key, api_name="/add_text"
)
t1 = time.time()
print_info("upload text: %s" % str(timedelta(seconds=t1 - t0)))
if asserts:
assert res[0] is None
assert res[1] == langchain_mode
assert "user_paste" in res[2]
assert res[3] == ""
if file:
# upload file(s). Can be list or single file
# after below call, "file" replaced with remote location of file
_, file = client.predict(file, api_name="/upload_api")
res = client.predict(
file, *doc_options, *loaders, h2ogpt_key, api_name="/add_file_api"
)
if asserts:
assert res[0] is None
assert res[1] == langchain_mode
assert os.path.basename(file) in res[2]
assert res[3] == ""
if url:
res = client.predict(
url, *doc_options, *loaders, h2ogpt_key, api_name="/add_url"
)
if asserts:
assert res[0] is None
assert res[1] == langchain_mode
assert url in res[2]
assert res[3] == ""
assert res[4] # should have file name or something similar
if res and not res[4] and "Exception" in res[2]:
print_error("Exception: %s" % res[2])
# ask for summary, need to use same client if using MyData
api_name = "/submit_nochat_api" # NOTE: like submit_nochat but stable API for string dict passing
pre_prompt_summary = (
pre_prompt_summary
if langchain_action == LangChainAction.SUMMARIZE_MAP.value
else pre_prompt_extraction
)
prompt_summary = (
prompt_summary
if langchain_action == LangChainAction.SUMMARIZE_MAP.value
else prompt_extraction
)
chat_conversation = (
chat_conversation
if chat_conversation or not self.persist
else self.chat_conversation.copy()
)
locals_for_client = locals().copy()
locals_for_client.pop("self", None)
client_kwargs = self.get_client_kwargs(**locals_for_client)
# in case server changed, update in case clone()
if do_lock:
with lock:
self.server_hash = client.server_hash
else:
self.server_hash = client.server_hash
# ensure can fill conversation
if self.persist:
self.chat_conversation.append((instruction, None))
# get result
actual_llm = visible_models
response = ""
texts_out = []
trials = 3
# average generation failure for gpt-35-turbo-1106 is 2, but up to 4 in 100 trials, so why chose 10
# very quick to do since basically instant failure at start of generation
trials_generation = 10
trial = 0
trial_generation = 0
t0 = time.time()
input_tokens = 0
output_tokens = 0
tokens_per_second = 0
vision_visible_model = None
vision_batch_input_tokens = 0
vision_batch_output_tokens = 0
vision_batch_tokens_per_second = 0
t_taken_s = None
while True:
time_to_first_token = None
t0 = time.time()
try:
if not stream_output:
res = client.predict(
str(dict(client_kwargs)),
api_name=api_name,
)
if time_to_first_token is None:
time_to_first_token = time.time() - t0
t_taken_s = time.time() - t0
# in case server changed, update in case clone()
if do_lock:
with lock:
self.server_hash = client.server_hash
else:
self.server_hash = client.server_hash
res_dict = ast.literal_eval(res)
self.check_error(res_dict)
response = res_dict["response"]
if langchain_action != LangChainAction.EXTRACT.value:
response = response.strip()
else:
response = [r.strip() for r in ast.literal_eval(response)]
sources = res_dict["sources"]
scores_out = [x["score"] for x in sources]
texts_out = [x["content"] for x in sources]
prompt_raw = res_dict.get("prompt_raw", "")
try:
actual_llm = res_dict["save_dict"][
"display_name"
] # fast path
except Exception as e:
print_warning(
f"Unable to access save_dict to get actual_llm: {str(e)}"
)
try:
extra_dict = res_dict["save_dict"]["extra_dict"]
input_tokens = extra_dict["num_prompt_tokens"]
output_tokens = extra_dict["ntokens"]
tokens_per_second = np.round(
extra_dict["tokens_persecond"], decimals=3
)
vision_visible_model = extra_dict.get(
"batch_vision_visible_model"
)
vision_batch_input_tokens = extra_dict.get(
"vision_batch_input_tokens", 0
)
except:
if os.getenv("HARD_ASSERTS"):
raise
if asserts:
if text and not file and not url:
assert any(
text[:cutoff] == texts_out
for cutoff in range(len(text))
)
assert len(texts_out) == len(scores_out)
yield ReturnType(
reply=response,
text_context_list=texts_out,
prompt_raw=prompt_raw,
actual_llm=actual_llm,
input_tokens=input_tokens,
output_tokens=output_tokens,
tokens_per_second=tokens_per_second,
time_to_first_token=time_to_first_token or (time.time() - t0),
vision_visible_model=vision_visible_model,
vision_batch_input_tokens=vision_batch_input_tokens,
vision_batch_output_tokens=vision_batch_output_tokens,
vision_batch_tokens_per_second=vision_batch_tokens_per_second,
)
if self.persist:
self.chat_conversation[-1] = (instruction, response)
else:
job = client.submit(str(dict(client_kwargs)), api_name=api_name)
text0 = ""
while not job.done():
e = check_job(job, timeout=0, raise_exception=False)
if e is not None:
break
outputs_list = job.outputs().copy()
if outputs_list:
res = outputs_list[-1]
res_dict = ast.literal_eval(res)
self.check_error(res_dict)
response = res_dict["response"] # keeps growing
prompt_raw = res_dict.get(
"prompt_raw", ""
) # only filled at end
text_chunk = response[
len(text0):
] # only keep new stuff
if not text_chunk:
time.sleep(0.001)
continue
text0 = response
assert text_chunk, "must yield non-empty string"
if time_to_first_token is None:
time_to_first_token = time.time() - t0
yield ReturnType(
reply=text_chunk,
actual_llm=actual_llm,
) # streaming part
time.sleep(0.005)
# Get final response (if anything left), but also get the actual references (texts_out), above is empty.
res_all = job.outputs().copy()
success = job.communicator.job.latest_status.success
timeout = 0.1 if success else 10
if len(res_all) > 0:
try:
check_job(job, timeout=timeout, raise_exception=True)
except (
Exception
) as e: # FIXME - except TimeoutError once h2ogpt raises that.
if "Abrupt termination of communication" in str(e):
t_taken = "%.4f" % (time.time() - t0)
raise TimeoutError(
f"LLM {actual_llm} timed out after {t_taken} seconds."
)
else:
raise
res = res_all[-1]
res_dict = ast.literal_eval(res)
self.check_error(res_dict)
response = res_dict["response"]
sources = res_dict["sources"]
prompt_raw = res_dict["prompt_raw"]
save_dict = res_dict.get("save_dict", dict(extra_dict={}))
extra_dict = save_dict.get("extra_dict", {})
texts_out = [x["content"] for x in sources]
t_taken_s = time.time() - t0
t_taken = "%.4f" % t_taken_s
if langchain_action != LangChainAction.EXTRACT.value:
text_chunk = response.strip()
else:
text_chunk = [
r.strip() for r in ast.literal_eval(response)
]
if not text_chunk:
raise TimeoutError(
f"No output from LLM {actual_llm} after {t_taken} seconds."
)
if "error" in save_dict and not prompt_raw:
raise RuntimeError(
f"Error from LLM {actual_llm}: {save_dict['error']}"
)
assert (
prompt_raw or extra_dict
), "LLM response failed to return final metadata."
try:
extra_dict = res_dict["save_dict"]["extra_dict"]
input_tokens = extra_dict["num_prompt_tokens"]
output_tokens = extra_dict["ntokens"]
vision_visible_model = extra_dict.get(
"batch_vision_visible_model"
)
vision_batch_input_tokens = extra_dict.get(
"batch_num_prompt_tokens", 0
)
vision_batch_output_tokens = extra_dict.get(
"batch_ntokens", 0
)
tokens_per_second = np.round(
extra_dict["tokens_persecond"], decimals=3
)
vision_batch_tokens_per_second = extra_dict.get(
"batch_tokens_persecond", 0
)
if vision_batch_tokens_per_second:
vision_batch_tokens_per_second = np.round(
vision_batch_tokens_per_second, decimals=3
)
except:
if os.getenv("HARD_ASSERTS"):
raise
try:
actual_llm = res_dict["save_dict"][
"display_name"
] # fast path
except Exception as e:
print_warning(
f"Unable to access save_dict to get actual_llm: {str(e)}"
)
if text_context_list:
assert texts_out, "No texts_out 1"
if time_to_first_token is None:
time_to_first_token = time.time() - t0
yield ReturnType(
reply=text_chunk,
text_context_list=texts_out,
prompt_raw=prompt_raw,
actual_llm=actual_llm,
input_tokens=input_tokens,
output_tokens=output_tokens,
tokens_per_second=tokens_per_second,
time_to_first_token=time_to_first_token,
trial=trial,
vision_visible_model=vision_visible_model,
vision_batch_input_tokens=vision_batch_input_tokens,
vision_batch_output_tokens=vision_batch_output_tokens,
vision_batch_tokens_per_second=vision_batch_tokens_per_second,
)
if self.persist:
self.chat_conversation[-1] = (
instruction,
text_chunk,
)
else:
assert not success
check_job(job, timeout=2.0 * timeout, raise_exception=True)
if trial > 0 or trial_generation > 0:
print("trial recovered: %s %s" % (trial, trial_generation))
break
except Exception as e:
if "No generations" in str(
e
) or """'NoneType' object has no attribute 'generations'""" in str(
e
):
trial_generation += 1
else:
trial += 1
print_error(
"h2oGPT predict failed: %s %s"
% (str(e), "".join(traceback.format_tb(e.__traceback__))),
)
if "invalid model" in str(e).lower():
raise
if bad_error_string and bad_error_string in str(e):
# no need to do 3 trials if have disallowed stuff, unlikely that LLM will change its mind
raise
if trial == trials or trial_generation == trials_generation:
print_error(
"trying again failed: %s %s" % (trial, trial_generation)
)
raise
else:
# both Anthopic and openai gives this kind of error, but h2oGPT only has retries for OpenAI
if "Overloaded" in str(traceback.format_tb(e.__traceback__)):
sleep_time = 30 + 2 ** (trial + 1)
else:
sleep_time = 1 * trial
print_warning(
"trying again: %s in %s seconds" % (trial, sleep_time)
)
time.sleep(sleep_time)
finally:
# in case server changed, update in case clone()
if do_lock:
with lock:
self.server_hash = client.server_hash
else:
self.server_hash = client.server_hash
t1 = time.time()
print_info(
dict(
api="submit_nochat_api",
streaming=stream_output,
texts_in=len(text or []) + len(text_context_list or []),
texts_out=len(texts_out),
images=len(image_file)
if isinstance(image_file, list)
else 1
if image_file
else 0,
response_time=str(timedelta(seconds=t1 - t0)),
response_len=len(response),
llm=visible_models,
actual_llm=actual_llm,
)
)
finally:
# in case server changed, update in case clone()
if do_lock:
with lock:
self.server_hash = client.server_hash
else:
self.server_hash = client.server_hash
def check_model(self, model):
if model != 0 and self.check_model_name:
valid_llms = self.list_models()
if (
isinstance(model, int)
and model >= len(valid_llms)
or isinstance(model, str)
and model not in valid_llms
):
did_you_mean = ""
if isinstance(model, str):
alt = difflib.get_close_matches(model, valid_llms, 1)
if alt:
did_you_mean = f"\nDid you mean {repr(alt[0])}?"
raise RuntimeError(
f"Invalid llm: {repr(model)}, must be either an integer between "
f"0 and {len(valid_llms) - 1} or one of the following values: {valid_llms}.{did_you_mean}"
)
@staticmethod
def _get_ttl_hash(seconds=60):
"""Return the same value within `seconds` time period"""
return round(time.time() / seconds)
@lru_cache()
def _get_models_full(self, ttl_hash=None, do_lock=False) -> List[Dict[str, Any]]:
"""
Full model info in list if dict (cached)
"""
del ttl_hash # to emphasize we don't use it and to shut pylint up
if self.config is None:
self.setup()
client = self.clone()
try:
return ast.literal_eval(client.predict(api_name="/model_names"))
finally:
if do_lock:
with lock:
self.server_hash = client.server_hash
else:
self.server_hash = client.server_hash
def get_models_full(self, do_lock=False) -> List[Dict[str, Any]]:
"""
Full model info in list if dict
"""
return self._get_models_full(ttl_hash=self._get_ttl_hash(), do_lock=do_lock)
def list_models(self) -> List[str]:
"""
Model names available from endpoint
"""
return [x["display_name"] for x in self.get_models_full()]
def simple_stream(
self,
client_kwargs={},
api_name="/submit_nochat_api",
prompt="",
prompter=None,
sanitize_bot_response=False,
max_time=300,
is_public=False,
raise_exception=True,
verbose=False,
):
job = self.submit(str(dict(client_kwargs)), api_name=api_name)
sources = []
res_dict = dict(
response="",
sources=sources,
save_dict={},
llm_answers={},
response_no_refs="",
sources_str="",
prompt_raw="",
)
yield res_dict
text = ""
text0 = ""
strex = ""
tgen0 = time.time()
while not job.done():
e = check_job(job, timeout=0, raise_exception=False)
if e is not None:
break
outputs_list = job.outputs().copy()
if outputs_list:
res = outputs_list[-1]
res_dict = ast.literal_eval(res)
text = res_dict["response"] if "response" in res_dict else ""
prompt_and_text = prompt + text
if prompter:
response = prompter.get_response(
prompt_and_text,
prompt=prompt,
sanitize_bot_response=sanitize_bot_response,
)
else:
response = text
text_chunk = response[len(text0):]
if not text_chunk:
# just need some sleep for threads to switch
time.sleep(0.001)
continue
# save old
text0 = response
res_dict.update(
dict(
response=response,
sources=sources,
error=strex,
response_no_refs=response,
)
)
yield res_dict
if time.time() - tgen0 > max_time:
if verbose:
print(
"Took too long for Gradio: %s" % (time.time() - tgen0),
flush=True,
)
break
time.sleep(0.005)
# ensure get last output to avoid race
res_all = job.outputs().copy()
success = job.communicator.job.latest_status.success
timeout = 0.1 if success else 10
if len(res_all) > 0:
# don't raise unless nochat API for now
e = check_job(job, timeout=timeout, raise_exception=True)
if e is not None:
strex = "".join(traceback.format_tb(e.__traceback__))
res = res_all[-1]
res_dict = ast.literal_eval(res)
text = res_dict["response"]
sources = res_dict.get("sources")
if sources is None:
# then communication terminated, keep what have, but send error
if is_public:
raise ValueError("Abrupt termination of communication")
else:
raise ValueError("Abrupt termination of communication: %s" % strex)
else:
# if got no answer at all, probably something bad, always raise exception
# UI will still put exception in Chat History under chat exceptions
e = check_job(job, timeout=2.0 * timeout, raise_exception=True)
# go with old text if last call didn't work
if e is not None:
stre = str(e)
strex = "".join(traceback.format_tb(e.__traceback__))
else:
stre = ""
strex = ""
print(
"Bad final response:%s %s %s: %s %s"
% (res_all, prompt, text, stre, strex),
flush=True,
)
prompt_and_text = prompt + text
if prompter:
response = prompter.get_response(
prompt_and_text,
prompt=prompt,
sanitize_bot_response=sanitize_bot_response,
)
else:
response = text
res_dict.update(
dict(
response=response,
sources=sources,
error=strex,
response_no_refs=response,
)
)
yield res_dict
return res_dict
def stream(
self,
client_kwargs={},
api_name="/submit_nochat_api",
prompt="",
prompter=None,
sanitize_bot_response=False,
max_time=None,
is_public=False,
raise_exception=True,
verbose=False,
):
strex = ""
e = None
res_dict = {}
try:
res_dict = yield from self._stream(
client_kwargs,
api_name=api_name,
prompt=prompt,
prompter=prompter,
sanitize_bot_response=sanitize_bot_response,
max_time=max_time,
verbose=verbose,
)
except Exception as e:
strex = "".join(traceback.format_tb(e.__traceback__))
# check validity of final results and check for timeout
# NOTE: server may have more before its timeout, and res_all will have more if waited a bit
if raise_exception:
raise
if "timeout" in res_dict["save_dict"]["extra_dict"]:
timeout_time = res_dict["save_dict"]["extra_dict"]["timeout"]
raise TimeoutError(
"Timeout from local after %s %s"
% (timeout_time, ": " + strex if e else "")
)
# won't have sources if timed out
if res_dict.get("sources") is None:
# then communication terminated, keep what have, but send error
if is_public:
raise ValueError("Abrupt termination of communication")
else:
raise ValueError("Abrupt termination of communication: %s" % strex)
return res_dict
def _stream(
self,
client_kwargs,
api_name="/submit_nochat_api",
prompt="",
prompter=None,
sanitize_bot_response=False,
max_time=None,
verbose=False,
):
job = self.submit(str(dict(client_kwargs)), api_name=api_name)
text = ""
sources = []
save_dict = {}
save_dict["extra_dict"] = {}
res_dict = dict(
response=text,
sources=sources,
save_dict=save_dict,
llm_answers={},
response_no_refs=text,
sources_str="",
prompt_raw="",
)
yield res_dict
text0 = ""
tgen0 = time.time()
n = 0
for res in job:
res_dict, text0 = yield from self.yield_res(
res,
res_dict,
prompt,
prompter,
sanitize_bot_response,
max_time,
text0,
tgen0,
verbose,
)
n += 1
if "timeout" in res_dict["save_dict"]["extra_dict"]:
break
# final res
outputs = job.outputs().copy()
all_n = len(outputs)
for nn in range(n, all_n):
res = outputs[nn]
res_dict, text0 = yield from self.yield_res(
res,
res_dict,
prompt,
prompter,
sanitize_bot_response,
max_time,
text0,
tgen0,
verbose,
)
return res_dict
@staticmethod
def yield_res(
res,
res_dict,
prompt,
prompter,
sanitize_bot_response,
max_time,
text0,
tgen0,
verbose,
):
do_yield = True
res_dict_server = ast.literal_eval(res)
# yield what have
text = res_dict_server["response"]
if text is None:
print("text None", flush=True)
text = ""
if prompter:
response = prompter.get_response(
prompt + text,
prompt=prompt,
sanitize_bot_response=sanitize_bot_response,
)
else:
response = text
text_chunk = response[len(text0):]
if not text_chunk:
# just need some sleep for threads to switch
time.sleep(0.001)
do_yield = False
# save old
text0 = response
res_dict.update(res_dict_server)
res_dict.update(dict(response=response, response_no_refs=response))
timeout_time_other = (
res_dict.get("save_dict", {}).get("extra_dict", {}).get("timeout")
)
if timeout_time_other:
if verbose:
print(
"Took too long for other Gradio: %s" % (time.time() - tgen0),
flush=True,
)
return res_dict, text0
timeout_time = time.time() - tgen0
if max_time is not None and timeout_time > max_time:
if "save_dict" not in res_dict:
res_dict["save_dict"] = {}
if "extra_dict" not in res_dict["save_dict"]:
res_dict["save_dict"]["extra_dict"] = {}
res_dict["save_dict"]["extra_dict"]["timeout"] = timeout_time
yield res_dict
if verbose:
print(
"Took too long for Gradio: %s" % (time.time() - tgen0), flush=True
)
return res_dict, text0
if do_yield:
yield res_dict
time.sleep(0.005)
return res_dict, text0
class H2OGradioClient(CommonClient, Client):
"""
Parent class of gradio client
To handle automatically refreshing client if detect gradio server changed
"""
def reset_session(self) -> None:
self.session_hash = str(uuid.uuid4())
if hasattr(self, "include_heartbeat") and self.include_heartbeat:
self._refresh_heartbeat.set()
def __init__(
self,
src: str,
hf_token: str | None = None,
max_workers: int = 40,
serialize: bool | None = None, # TODO: remove in 1.0
output_dir: str
| Path = DEFAULT_TEMP_DIR, # Maybe this can be combined with `download_files` in 1.0
verbose: bool = False,
auth: tuple[str, str] | None = None,
*,
headers: dict[str, str] | None = None,
upload_files: bool = True, # TODO: remove and hardcode to False in 1.0
download_files: bool = True, # TODO: consider setting to False in 1.0
_skip_components: bool = True,
# internal parameter to skip values certain components (e.g. State) that do not need to be displayed to users.
ssl_verify: bool = True,
h2ogpt_key: str = None,
persist: bool = False,
check_hash: bool = True,
check_model_name: bool = False,
include_heartbeat: bool = False,
):
"""
Parameters:
Base Class parameters
+
h2ogpt_key: h2oGPT key to gain access to the server
persist: whether to persist the state, so repeated calls are aware of the prior user session
This allows the scratch MyData to be reused, etc.
This also maintains the chat_conversation history
check_hash: whether to check git hash for consistency between server and client to ensure API always up to date
check_model_name: whether to check the model name here (adds delays), or just let server fail (faster)
"""
if serialize is None:
# else converts inputs arbitrarily and outputs mutate
# False keeps as-is and is normal for h2oGPT
serialize = False
self.args = tuple([src])
self.kwargs = dict(
hf_token=hf_token,
max_workers=max_workers,
serialize=serialize,
output_dir=output_dir,
verbose=verbose,
h2ogpt_key=h2ogpt_key,
persist=persist,
check_hash=check_hash,
check_model_name=check_model_name,
include_heartbeat=include_heartbeat,
)
if is_gradio_client_version7plus:
# 4.18.0:
# self.kwargs.update(dict(auth=auth, upload_files=upload_files, download_files=download_files))
# 4.17.0:
# self.kwargs.update(dict(auth=auth))
# 4.24.0:
self._skip_components = _skip_components
self.ssl_verify = ssl_verify
self.kwargs.update(
dict(
auth=auth,
upload_files=upload_files,
download_files=download_files,
ssl_verify=ssl_verify,
)
)
self.verbose = verbose
self.hf_token = hf_token
if serialize is not None:
warnings.warn(
"The `serialize` parameter is deprecated and will be removed. Please use the equivalent `upload_files` parameter instead."
)
upload_files = serialize
self.serialize = serialize
self.upload_files = upload_files
self.download_files = download_files
self.space_id = None
self.cookies: dict[str, str] = {}
if is_gradio_client_version7plus:
self.output_dir = (
str(output_dir) if isinstance(output_dir, Path) else output_dir
)
else:
self.output_dir = output_dir
self.max_workers = max_workers
self.src = src
self.auth = auth
self.headers = headers
self.config = None
self.h2ogpt_key = h2ogpt_key
self.persist = persist
self.check_hash = check_hash
self.check_model_name = check_model_name
self.include_heartbeat = include_heartbeat
self.chat_conversation = [] # internal for persist=True
self.server_hash = None # internal
def __repr__(self):
if self.config and False:
# too slow for guardrails exceptional path
return self.view_api(print_info=False, return_format="str")
return "Not setup for %s" % self.src
def __str__(self):
if self.config and False:
# too slow for guardrails exceptional path
return self.view_api(print_info=False, return_format="str")
return "Not setup for %s" % self.src
def setup(self):
src = self.src
headers0 = self.headers
self.headers = build_hf_headers(
token=self.hf_token,
library_name="gradio_client",
library_version=utils.__version__,
)
if headers0:
self.headers.update(headers0)
if (
"authorization" in self.headers
and self.headers["authorization"] == "Bearer "
):
self.headers["authorization"] = "Bearer hf_xx"
if src.startswith("http://") or src.startswith("https://"):
_src = src if src.endswith("/") else src + "/"
else:
_src = self._space_name_to_src(src)
if _src is None:
raise ValueError(
f"Could not find Space: {src}. If it is a private Space, please provide an hf_token."
)
self.space_id = src
self.src = _src
state = self._get_space_state()
if state == SpaceStage.BUILDING:
if self.verbose:
print("Space is still building. Please wait...")
while self._get_space_state() == SpaceStage.BUILDING:
time.sleep(2) # so we don't get rate limited by the API
pass
if state in utils.INVALID_RUNTIME:
raise ValueError(
f"The current space is in the invalid state: {state}. "
"Please contact the owner to fix this."
)
if self.verbose:
print(f"Loaded as API: {self.src} ✔")
if is_gradio_client_version7plus:
if self.auth is not None:
self._login(self.auth)
self.config = self._get_config()
self.api_url = urllib.parse.urljoin(self.src, utils.API_URL)
if is_gradio_client_version7plus:
self.protocol: Literal[
"ws", "sse", "sse_v1", "sse_v2", "sse_v2.1"
] = self.config.get("protocol", "ws")
self.sse_url = urllib.parse.urljoin(
self.src, utils.SSE_URL_V0 if self.protocol == "sse" else utils.SSE_URL
)
if hasattr(utils, "HEARTBEAT_URL") and self.include_heartbeat:
self.heartbeat_url = urllib.parse.urljoin(self.src, utils.HEARTBEAT_URL)
else:
self.heartbeat_url = None
self.sse_data_url = urllib.parse.urljoin(
self.src,
utils.SSE_DATA_URL_V0 if self.protocol == "sse" else utils.SSE_DATA_URL,
)
self.ws_url = urllib.parse.urljoin(
self.src.replace("http", "ws", 1), utils.WS_URL
)
self.upload_url = urllib.parse.urljoin(self.src, utils.UPLOAD_URL)
self.reset_url = urllib.parse.urljoin(self.src, utils.RESET_URL)
if is_gradio_client_version7plus:
self.app_version = version.parse(self.config.get("version", "2.0"))
self._info = self._get_api_info()
self.session_hash = str(uuid.uuid4())
self.get_endpoints(self)
# Disable telemetry by setting the env variable HF_HUB_DISABLE_TELEMETRY=1
# threading.Thread(target=self._telemetry_thread, daemon=True).start()
if (
is_gradio_client_version7plus
and hasattr(utils, "HEARTBEAT_URL")
and self.include_heartbeat
):
self._refresh_heartbeat = threading.Event()
self._kill_heartbeat = threading.Event()
self.heartbeat = threading.Thread(
target=self._stream_heartbeat, daemon=True
)
self.heartbeat.start()
self.server_hash = self.get_server_hash()
return self
@staticmethod
def get_endpoints(client, verbose=False):
t0 = time.time()
# Create a pool of threads to handle the requests
client.executor = concurrent.futures.ThreadPoolExecutor(
max_workers=client.max_workers
)
if is_gradio_client_version7plus:
from gradio_client.client import EndpointV3Compatibility
endpoint_class = (
Endpoint
if client.protocol.startswith("sse")
else EndpointV3Compatibility
)
else:
endpoint_class = Endpoint
if is_gradio_client_version7plus:
client.endpoints = [
endpoint_class(client, fn_index, dependency, client.protocol)
for fn_index, dependency in enumerate(client.config["dependencies"])
]
else:
client.endpoints = [
endpoint_class(client, fn_index, dependency)
for fn_index, dependency in enumerate(client.config["dependencies"])
]
if is_gradio_client_version7plus:
client.stream_open = False
client.streaming_future = None
from gradio_client.utils import Message
client.pending_messages_per_event = {}
client.pending_event_ids = set()
if verbose:
print("duration endpoints: %s" % (time.time() - t0), flush=True)
@staticmethod
def is_full_git_hash(s):
# This regex checks for exactly 40 hexadecimal characters.
return bool(re.fullmatch(r"[0-9a-f]{40}", s))
def get_server_hash(self) -> str:
return self._get_server_hash(ttl_hash=self._get_ttl_hash())
def _get_server_hash(self, ttl_hash=None) -> str:
"""
Get server hash using super without any refresh action triggered
Returns: git hash of gradio server
"""
del ttl_hash # to emphasize we don't use it and to shut pylint up
t0 = time.time()
if self.config is None:
self.setup()
t1 = time.time()
ret = "GET_GITHASH_UNSET"
try:
if self.check_hash:
ret = super().submit(api_name="/system_hash").result()
assert self.is_full_git_hash(ret), f"ret is not a full git hash: {ret}"
return ret
finally:
if self.verbose:
print(
"duration server_hash: %s full time: %s system_hash time: %s"
% (ret, time.time() - t0, time.time() - t1),
flush=True,
)
def refresh_client_if_should(self):
if self.config is None:
self.setup()
# get current hash in order to update api_name -> fn_index map in case gradio server changed
# FIXME: Could add cli api as hash
server_hash = self.get_server_hash()
if self.server_hash != server_hash:
if self.verbose:
print(
"server hash changed: %s %s" % (self.server_hash, server_hash),
flush=True,
)
if self.server_hash is not None and self.persist:
if self.verbose:
print(
"Failed to persist due to server hash change, only kept chat_conversation not user session hash",
flush=True,
)
# risky to persist if hash changed
self.refresh_client()
self.server_hash = server_hash
def refresh_client(self):
"""
Ensure every client call is independent
Also ensure map between api_name and fn_index is updated in case server changed (e.g. restarted with new code)
Returns:
"""
if self.config is None:
self.setup()
kwargs = self.kwargs.copy()
kwargs.pop("h2ogpt_key", None)
kwargs.pop("persist", None)
kwargs.pop("check_hash", None)
kwargs.pop("check_model_name", None)
kwargs.pop("include_heartbeat", None)
ntrials = 3
client = None
for trial in range(0, ntrials):
try:
client = Client(*self.args, **kwargs)
break
except ValueError as e:
if trial >= ntrials:
raise
else:
if self.verbose:
print("Trying refresh %d/%d %s" % (trial, ntrials - 1, str(e)))
trial += 1
time.sleep(10)
if client is None:
raise RuntimeError("Failed to get new client")
session_hash0 = self.session_hash if self.persist else None
for k, v in client.__dict__.items():
setattr(self, k, v)
if session_hash0:
# keep same system hash in case server API only changed and not restarted
self.session_hash = session_hash0
if self.verbose:
print("Hit refresh_client(): %s %s" % (self.session_hash, session_hash0))
# ensure server hash also updated
self.server_hash = self.get_server_hash()
def clone(self, do_lock=False):
if do_lock:
with lock:
return self._clone()
else:
return self._clone()
def _clone(self):
if self.config is None:
self.setup()
client = self.__class__("")
for k, v in self.__dict__.items():
setattr(client, k, v)
client.reset_session()
self.get_endpoints(client)
# transfer internals in case used
client.server_hash = self.server_hash
client.chat_conversation = self.chat_conversation
return client
def submit(
self,
*args,
api_name: str | None = None,
fn_index: int | None = None,
result_callbacks: Callable | list[Callable] | None = None,
exception_handling=True, # new_stream = True, can make False, doesn't matter.
) -> Job:
if self.config is None:
self.setup()
# Note predict calls submit
try:
self.refresh_client_if_should()
job = super().submit(*args, api_name=api_name, fn_index=fn_index)
except Exception as e:
ex = traceback.format_exc()
print(
"Hit e=%s\n\n%s\n\n%s"
% (str(ex), traceback.format_exc(), self.__dict__),
flush=True,
)
# force reconfig in case only that
self.refresh_client()
job = super().submit(*args, api_name=api_name, fn_index=fn_index)
if exception_handling: # for debugging if causes issues
# see if immediately failed
e = check_job(job, timeout=0.01, raise_exception=False)
if e is not None:
print(
"GR job failed: %s %s"
% (str(e), "".join(traceback.format_tb(e.__traceback__))),
flush=True,
)
# force reconfig in case only that
self.refresh_client()
job = super().submit(*args, api_name=api_name, fn_index=fn_index)
e2 = check_job(job, timeout=0.1, raise_exception=False)
if e2 is not None:
print(
"GR job failed again: %s\n%s"
% (str(e2), "".join(traceback.format_tb(e2.__traceback__))),
flush=True,
)
return job
class CloneableGradioClient(CommonClient, Client):
def __init__(self, *args, **kwargs):
self._original_config = None
self._original_info = None
self._original_endpoints = None
self._original_executor = None
self._original_heartbeat = None
self._quiet = kwargs.pop('quiet', False)
super().__init__(*args, **kwargs)
self._initialize_session_specific()
self._initialize_shared_info()
atexit.register(self.cleanup)
self.auth = kwargs.get('auth')
def _initialize_session_specific(self):
"""Initialize or reset session-specific attributes."""
self.session_hash = str(uuid.uuid4())
self._refresh_heartbeat = threading.Event()
self._kill_heartbeat = threading.Event()
self.stream_open = False
self.streaming_future = None
self.pending_messages_per_event = {}
self.pending_event_ids = set()
def _initialize_shared_info(self):
"""Initialize information that can be shared across clones."""
if self._original_config is None:
self._original_config = super().config
if self._original_info is None:
self._original_info = super()._info
if self._original_endpoints is None:
self._original_endpoints = super().endpoints
if self._original_executor is None:
self._original_executor = super().executor
if self._original_heartbeat is None:
self._original_heartbeat = super().heartbeat
@property
def config(self):
return self._original_config
@config.setter
def config(self, value):
self._original_config = value
@property
def _info(self):
return self._original_info
@_info.setter
def _info(self, value):
self._original_info = value
@property
def endpoints(self):
return self._original_endpoints
@endpoints.setter
def endpoints(self, value):
self._original_endpoints = value
@property
def executor(self):
return self._original_executor
@executor.setter
def executor(self, value):
self._original_executor = value
@property
def heartbeat(self):
return self._original_heartbeat
@heartbeat.setter
def heartbeat(self, value):
self._original_heartbeat = value
def setup(self):
# no-op
pass
@staticmethod
def _get_ttl_hash(seconds=60):
"""Return the same value within `seconds` time period"""
return round(time.time() / seconds)
def get_server_hash(self) -> str:
return self._get_server_hash(ttl_hash=self._get_ttl_hash())
def _get_server_hash(self, ttl_hash=None):
del ttl_hash # to emphasize we don't use it and to shut pylint up
return self.predict(api_name="/system_hash")
def clone(self):
"""Create a new CloneableGradioClient instance with the same configuration but a new session."""
new_client = copy.copy(self)
new_client._initialize_session_specific()
new_client._quiet = True # Set the cloned client to quiet mode
atexit.register(new_client.cleanup)
return new_client
def __repr__(self):
if self._quiet:
return f"<CloneableGradioClient (quiet) connected to {self.src}>"
return super().__repr__()
def __str__(self):
if self._quiet:
return f"CloneableGradioClient (quiet) connected to {self.src}"
return super().__str__()
def cleanup(self):
"""Clean up resources used by this client."""
if self._original_executor:
self._original_executor.shutdown(wait=False)
if self._kill_heartbeat:
self._kill_heartbeat.set()
if self._original_heartbeat:
self._original_heartbeat.join(timeout=1)
atexit.unregister(self.cleanup)
if old_gradio:
GradioClient = H2OGradioClient
else:
GradioClient = CloneableGradioClient
|