File size: 15,453 Bytes
3943768 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
import os
import tempfile
import uuid
from openai_server.backend_utils import structure_to_messages, run_download_api_all
from openai_server.agent_utils import get_ret_dict_and_handle_files
from openai_server.agent_prompting import get_full_system_prompt, planning_prompt, planning_final_prompt, \
get_agent_tools
from openai_server.autogen_utils import get_autogen_use_planning_prompt
def run_autogen_2agent(query=None,
visible_models=None,
stream_output=None,
max_new_tokens=None,
authorization=None,
chat_conversation=None,
text_context_list=None,
system_prompt=None,
image_file=None,
# autogen/agent specific parameters
agent_type=None,
agent_accuracy=None,
agent_chat_history=None,
agent_files=None,
agent_work_dir=None,
max_stream_length=None,
max_memory_usage=None,
autogen_use_planning_prompt=None,
autogen_stop_docker_executor=None,
autogen_run_code_in_docker=None,
autogen_max_consecutive_auto_reply=None,
autogen_max_turns=None,
autogen_timeout=None,
autogen_cache_seed=None,
agent_venv_dir=None,
agent_code_writer_system_message=None,
agent_system_site_packages=None,
autogen_code_restrictions_level=None,
autogen_silent_exchange=None,
client_metadata=None,
agent_verbose=None) -> dict:
if client_metadata:
print("BEGIN 2AGENT: client_metadata: %s" % client_metadata, flush=True)
assert agent_type in ['autogen_2agent', 'auto'], "Invalid agent_type: %s" % agent_type
# raise openai.BadRequestError("Testing Error Handling")
# raise ValueError("Testing Error Handling")
# handle parameters from chatAPI and OpenAI -> h2oGPT transcription versions
assert visible_models is not None, "No visible_models specified"
model = visible_models # transcribe early
if stream_output is None:
stream_output = False
assert max_new_tokens is not None, "No max_new_tokens specified"
# handle AutoGen specific parameters
if autogen_stop_docker_executor is None:
autogen_stop_docker_executor = False
if autogen_run_code_in_docker is None:
autogen_run_code_in_docker = False
if autogen_max_consecutive_auto_reply is None:
autogen_max_consecutive_auto_reply = 40
if autogen_max_turns is None:
autogen_max_turns = 40
if autogen_timeout is None:
autogen_timeout = 120
if agent_system_site_packages is None:
agent_system_site_packages = True
if autogen_code_restrictions_level is None:
autogen_code_restrictions_level = 2
if autogen_silent_exchange is None:
autogen_silent_exchange = True
if max_stream_length is None:
max_stream_length = 4096
if max_memory_usage is None:
# per-execution process maximum memory usage
max_memory_usage = 16 * 1024**3 # 16 GB
if agent_chat_history is None:
agent_chat_history = []
if agent_files is None:
agent_files = []
if agent_verbose is None:
agent_verbose = False
if agent_verbose:
print("AutoGen using model=%s." % model, flush=True)
if agent_work_dir is None:
# Create a temporary directory to store the code files.
# temp_dir = tempfile.TemporaryDirectory().name
agent_work_dir = tempfile.mkdtemp()
if agent_files:
# assume list of file_ids for use with File API
run_download_api_all(agent_files, authorization, agent_work_dir)
# iostream = IOStream.get_default()
# iostream.print("\033[32m", end="")
path_agent_tools, list_dir = get_agent_tools()
if agent_accuracy is None:
agent_accuracy = 'standard'
agent_accuracy_enum = ['quick', 'basic', 'standard', 'maximum']
assert agent_accuracy in agent_accuracy_enum, "Invalid agent_accuracy: %s" % agent_accuracy
if agent_accuracy == 'quick':
agent_tools_usage_hard_limits = {k: 1 for k in list_dir}
agent_tools_usage_soft_limits = {k: 1 for k in list_dir}
extra_user_prompt = """Do not verify your response, do not check generated plots or images using the ask_question_about_image tool."""
initial_confidence_level = 1
if autogen_use_planning_prompt is None:
autogen_use_planning_prompt = False
elif agent_accuracy == 'basic':
agent_tools_usage_hard_limits = {k: 3 for k in list_dir}
agent_tools_usage_soft_limits = {k: 2 for k in list_dir}
extra_user_prompt = """Perform only basic level of verification and basic quality checks on your response. Files you make and your response can be basic."""
initial_confidence_level = 1
if autogen_use_planning_prompt is None:
autogen_use_planning_prompt = False
elif agent_accuracy == 'standard':
agent_tools_usage_hard_limits = dict(ask_question_about_image=5)
agent_tools_usage_soft_limits = {k: 5 for k in list_dir}
extra_user_prompt = ""
initial_confidence_level = 0
if autogen_use_planning_prompt is None:
autogen_use_planning_prompt = get_autogen_use_planning_prompt(model)
elif agent_accuracy == 'maximum':
agent_tools_usage_hard_limits = dict(ask_question_about_image=10)
agent_tools_usage_soft_limits = {}
extra_user_prompt = ""
initial_confidence_level = 0
if autogen_use_planning_prompt is None:
autogen_use_planning_prompt = get_autogen_use_planning_prompt(model)
else:
raise ValueError("Invalid agent_accuracy: %s" % agent_accuracy)
# assume by default that if have agent history, continuing with task, not starting new one
if agent_chat_history:
autogen_use_planning_prompt = False
if extra_user_prompt:
query = f"""<extra_query_conditions>\n{extra_user_prompt}\n</extra_query_conditions>\n\n""" + query
from openai_server.autogen_utils import get_code_executor
if agent_venv_dir is None:
username = str(uuid.uuid4())
agent_venv_dir = ".venv_%s" % username
executor = get_code_executor(
autogen_run_code_in_docker=autogen_run_code_in_docker,
autogen_timeout=autogen_timeout,
agent_system_site_packages=agent_system_site_packages,
autogen_code_restrictions_level=autogen_code_restrictions_level,
agent_work_dir=agent_work_dir,
agent_venv_dir=agent_venv_dir,
agent_tools_usage_hard_limits=agent_tools_usage_hard_limits,
agent_tools_usage_soft_limits=agent_tools_usage_soft_limits,
max_stream_length=max_stream_length,
max_memory_usage=max_memory_usage,
)
code_executor_kwargs = dict(
llm_config=False, # Turn off LLM for this agent.
code_execution_config={"executor": executor}, # Use the local command line code executor.
human_input_mode="NEVER", # Always take human input for this agent for safety.
# NOTE: no termination message, just triggered by executable code blocks present or not
# is_termination_msg=terminate_message_func,
max_consecutive_auto_reply=autogen_max_consecutive_auto_reply,
# max_turns is max times allowed executed some code, should be autogen_max_turns in general
max_turns=autogen_max_turns,
initial_confidence_level=initial_confidence_level,
)
from openai_server.autogen_utils import H2OConversableAgent
code_executor_agent = H2OConversableAgent("code_executor_agent", **code_executor_kwargs)
# FIXME:
# Auto-pip install
# Auto-return file list in each turn
base_url = os.environ['H2OGPT_OPENAI_BASE_URL'] # must exist
api_key = os.environ['H2OGPT_OPENAI_API_KEY'] # must exist
if agent_verbose:
print("base_url: %s" % base_url)
print("max_tokens: %s" % max_new_tokens)
system_message, internal_file_names, system_message_parts = \
get_full_system_prompt(agent_code_writer_system_message,
agent_system_site_packages, system_prompt,
base_url,
api_key, model, text_context_list, image_file,
agent_work_dir, query, autogen_timeout)
enable_caching = True
def code_writer_terminate_func(msg):
# In case code_writer_agent just passed a chatty answer without <FINISHED_ALL_TASKS> mentioned,
# then code_executor will return empty string as response (since there was no code block to execute).
# So at this point, we need to terminate the chat otherwise code_writer_agent will keep on chatting.
return isinstance(msg, dict) and msg.get('content', '') == ''
code_writer_kwargs = dict(system_message=system_message,
llm_config={'timeout': autogen_timeout,
'extra_body': dict(enable_caching=enable_caching,
client_metadata=client_metadata,
),
"config_list": [{"model": model,
"api_key": api_key,
"base_url": base_url,
"stream": stream_output,
'max_tokens': max_new_tokens,
'cache_seed': autogen_cache_seed,
}]
},
code_execution_config=False, # Turn off code execution for this agent.
human_input_mode="NEVER",
is_termination_msg=code_writer_terminate_func,
max_consecutive_auto_reply=autogen_max_consecutive_auto_reply,
)
code_writer_agent = H2OConversableAgent("code_writer_agent", **code_writer_kwargs)
planning_messages = []
chat_result_planning = None
if autogen_use_planning_prompt:
# setup planning agents
code_writer_kwargs_planning = code_writer_kwargs.copy()
# terminate immediately
# Note: max_turns and initial_confidence_level not relevant except for code execution agent
code_writer_kwargs_update = dict(max_consecutive_auto_reply=1)
# is_termination_msg=lambda x: True
code_writer_kwargs_planning.update(code_writer_kwargs_update)
code_writer_agent_planning = H2OConversableAgent("code_writer_agent", **code_writer_kwargs_planning)
chat_kwargs = dict(recipient=code_writer_agent_planning,
max_turns=1,
message=planning_prompt(query),
cache=None,
silent=autogen_silent_exchange,
clear_history=False,
)
code_executor_kwargs_planning = code_executor_kwargs.copy()
code_executor_kwargs_planning.update(dict(
max_turns=2,
initial_confidence_level=1,
))
code_executor_agent_planning = H2OConversableAgent("code_executor_agent", **code_executor_kwargs_planning)
chat_result_planning = code_executor_agent_planning.initiate_chat(**chat_kwargs)
# transfer planning result to main agents
if hasattr(chat_result_planning, 'chat_history') and chat_result_planning.chat_history:
planning_messages = chat_result_planning.chat_history
for message in planning_messages:
if 'content' in message:
message['content'] = message['content'].replace('<FINISHED_ALL_TASKS>', '').replace('ENDOFTURN', '')
if 'role' in message and message['role'] == 'assistant':
# replace prompt
message['content'] = planning_final_prompt(query)
# apply chat history
if chat_conversation or planning_messages or agent_chat_history:
chat_messages = []
# some high-level chat history
if chat_conversation:
chat_messages.extend(structure_to_messages(None, None, chat_conversation, None))
# pre-append planning
chat_messages.extend(planning_messages)
# actual internal agent chat history
if agent_chat_history:
chat_messages.extend(agent_chat_history)
# apply
for message in chat_messages:
if message['role'] == 'user':
code_writer_agent.send(message['content'], code_executor_agent, request_reply=False, silent=True)
if message['role'] == 'assistant':
code_executor_agent.send(message['content'], code_writer_agent, request_reply=False, silent=True)
chat_kwargs = dict(recipient=code_writer_agent,
max_turns=autogen_max_turns,
message=query,
cache=None,
silent=autogen_silent_exchange,
clear_history=False,
)
if autogen_cache_seed:
from autogen import Cache
# Use DiskCache as cache
cache_root_path = "./autogen_cache"
if not os.path.exists(cache_root_path):
os.makedirs(cache_root_path, exist_ok=True)
with Cache.disk(cache_seed=autogen_cache_seed, cache_path_root=cache_root_path) as cache:
chat_kwargs.update(dict(cache=cache))
chat_result = code_executor_agent.initiate_chat(**chat_kwargs)
else:
chat_result = code_executor_agent.initiate_chat(**chat_kwargs)
if client_metadata:
print("END 2AGENT: client_metadata: %s" % client_metadata, flush=True)
ret_dict = get_ret_dict_and_handle_files(chat_result,
chat_result_planning,
model,
agent_work_dir, agent_verbose, internal_file_names, authorization,
autogen_run_code_in_docker, autogen_stop_docker_executor, executor,
agent_venv_dir, agent_code_writer_system_message,
agent_system_site_packages,
system_message_parts,
autogen_code_restrictions_level, autogen_silent_exchange,
agent_accuracy,
client_metadata=client_metadata)
if client_metadata:
print("END FILES FOR 2AGENT: client_metadata: %s" % client_metadata, flush=True)
return ret_dict
|