File size: 28,685 Bytes
3943768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
import argparse
import os
import shutil
from zipfile import ZipFile

import pandas as pd
from matplotlib import pyplot as plt


def connect_to_h2o_engine(token: str, client_id, token_endpoint_url, environment):
    # https://internal.dedicated.h2o.ai/cli-and-api-access
    """Establishes a secure connection to the H2O Engine Manager using the provided token."""
    import h2o_authn
    token_provider = h2o_authn.TokenProvider(
        refresh_token=token,
        client_id=client_id,
        token_endpoint_url=token_endpoint_url,
    )

    import h2o_engine_manager
    engine_manager = h2o_engine_manager.login(
        environment=environment,
        token_provider=token_provider
    )

    # https://docs.h2o.ai/mlops/py-client/install
    # os.system('pip install h2o-mlops')
    # import h2o_mlops
    # mlops = h2o_mlops.Client(
    #  gateway_url="https://mlops-api.internal.dedicated.h2o.ai",
    #    token_provider=token_provider
    # )

    print("Successfully connected to H2O engine manager.")
    return engine_manager


def connect_to_driverless_ai(engine_manager, dai_engine: str = None):
    """Creates a Driverless AI engine and establishes a connection to it."""
    dai_engine_obj = None
    for dai_inst in engine_manager.dai_engine_client.list_all_engines():
        if dai_inst.display_name == dai_engine:
            dai_engine_obj = engine_manager.dai_engine_client.get_engine(dai_engine)
            if dai_engine_obj.state.value != "STATE_RUNNING":
                print(f"Waking up instance {dai_engine}")
                dai_engine_obj.resume()
                dai_engine_obj.wait()

    if dai_engine_obj is None:
        # if DAI Engine does not exist
        print(f"Creating instance {dai_engine}")
        dai_engine_obj = engine_manager.dai_engine_client.create_engine(display_name=dai_engine)
        dai_engine_obj.wait()

    dai = dai_engine_obj.connect()
    print(f"Successfully connected to Driverless AI engine: {dai_engine}")
    return dai


def create_dataset(dai, data_url: str, dataset_name: str, data_source: str = "s3", force: bool = True):
    """Creates a dataset in the Driverless AI instance."""
    dataset = dai.datasets.create(
        data=data_url,
        data_source=data_source,
        name=dataset_name,
        force=force
    )
    print(f"Dataset {dataset_name} with reusable dataset_key: {dataset.key} created successfully.")
    return dataset


def split_dataset(dataset, train_size: float, train_name: str, test_name: str,
                  target_column: str, seed: int = 42):
    """Splits a dataset into train and test sets."""
    dataset_split = dataset.split_to_train_test(
        train_size=train_size,
        train_name=train_name,
        test_name=test_name,
        target_column=target_column,
        seed=seed
    )

    print("Dataset successfully split into training and testing sets.")
    for k, v in dataset_split.items():
        print(f"Name: {v.name} with reusable dataset_key: {v.key}")

    return dataset_split


def create_experiment(dai, dataset_split, target_column: str, scorer: str = 'F1',
                      task: str = 'classification', experiment_name: str = 'Experiment',
                      accuracy: int = 1, time: int = 1, interpretability: int = 6,
                      fast=True,
                      force: bool = True):
    """Creates an experiment in Driverless AI."""
    experiment_settings = {
        **dataset_split,
        'task': task,
        'target_column': target_column,
        'scorer': scorer
    }

    dai_settings = {
        'accuracy': accuracy,
        'time': time,
        'interpretability': interpretability,
    }
    if fast:
        print("Using fast settings, but still making autoreport")
        dai_settings.update({
            'make_python_scoring_pipeline': 'off',
            'make_mojo_scoring_pipeline': 'off',
            'benchmark_mojo_latency': 'off',
            'make_autoreport': True,
            'check_leakage': 'off',
            'check_distribution_shift': 'off'
        })

    experiment = dai.experiments.create(
        **experiment_settings,
        name=experiment_name,
        **dai_settings,
        force=force
    )

    print(f"Experiment {experiment_name} with reusable experiment_key: {experiment.key} created with settings: "
          f"Accuracy={accuracy}, Time={time}, Interpretability={interpretability}")
    return experiment


def get_experiment_from_key(experiment_key, token, client_id, token_endpoint_url, dai_engine, environment):
    # FIXME: not used yet, would be used to act more on experiment, like restart etc.
    # Connect to the engine manager and Driverless AI
    engine_manager = connect_to_h2o_engine(token, client_id, token_endpoint_url, environment)
    dai = connect_to_driverless_ai(engine_manager, dai_engine)

    # Get the experiment
    experiment = dai.experiments.get(experiment_key)
    return experiment


def visualize_importance(experiment):
    """Visualizes and saves variable importance plot."""
    var_imp = experiment.variable_importance()
    print("\nVariable Importance Output:")
    print(var_imp)

    # Save variable importance to csv
    df = pd.DataFrame(var_imp.data, columns=var_imp.headers)
    csv_file = "variable_importance.csv"
    df.to_csv(csv_file, index=False)
    df_top10 = df.sort_values('gain', ascending=False).head(10)

    plt.figure(figsize=(12, 8))
    plt.barh(df_top10['description'], df_top10['gain'])
    plt.title('Top 10 Important Variables')
    plt.xlabel('Importance (Gain)')
    plt.tight_layout()

    output_path = 'variable_importance.png'
    plt.savefig(output_path)
    print(f"\nVariable importance plot saved as {output_path} and csv file as {csv_file}")

    print("\nTop 10 Important Variables:")
    print(df_top10[['description', 'gain']].to_string(index=False))


def print_experiment_details(experiment):
    """Prints details of a Driverless AI experiment."""
    print(f"\nExperiment Details:")
    print(f"Name: {experiment.name}")
    print("\nDatasets:")
    for dataset in experiment.datasets:
        print(f" - {dataset}")
    print(f"\nTarget: {experiment.settings.get('target_column')}")
    print(f"Scorer: {experiment.metrics().get('scorer')}")
    print(f"Task: {experiment.settings.get('task')}")
    print(f"Size: {experiment.size}")
    print(f"Summary: {experiment.summary}")
    print("\nStatus:")
    print(experiment.status(verbose=2))
    print("\nWeb Page: ", end='')
    experiment.gui()

    print(f"\nMetrics: {experiment.metrics()}")


def plot_roc_curve(roc_data, save_dir='plots'):
    """Plot ROC (Receiver Operating Characteristic) curve and save to file"""
    df = pd.DataFrame(roc_data['layer'][0]['data']['values'])

    plt.figure(figsize=(8, 6))
    plt.plot(df['False Positive Rate'], df['True Positive Rate'], 'b-', label='ROC curve')
    plt.plot([0, 1], [0, 1], 'r--', label='Random')
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('ROC Curve')
    plt.legend()
    plt.grid(True)

    os.makedirs(save_dir, exist_ok=True)
    plt.savefig(os.path.join(save_dir, 'roc_curve.png'), dpi=300, bbox_inches='tight')
    plt.close()


def plot_precision_recall(pr_data, save_dir='plots'):
    """Plot Precision-Recall curve and save to file"""
    df = pd.DataFrame(pr_data['layer'][0]['data']['values'])

    plt.figure(figsize=(8, 6))
    plt.plot(df['Recall'], df['Precision'], 'g-')
    plt.xlabel('Recall')
    plt.ylabel('Precision')
    plt.title('Precision-Recall Curve')
    plt.grid(True)

    os.makedirs(save_dir, exist_ok=True)
    plt.savefig(os.path.join(save_dir, 'precision_recall_curve.png'), dpi=300, bbox_inches='tight')
    plt.close()


def plot_gains_chart(gains_data, save_dir='plots'):
    """Plot Cumulative Gains chart and save to file"""
    df = pd.DataFrame(gains_data['layer'][0]['data']['values'])

    plt.figure(figsize=(8, 6))
    plt.plot(df['Quantile'], df['Gains'], 'b-')
    plt.plot([0, 1], [0, 1], 'r--', label='Random')
    plt.xlabel('Population Percentage')
    plt.ylabel('Cumulative Gains')
    plt.title('Cumulative Gains Chart')
    plt.grid(True)

    os.makedirs(save_dir, exist_ok=True)
    plt.savefig(os.path.join(save_dir, 'gains_chart.png'), dpi=300, bbox_inches='tight')
    plt.close()


def plot_lift_chart(lift_data, save_dir='plots'):
    """Plot Lift chart and save to file"""
    df = pd.DataFrame(lift_data['layer'][0]['data']['values'])

    plt.figure(figsize=(8, 6))
    plt.plot(df['Quantile'], df['Lift'], 'g-')
    plt.axhline(y=1, color='r', linestyle='--', label='Baseline')
    plt.xlabel('Population Percentage')
    plt.ylabel('Lift')
    plt.title('Lift Chart')
    plt.legend()
    plt.grid(True)

    os.makedirs(save_dir, exist_ok=True)
    plt.savefig(os.path.join(save_dir, 'lift_chart.png'), dpi=300, bbox_inches='tight')
    plt.close()


def plot_ks_chart(ks_data, save_dir='plots'):
    """Plot Kolmogorov-Smirnov chart and save to file"""
    df = pd.DataFrame(ks_data['layer'][0]['data']['values'])

    plt.figure(figsize=(8, 6))
    plt.plot(df['Quantile'], df['Gains'], 'b-')
    plt.xlabel('Population Percentage')
    plt.ylabel('KS Statistic')
    plt.title('Kolmogorov-Smirnov Chart')
    plt.grid(True)

    os.makedirs(save_dir, exist_ok=True)
    plt.savefig(os.path.join(save_dir, 'ks_chart.png'), dpi=300, bbox_inches='tight')
    plt.close()


def plot_all_charts(roc_curve, prec_recall_curve, gains_chart, lift_chart, ks_chart, save_dir='plots'):
    """Plot all available classification metrics charts and save to file"""

    # Create subplots for available charts
    available_charts = sum(x is not None for x in [roc_curve, prec_recall_curve, gains_chart, lift_chart, ks_chart])
    rows = (available_charts + 1) // 2  # Calculate rows needed

    fig = plt.figure(figsize=(15, 5 * rows))

    plot_idx = 1

    if roc_curve is not None:
        plt.subplot(rows, 2, plot_idx)
        df = pd.DataFrame(roc_curve['layer'][0]['data']['values'])
        plt.plot(df['False Positive Rate'], df['True Positive Rate'], 'b-')
        plt.plot([0, 1], [0, 1], 'r--')
        plt.xlabel('False Positive Rate')
        plt.ylabel('True Positive Rate')
        plt.title('ROC Curve')
        plt.grid(True)
        plot_idx += 1

    if prec_recall_curve is not None:
        plt.subplot(rows, 2, plot_idx)
        df = pd.DataFrame(prec_recall_curve['layer'][0]['data']['values'])
        plt.plot(df['Recall'], df['Precision'], 'g-')
        plt.xlabel('Recall')
        plt.ylabel('Precision')
        plt.title('Precision-Recall Curve')
        plt.grid(True)
        plot_idx += 1

    if gains_chart is not None:
        plt.subplot(rows, 2, plot_idx)
        df = pd.DataFrame(gains_chart['layer'][0]['data']['values'])
        plt.plot(df['Quantile'], df['Gains'], 'b-')
        plt.plot([0, 1], [0, 1], 'r--')
        plt.xlabel('Population Percentage')
        plt.ylabel('Cumulative Gains')
        plt.title('Cumulative Gains Chart')
        plt.grid(True)
        plot_idx += 1

    if lift_chart is not None:
        plt.subplot(rows, 2, plot_idx)
        df = pd.DataFrame(lift_chart['layer'][0]['data']['values'])
        plt.plot(df['Quantile'], df['Lift'], 'g-')
        plt.axhline(y=1, color='r', linestyle='--')
        plt.xlabel('Population Percentage')
        plt.ylabel('Lift')
        plt.title('Lift Chart')
        plt.grid(True)
        plot_idx += 1

    if ks_chart is not None:
        plt.subplot(rows, 2, plot_idx)
        df = pd.DataFrame(ks_chart['layer'][0]['data']['values'])
        plt.plot(df['Quantile'], df['Gains'], 'b-')
        plt.xlabel('Population Percentage')
        plt.ylabel('KS Statistic')
        plt.title('Kolmogorov-Smirnov Chart')
        plt.grid(True)
        plot_idx += 1

    plt.tight_layout()

    os.makedirs(save_dir, exist_ok=True)
    plt.savefig(os.path.join(save_dir, 'all_classification_metrics.png'), dpi=300, bbox_inches='tight')
    plt.close()


def key_to_experiment(experiment_key, client_id, dai_engine, token_endpoint_url, token, environment):
    if experiment_key is None:
        raise ValueError("Either experiment or experiment_key must be provided")
    engine_manager = connect_to_h2o_engine(token, client_id, token_endpoint_url, environment)
    dai = connect_to_driverless_ai(engine_manager, dai_engine)
    experiment = dai.experiments.get(experiment_key)
    return experiment


def get_artifacts(experiment=None, experiment_key=None, client_id=None, dai_engine=None, token_endpoint_url=None,
                  token=None, environment=None, save_dir='./'):
    if experiment is None:
        experiment = key_to_experiment(experiment_key, client_id, dai_engine, token_endpoint_url, token, environment)

    artifacts = experiment.artifacts.list()
    if 'logs' in artifacts:
        logs_zip = experiment.artifacts.download(only=['logs'], dst_dir=save_dir, overwrite=True)['logs']
        logs_dir = './logs_dir'
        with ZipFile(logs_zip, 'r') as zip_ref:
            zip_ref.extractall(logs_dir)
        os.remove(logs_zip)
        log_files = [os.path.join(os.getcwd(), logs_dir, x) for x in os.listdir(logs_dir)]

        for fil in log_files:
            if fil.endswith('.zip'):
                with ZipFile(fil, 'r') as zip_ref:
                    zip_ref.extractall(logs_dir)
        log_files = [os.path.join(os.getcwd(), logs_dir, x) for x in os.listdir(logs_dir)]
        print(f"List of experiment log files extracted include: {log_files}")

        moved = []
        useful_extensions = ['.png', '.csv', '.json']
        for fil in log_files:
            if any(fil.endswith(ext) for ext in useful_extensions):
                shutil.copy(fil, save_dir)
                new_abs_path = os.path.join(save_dir, os.path.basename(fil))
                moved.append(new_abs_path)
        print(f"Log files moved to {save_dir} include: {moved}")

    if 'summary' in artifacts:
        summary_zip = experiment.artifacts.download(only=['summary'], dst_dir=save_dir, overwrite=True)['summary']
        summary_dir = './summary_dir'
        with ZipFile(summary_zip, 'r') as zip_ref:
            zip_ref.extractall(summary_dir)
        os.remove(summary_zip)
        summary_files = [os.path.join(os.getcwd(), summary_dir, x) for x in os.listdir(summary_dir)]
        print(f"List of summary log files extracted include: {summary_files}")
        moved = []
        useful_extensions = ['.png', '.csv', '.json']
        for fil in summary_files:
            if any(fil.endswith(ext) for ext in useful_extensions):
                shutil.copy(fil, save_dir)
                new_abs_path = os.path.join(save_dir, os.path.basename(fil))
                moved.append(new_abs_path)
        print(f"Summary files moved to {save_dir} include: {moved}")
    if 'train_predictions' in artifacts:
        train_preds = experiment.artifacts.download(only=['train_predictions'], dst_dir=save_dir, overwrite=True)[
            'train_predictions']
        print(f"Train predictions saved to {train_preds}")
        print(f"Head of train predictions: {pd.read_csv(train_preds).head()}")
    if 'test_predictions' in artifacts:
        test_preds = experiment.artifacts.download(only=['test_predictions'], dst_dir=save_dir, overwrite=True)[
            'test_predictions']
        print(f"Test predictions saved to {test_preds}")
        print(f"Head of test predictions: {pd.read_csv(test_preds).head()}")
    if 'autoreport' in artifacts:
        autoreport = experiment.artifacts.download(only=['autoreport'], dst_dir=save_dir, overwrite=True)['autoreport']
        print(f"Autoreport saved to {autoreport}")
    if 'autodoc' in artifacts:
        autodoc = experiment.artifacts.download(only=['autodoc'], dst_dir=save_dir, overwrite=True)['autodoc']
        print(f"Autoreport saved to {autodoc}")


def main():
    parser = argparse.ArgumentParser(description="Run Driverless AI experiments from command line.")

    # instance
    parser.add_argument("--engine", "--dai_engine", default=os.getenv('DAI_ENGINE', "daidemo"),
                        help="Name of the DAI engine")
    parser.add_argument("--client_id", "--dai_client_id", default=os.getenv('DAI_CLIENT_ID', "hac-platform-public"),
                        help="Name of client_id")
    parser.add_argument("--token_endpoint_url", "--dai_token_endpoint_url", default=os.getenv('DAI_TOKEN_ENDPOINT_URL',
                                                                                              "https://auth.internal.dedicated.h2o.ai/auth/realms/hac/protocol/openid-connect/token"),
                        help="Token endpoint url")
    parser.add_argument("--environment", "--dai_environment",
                        default=os.getenv('DAI_ENVIRONMENT', "https://internal.dedicated.h2o.ai"),
                        help="DAI environment")
    parser.add_argument("--token", "--dai_token", default=os.getenv('DAI_TOKEN'),
                        help="DAI token")
    parser.add_argument('--demo_mode', action='store_true', help="Use demo mode")

    # Existing experiment
    parser.add_argument("--experiment_key", default="",
                        help="Key of an existing experiment to re-use")
    parser.add_argument("--dataset_key", default="",
                        help="Key of an existing dataset to re-use")

    # Creating new dataset
    parser.add_argument("--data-url", required=False,
                        default="",
                        help="URL to the dataset (e.g., S3 URL)")
    parser.add_argument("--dataset-name", default="Dataset",
                        help="Name for the dataset in DAI (default: Dataset)")
    parser.add_argument("--data-source", default="s3",
                        help="Source type of the dataset (default: s3)")

    # Creating new experiment
    parser.add_argument("--target-column", "--target",
                        default="Churn?",
                        required=False,
                        help="Name of the target column for prediction")
    parser.add_argument("--task", default="classification",
                        choices=["classification", "regression", "predict",
                                 "shapley",
                                 "shapley_original_features",
                                 "shapley_transformed_features",
                                 "transform",
                                 "fit_transform",
                                 "fit_and_transform",
                                 "artifacts",
                                 ],
                        help="Type of ML task (default: classification)")
    parser.add_argument("--scorer", default="F1",
                        help="Evaluation metric to use (default: F1)")
    parser.add_argument("--experiment-name", default="Experiment",
                        help="Name for the experiment (default: Experiment)")
    parser.add_argument("--accuracy", type=int, choices=range(1, 11), default=1,
                        help="Accuracy setting (1-10, default: 1)")
    parser.add_argument("--time", type=int, choices=range(1, 11), default=1,
                        help="Time setting (1-10, default: 1)")
    parser.add_argument("--interpretability", type=int, choices=range(1, 11), default=6,
                        help="Interpretability setting (1-10, default: 6)")
    parser.add_argument("--train-size", type=float, default=0.8,
                        help="Proportion of data for training (default: 0.8)")
    parser.add_argument("--seed", type=int, default=42,
                        help="Random seed for reproducibility (default: 42)")
    parser.add_argument("--fast", action="store_false",
                        help="Use fast settings for experiment or predictions")
    parser.add_argument("--force", action="store_false",
                        help="Force overwrite existing datasets/experiments")

    args = parser.parse_args()

    # Connect to H2O
    engine_manager = connect_to_h2o_engine(args.token, args.client_id, args.token_endpoint_url, args.environment)
    dai = connect_to_driverless_ai(engine_manager, args.engine)

    # Create plots directory if it doesn't exist
    save_dir = './'

    # Ensure all columns are displayed
    pd.set_option('display.max_columns', None)
    pd.set_option('display.expand_frame_repr', False)  # Prevent wrapping to multiple lines

    if args.experiment_key:
        # Re-use existing experiment
        experiment = dai.experiments.get(args.experiment_key)
        print(f"Re-using existing experiment: {experiment.name} with experiment_key: {experiment.key}")

        # Create dataset for (e.g.) transform or predict
        if args.data_url:
            dataset = create_dataset(
                dai,
                args.data_url,
                args.dataset_name,
                args.data_source,
                args.force
            )
        elif args.dataset_key:
            # Re-use existing dataset
            dataset = dai.datasets.get(args.dataset_key)
            print(f"Re-using existing dataset: {dataset.name} with dataset_key: {dataset.key}")
        else:
            dataset = None
        print(f"Performing task {args.task} on experiment {experiment.name}")
        if args.task == 'predict':
            if dataset is None:
                print("Dataset key is required for prediction.")
            else:
                prediction = experiment.predict(dataset)
                prediction_csv = prediction.download(dst_file=os.path.join(save_dir, 'prediction.csv'), overwrite=True)
                print(f"Prediction saved to {prediction_csv}")
                print(f"Head of prediction:\n{pd.read_csv(prediction_csv).head()}")
        elif args.task in ['shapley', 'shapley_original_features']:
            if dataset is None:
                print("Dataset key is required for shapley prediction.")
            else:
                prediction = experiment.predict(dataset, include_shap_values_for_original_features=True,
                                                use_fast_approx_for_shap_values=args.fast)
                prediction_csv = prediction.download(dst_file=os.path.join(save_dir, 'shapley_original_features.csv'),
                                                     overwrite=True)
                print(f"Shapley on original features saved to {prediction_csv}")
                print(f"Head of shapley on original features:\n{pd.read_csv(prediction_csv).head()}")
                print(
                    "Column names for contributions (Shapley values) are in form contrib_<original_column_name>, which you should programatically access instead of repeating all the names in any python code.")
        elif args.task == 'shapley_transformed_features':
            if dataset is None:
                print("Dataset key is required for shapley prediction.")
            else:
                prediction = experiment.predict(dataset, include_shap_values_for_transformed_features=True,
                                                use_fast_approx_for_shap_values=args.fast)
                prediction_csv = prediction.download(
                    dst_file=os.path.join(save_dir, 'shapley_transformed_features.csv'), overwrite=True)
                print(f"Shapley on transformed features saved to {prediction_csv}")
                print(f"Head of shapley on transformed features:\n{pd.read_csv(prediction_csv).head()}")
                print(
                    "Column names for contributions (Shapley values) are in form contrib_<transformed_column_name>, which you should programatically access instead of repeating all the names in any python code.")
        elif args.task == 'transform':
            if dataset is None:
                print("Dataset key is required for transformation.")
            else:
                transformation = experiment.transform(dataset)
                transformation_csv = transformation.download(dst_file=os.path.join(save_dir, 'transformation.csv'),
                                                             overwrite=True)
                print(f"Transformation saved to {transformation_csv}")
                print(f"Head of transformation:\n{pd.read_csv(transformation_csv).head()}")
        elif args.task in ['fit_transform', 'fit_and_transform']:
            if dataset is None:
                print("Dataset key is required for fit_and_transform.")
            else:
                transformation = experiment.fit_and_transform(dataset)

                if transformation.test_dataset:
                    transformation_csv = transformation.download_transformed_test_dataset(
                        dst_file=os.path.join(save_dir, 'fit_transformation_test.csv'),
                        overwrite=True)
                    print(f"Fit and Transformation on test dataset saved to {transformation_csv}")
                    print(f"Head of fit and transformation on test dataset:\n{pd.read_csv(transformation_csv).head()}")

                if transformation.training_dataset:
                    transformation_csv = transformation.download_transformed_training_dataset(
                        dst_file=os.path.join(save_dir, 'fit_transformation_train.csv'),
                        overwrite=True)
                    print(f"Fit and Transformation on training dataset saved to {transformation_csv}")
                    print(
                        f"Head of fit and transformation on training dataset:\n{pd.read_csv(transformation_csv).head()}")

                if transformation.validation_dataset:
                    print(f"validation_split_fraction: {transformation.validation_split_fraction}")
                    transformation_csv = transformation.download_transformed_validation_dataset(
                        dst_file=os.path.join(save_dir, 'fit_transformation_valid.csv'),
                        overwrite=True)
                    print(f"Fit and Transformation on validation saved to {transformation_csv}")
                    print(
                        f"Head of fit and transformation on validation dataset:\n{pd.read_csv(transformation_csv).head()}")
        elif args.task == 'artifacts':
            get_artifacts(experiment=experiment, save_dir=save_dir)
        elif args.task in ['regression', 'classification']:
            print(f"{args.task} task does not apply when re-using an existing experiment.")
        else:
            print(f"Nothing to do for task {args.task} on experiment {experiment.name}")

    else:
        if args.demo_mode:
            args.data_url = "https://h2o-internal-release.s3-us-west-2.amazonaws.com/data/Splunk/churn.csv"
            args.target_column = "Churn?"
            args.task = "classification"
            args.scorer = "F1"

        # Create and split dataset
        dataset = create_dataset(
            dai,
            args.data_url,
            args.dataset_name,
            args.data_source,
            args.force
        )

        train_test_split = split_dataset(
            dataset,
            args.train_size,
            f"{args.dataset_name}_train",
            f"{args.dataset_name}_test",
            args.target_column,
            args.seed
        )

        # Create and run experiment
        experiment = create_experiment(
            dai,
            train_test_split,
            args.target_column,
            args.scorer,
            args.task,
            args.experiment_name,
            args.accuracy,
            args.time,
            args.interpretability,
            args.force,
            args.fast,
        )

        # Print details and visualize results
        print_experiment_details(experiment)
        visualize_importance(experiment)

        # Individual plots
        metric_plots = experiment.metric_plots
        if args.task == 'classification':
            plot_roc_curve(metric_plots.roc_curve, save_dir)
            plot_precision_recall(metric_plots.prec_recall_curve, save_dir)
            plot_gains_chart(metric_plots.gains_chart, save_dir)
            plot_lift_chart(metric_plots.lift_chart, save_dir)
            plot_ks_chart(metric_plots.ks_chart, save_dir)

            # All plots in one figure
            plot_all_charts(metric_plots.roc_curve, metric_plots.prec_recall_curve, metric_plots.gains_chart,
                            metric_plots.lift_chart, metric_plots.ks_chart, save_dir)
        else:
            # FIXME: Add regression metrics plots
            print("Regression task detected. No classification metrics to plot.")

        get_artifacts(experiment=experiment, save_dir=save_dir)


if __name__ == "__main__":
    main()