File size: 46,155 Bytes
3943768 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 |
import copy
import io
import logging
import os
import sys
import ast
import json
import time
import traceback
import uuid
from traceback import print_exception
from typing import List, Dict, Optional, Literal, Union, Any
import filelock
import jsonschema
from pydantic import BaseModel, Field
from fastapi import FastAPI, Header, HTTPException, Form, Query
from fastapi.middleware.cors import CORSMiddleware
from fastapi import Request, Depends
from fastapi.responses import JSONResponse, Response, StreamingResponse
from fastapi import File, UploadFile
from sse_starlette import EventSourceResponse
from starlette.responses import PlainTextResponse
from openai_server.backend_utils import get_user_dir, run_upload_api, meta_ext
from slowapi import Limiter
from slowapi.util import get_remote_address
from slowapi.errors import RateLimitExceeded
from slowapi.middleware import SlowAPIMiddleware
sys.path.append('openai_server')
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s: %(message)s')
# https://github.com/h2oai/h2ogpt/issues/1132
# https://github.com/jquesnelle/transformers-openai-api
# https://community.openai.com/t/trying-to-turn-this-into-an-automatic-web-search-engine/306383
class Generation(BaseModel):
# put here things not supported by OpenAI but are by torch or vLLM
# https://github.com/vllm-project/vllm/blob/main/vllm/sampling_params.py
top_k: int | None = 1
min_p: float | None = 0.0
class ResponseFormat(BaseModel):
# type must be "json_object" or "text"
type: str = Literal["text", "json_object", "json_code", "json_schema"]
json_schema: Optional[Dict[str, Any]] = None
strict: Optional[bool] = True
# https://github.com/vllm-project/vllm/blob/a3c226e7eb19b976a937e745f3867eb05f809278/vllm/entrypoints/openai/protocol.py#L62
class H2oGPTParams(BaseModel):
# keep in sync with evaluate()
# handled by extra_body passed to OpenAI API
enable_caching: bool | None = None
prompt_type: str | None = None
prompt_dict: Dict | str | None = None
chat_template: str | None = None
penalty_alpha: float | None = 0.0
num_beams: int | None = 1
min_new_tokens: int | None = 1
early_stopping: bool | None = False
max_time: float | None = 360
repetition_penalty: float | None = 1
num_return_sequences: int | None = 1
do_sample: bool | None = None
chat: bool | None = True
langchain_mode: str | None = 'LLM'
add_chat_history_to_context: bool | None = True
langchain_action: str | None = 'Query'
langchain_agents: List | None = []
top_k_docs: int | None = 10
chunk: bool | None = True
chunk_size: int | None = 512
document_subset: str | None = 'Relevant'
document_choice: str | None = 'All'
document_source_substrings: List | None = []
document_source_substrings_op: str | None = 'and'
document_content_substrings: List | None = []
document_content_substrings_op: str | None = 'and'
pre_prompt_query: str | None = None
prompt_query: str | None = None
pre_prompt_summary: str | None = None
prompt_summary: str | None = None
hyde_llm_prompt: str | None = None
all_docs_start_prompt: str | None = None,
all_docs_finish_prompt: str | None = None,
user_prompt_for_fake_system_prompt: str | None = None
json_object_prompt: str | None = None
json_object_prompt_simpler: str | None = None
json_code_prompt: str | None = None
json_code_prompt_if_no_schema: str | None = None
json_schema_instruction: str | None = None
json_preserve_system_prompt: bool | None = False
json_object_post_prompt_reminder: str | None = None
json_code_post_prompt_reminder: str | None = None
json_code2_post_prompt_reminder: str | None = None
system_prompt: str | None = 'auto'
image_audio_loaders: List | None = None
pdf_loaders: List | None = None
url_loaders: List | None = None
jq_schema: str | None = None
extract_frames: int | None = 10
llava_prompt: str | None = 'auto'
# visible_models
# h2ogpt_key,
add_search_to_context: bool | None = False
chat_conversation: List | None = []
text_context_list: List | None = []
docs_ordering_type: str | None = None
min_max_new_tokens: int | None = 512
max_input_tokens: int | None = -1
max_total_input_tokens: int | None = -1
docs_token_handling: str | None = None
docs_joiner: str | None = None
hyde_level: int | None = 0
hyde_template: str | None = 'auto'
hyde_show_only_final: bool | None = False
doc_json_mode: bool | None = False
metadata_in_context: Union[str, list] | None = 'auto'
chatbot_role: str | None = 'None'
speaker: str | None = 'None'
tts_language: str | None = 'autodetect'
tts_speed: float | None = 1.0
image_file: Union[str, list] | None = None
image_control: str | None = None
images_num_max: int | None = None
image_resolution: tuple | None = None
image_format: str | None = None
rotate_align_resize_image: bool | None = None
video_frame_period: int | None = None
image_batch_image_prompt: str | None = None
image_batch_final_prompt: str | None = None
image_batch_stream: bool | None = None
visible_vision_models: Union[str, int, list] | None = 'auto'
video_file: Union[str, list] | None = None
model_lock: dict | None = None
client_metadata: str | None = ''
response_format: Optional[ResponseFormat] = Field(
default=None,
description=(
"Similar to chat completion, this parameter specifies the format of "
"output. Only {'type': 'text' } or {'type': 'json_object'} or {'type': 'json_code'} or {'type': 'json_schema'} are "
"supported."
),
)
guided_json: Optional[Union[str, dict, BaseModel]] = Field(
default=None,
description="If specified, the output will follow the JSON schema.",
)
guided_regex: Optional[str] = Field(
default=None,
description=("If specified, the output will follow the regex pattern."),
)
guided_choice: Optional[List[str]] = Field(
default=None,
description="If specified, the output will be exactly one of the choices.",
)
guided_grammar: Optional[str] = Field(
default=None,
description="If specified, the output will follow the context free grammar.",
)
guided_whitespace_pattern: Optional[str] = Field(
default=None,
description="If specified, JSON white space will be restricted.",
)
class AgentParams(BaseModel):
use_agent: bool | None = False
autogen_stop_docker_executor: bool | None = False
autogen_run_code_in_docker: bool | None = False
autogen_max_consecutive_auto_reply: int | None = 10
autogen_max_turns: int | None = None
autogen_timeout: int = 120
agent_verbose: bool = False
autogen_cache_seed: int | None = None
agent_venv_dir: str | None = None
agent_code_writer_system_message: str | None = None
agent_system_site_packages: bool = True
autogen_code_restrictions_level: int = 2
autogen_silent_exchange: bool = True
agent_type: str | None = 'auto'
agent_accuracy: str | None = 'standard'
agent_work_dir: str | None = None
agent_chat_history: list | None = []
agent_files: list | None = []
class Params(H2oGPTParams, AgentParams):
# https://platform.openai.com/docs/api-reference/completions/create
user: str | None = Field(default=None, description="Track user")
model: str | None = Field(default=None, description="Choose model")
best_of: int | None = Field(default=1, description="Unused")
frequency_penalty: float | None = 0.0
max_tokens: int | None = 256
n: int | None = Field(default=1, description="Unused")
presence_penalty: float | None = 0.0
stop: str | List[str] | None = None
stop_token_ids: List[int] | None = None
stream: bool | None = False
temperature: float | None = 0.3
top_p: float | None = 1.0
seed: int | None = 0 # 0 means random seed if sampling
class CompletionParams(Params):
prompt: str | List[str]
logit_bias: dict | None = None
logprobs: int | None = None
class TextRequest(Generation, CompletionParams):
pass
class TextResponse(BaseModel):
id: str
choices: List[dict]
created: int = int(time.time())
model: str
object: str = "text_completion"
usage: dict
class ChatParams(Params):
messages: List[dict]
tools: list | None = Field(default=None, description="WIP")
tool_choice: str | None = Field(default=None, description="WIP")
class ChatRequest(Generation, ChatParams):
# https://platform.openai.com/docs/api-reference/chat/create
pass
class ChatResponse(BaseModel):
id: str
choices: List[dict]
created: int = int(time.time())
model: str
object: str = "chat.completion"
usage: dict
class Model(BaseModel):
id: str
object: str = 'model'
created: str = 'na'
owned_by: str = 'H2O.ai'
class ModelInfoResponse(BaseModel):
model_info: str
class ModelListResponse(BaseModel):
model_names: List[Model]
def verify_api_key(authorization: str = Header(None)) -> None:
server_api_key = os.getenv('H2OGPT_OPENAI_API_KEY', 'EMPTY')
if server_api_key:
h2ogpt_api_keys = [server_api_key]
else:
h2ogpt_api_keys = []
if server_api_key == 'EMPTY':
# dummy case since '' cannot be handled
# disables all auth
return
# assume if set file, shared keys for h2oGPT and OpenAI uses
server_api_key_file = os.getenv('H2OGPT_H2OGPT_API_KEYS')
# string of list case
if isinstance(server_api_key_file, str) and not os.path.isfile(server_api_key_file):
h2ogpt_api_keys.extend(ast.literal_eval(server_api_key_file))
# file case
if isinstance(server_api_key_file, str) and os.path.isfile(server_api_key_file):
with filelock.FileLock(server_api_key_file + '.lock'):
with open(server_api_key_file, 'rt') as f:
h2ogpt_api_keys.extend(json.load(f))
# no keys case
if len(h2ogpt_api_keys) == 0:
return
if any([authorization is not None and authorization == f"Bearer {x}" for x in h2ogpt_api_keys]):
return
raise HTTPException(status_code=401, detail="Unauthorized")
# Dependency that extracts the model and stores it in request state
async def extract_model_from_request(request: Request, request_data: ChatRequest):
request.state.model = request_data.model
return request_data
limiter = Limiter(key_func=get_remote_address)
global_limiter = Limiter(key_func=lambda: "global") # Global limiter with constant key
def model_rate_limit_key(request: Request):
# Extract the model from request data, assuming it's in the JSON body
# Since we are in FastAPI, we'll retrieve the model from the request object
# FastAPI request's `state` can store request data parsed by dependency injection
model = request.state.model # Set by a dependency or manually within the route
if not model:
raise ValueError("Model not provided in request data")
# Use the model name as the key for rate limiting
return model
def api_key_rate_limit_key(request: Request):
# Example: Extract user ID or API key for rate limiting
return request.headers.get("X-User-ID", 'unknown')
app = FastAPI()
check_key = [Depends(verify_api_key)]
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"]
)
# Add SlowAPI middleware for rate limiting (without limiter argument)
app.add_middleware(SlowAPIMiddleware)
# Set limiter in the app state
app.state.limiter = limiter
app.state.global_limiter = global_limiter
# Exception handler for rate limit exceeded
app.add_exception_handler(RateLimitExceeded,
lambda request, exc: JSONResponse({"error": "rate limit exceeded"}, status_code=429))
# https://platform.openai.com/docs/models/how-we-use-your-data
class InvalidRequestError(Exception):
pass
status_limiter_global = os.getenv('H2OGPT_STATUS_LIMITER_GLOBAL', '100/second')
status_limiter_user = os.getenv('H2OGPT_STATUS_LIMITER_USER', '3/second')
completion_limiter_global = os.getenv('H2OGPT_COMPLETION_LIMITER_GLOBAL', '30/second')
completion_limiter_user = os.getenv('H2OGPT_STATUS_LIMITER_USER', '5/second')
completion_limiter_model = os.getenv('H2OGPT_STATUS_LIMITER_MODEL', '1/second')
audio_limiter_global = os.getenv('H2OGPT_AUDIO_LIMITER_GLOBAL', '20/second')
audio_limiter_user = os.getenv('H2OGPT_AUDIO_LIMITER_USER', '5/second')
image_limiter_global = os.getenv('H2OGPT_IMAGE_LIMITER_GLOBAL', '5/second')
image_limiter_user = os.getenv('H2OGPT_IMAGE_LIMITER_USER', '1/second')
embedding_limiter_global = os.getenv('H2OGPT_EMBEDDING_LIMITER_GLOBAL', '30/second')
embedding_limiter_user = os.getenv('H2OGPT_EMBEDDING_LIMITER_USER', '1/second')
file_limiter_global = os.getenv('H2OGPT_FILE_LIMITER_GLOBAL', '50/second')
file_limiter_user = os.getenv('H2OGPT_FILE_LIMITER_USER', '20/second')
@app.get("/health")
@limiter.limit(status_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(status_limiter_global)
async def health(request: Request) -> Response:
"""Health check."""
return Response(status_code=200)
@app.get("/version")
@limiter.limit(status_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(status_limiter_global)
async def show_version(request: Request):
try:
from ..src.version import __version__
githash = __version__
except:
githash = 'unknown'
ver = {"version": githash}
return JSONResponse(content=ver)
@app.exception_handler(Exception)
async def validation_exception_handler(request, exc):
print_exception(exc)
exc2 = InvalidRequestError(str(exc))
return PlainTextResponse(str(exc2), status_code=400)
@app.options("/", dependencies=check_key)
async def options_route():
return JSONResponse(content="OK")
@app.post('/v1/completions', response_model=TextResponse, dependencies=check_key)
@global_limiter.limit(completion_limiter_global)
@limiter.limit(completion_limiter_user, key_func=api_key_rate_limit_key)
@limiter.limit(completion_limiter_model, key_func=model_rate_limit_key)
async def openai_completions(request: Request, request_data: TextRequest, authorization: str = Header(None)):
try:
request_data_dict = dict(request_data)
request_data_dict['authorization'] = authorization
if request_data.stream:
async def generator():
try:
from openai_server.backend import astream_completions
async for resp in astream_completions(request_data_dict, stream_output=True):
disconnected = await request.is_disconnected()
if disconnected:
return
yield {"data": json.dumps(resp)}
except Exception as e1:
print(traceback.format_exc())
error_response = {
"error": {
"message": str(e1),
"type": "server_error",
"param": None,
"code": "500"
}
}
yield {"data": json.dumps(error_response)}
# After yielding the error, we'll close the connection
return
# raise e1
return EventSourceResponse(generator())
else:
from openai_server.backend import astream_completions
response = {}
async for resp in astream_completions(request_data_dict, stream_output=False):
if await request.is_disconnected():
return
response = resp
return JSONResponse(response)
except Exception as e:
# This will handle any exceptions that occur outside of the streaming context
# or in the non-streaming case
error_response = {
"error": {
"message": str(e),
"type": "server_error",
"param": None,
"code": 500
}
}
raise HTTPException(status_code=500, detail=error_response)
def random_uuid() -> str:
return str(uuid.uuid4().hex)
class FunctionCall(BaseModel):
name: str
arguments: str
class ToolCall(BaseModel):
id: str = Field(default_factory=lambda: f"chatcmpl-tool-{random_uuid()}")
type: Literal["function"] = "function"
function: FunctionCall
async def get_tool(request: Request, request_data: ChatRequest, authorization: str = Header(None)):
try:
return _get_tool(request, request_data, authorization)
except Exception as e1:
# For non-streaming responses, we'll return a JSON error response
raise HTTPException(status_code=500, detail={
"error": {
"message": str(e1),
"type": "server_error",
"param": None,
"code": 500
}
})
async def _get_tool(request: Request, request_data: ChatRequest, authorization: str = Header(None)):
request_data_dict = dict(request_data)
request_data_dict = copy.deepcopy(request_data_dict)
tools = request_data_dict.get('tools')
model = request_data_dict.get('model')
prompt = ""
tool_names = []
tool_dict = {}
tool_dict['noop'] = None
for tool in tools:
assert tool['type'] == 'function'
tool_name = tool['function']['name']
tool_dict[tool_name] = tool
tool_description = tool['function']['description']
if 'claude' in model:
prompt += f'<tool>\n<name>\n{tool_name}\n</name>\n<description>\n{tool_description}\n</description>\n</tool>\n'
else:
prompt += f'# Tool Name\n\n{tool_name}\n# Tool Description:\n\n{tool_description}\n\n'
tool_names.append(tool_name)
if not request_data_dict['messages']:
raise ValueError("No messages in request, required for tool_choice='auto'")
original_prompt = request_data_dict['messages'][0]['content']
if 'claude' in model:
prompt += f"<prompt>\n{original_prompt}\n</prompt>\n"
else:
prompt += f"# Prompt\n\n{original_prompt}\n\n"
prompt += """
Choose the single tool that best solves the task inferred from the prompt. Never choose more than one tool, i.e. act like parallel_tool_calls=False. If no tool is a good fit, then only choose the noop tool.
"""
request_data_dict['guided_json'] = {
"type": "object",
"properties": {
"tool": {
"type": "string",
"description": "The name of the single best tool to use to solve the task inferred from the user prompt. If no tool is a good fit, then only choose the noop tool.",
"enum": tool_names + ['noop'],
},
},
"required": ["tool"]
}
request_data_dict['response_format'] = dict(type='json_object')
request_data_dict['text_context_list'] = []
request_data_dict['use_agent'] = False
request_data_dict['add_chat_history_to_context'] = False
request_data_dict['chat_conversation'] = []
request_data_dict['stream_output'] = False
request_data_dict['stream'] = False
request_data_dict['langchain_action'] = 'Query'
request_data_dict['langchain_agents'] = []
request_data_dict['system_prompt'] = "You are a JSON maker."
request_data_dict['max_tokens'] = max(request_data_dict.get('max_tokens', 256), 256)
request_data_dict['hyde_level'] = 0
messages = [{'content': prompt, 'role': 'user'}]
request_data_dict['messages'] = messages
# avoid recursion
request_data_dict['tools'] = None
# recurse
request_data = ChatRequest(**request_data_dict)
trials = 3
tool_name = None
msgs = []
for trial in range(trials):
response_json = await openai_chat_completions(request, request_data, authorization)
response_all = json.loads(response_json.body)
json_answer = json.loads(response_all['choices'][0]['message']['content'])
msgs.append(json_answer)
print(json_answer)
try:
jsonschema.validate(instance=json_answer, schema=request_data_dict['guided_json'])
except:
continue
if 'tool' not in json_answer:
continue
tool_name = json_answer['tool']
break
print(msgs)
if tool_name is None:
raise RuntimeError("Failed to get tool choice: %s" % msgs)
return tool_name, tool_dict[tool_name]
def tool_to_guided_json(tool):
guided_json = {
"type": "object",
"properties": tool,
}
return guided_json
@app.post('/v1/chat/completions', response_model=ChatResponse, dependencies=check_key)
@global_limiter.limit(completion_limiter_global)
@limiter.limit(completion_limiter_user, key_func=api_key_rate_limit_key)
@limiter.limit(completion_limiter_model, key_func=model_rate_limit_key)
async def openai_chat_completions(request: Request,
request_data: ChatRequest = Depends(extract_model_from_request),
authorization: str = Header(None)):
request_data_dict = dict(request_data)
request_data_dict['authorization'] = authorization
str_uuid = str(uuid.uuid4())
if 'client_metadata' in request_data_dict:
logging.info(f"Chat Completions request {str_uuid}: {len(request_data_dict)} items client_metadata: {request_data_dict['client_metadata']}")
else:
logging.info(f"Chat Completions request {str_uuid}: {len(request_data_dict)} items")
# don't allow tool use with guided_json for now
if request_data_dict['guided_json'] and request_data_dict.get('tools'):
raise NotImplementedError("Cannot use tools with guided_json, because guided_json used for tool use.")
# extract tool or do auto
if request_data_dict.get('tool_choice') == 'auto' and request_data_dict.get('tools'):
tool_name_chosen, tool_chosen = await get_tool(request, request_data, authorization)
request_data_dict['tools'] = []
if tool_name_chosen != 'noop':
request_data_dict['guided_json'] = tool_to_guided_json(tool_chosen)
request_data_dict['tool_choice'] = tool_name_chosen
else:
request_data_dict['tool_choice'] = 'auto'
# handle json_schema -> guided_json
# https://platform.openai.com/docs/guides/structured-outputs/how-to-use?context=without_parse&lang=python
if request_data_dict['response_format'] and request_data_dict['response_format'].type == 'json_schema':
json_schema = request_data_dict['response_format'].json_schema
if json_schema:
# try to json.loads schema to ensure correct
if not isinstance(json_schema, dict):
json_schema_dict = json.loads(json_schema)
else:
json_schema_dict = json_schema
assert 'schema' in json_schema_dict, "Schema should start by containing 'name' and 'schema' keys."
schema = json_schema_dict['schema']
assert schema, "Inner schema key should contain at least 'type: 'object' and 'properties' keys and can include 'required' or 'additionalProperties'"
if not isinstance(schema, dict):
schema_dict = json.loads(schema)
else:
schema_dict = schema
assert schema_dict, "Inner schema key should contain at least 'type: 'object' and 'properties' keys and can include 'required' or 'additionalProperties'"
request_data_dict['guided_json'] = schema_dict
else:
raise ValueError("Specified response_format type json_schema but no json_schema provided.")
request_data_dict['response_format'] = ResponseFormat(type='json_object')
if request_data.stream:
from openai_server.backend import astream_chat_completions
async def generator():
try:
async for resp1 in astream_chat_completions(request_data_dict, stream_output=True):
if await request.is_disconnected():
if 'client_metadata' in request_data_dict:
logging.info(f"Chat Completions disconnected {str_uuid}: client_metadata: {request_data_dict['client_metadata']}")
return
yield {"data": json.dumps(resp1)}
if 'client_metadata' in request_data_dict:
logging.info(f"Chat Completions streaming finished {str_uuid}: client_metadata: {request_data_dict['client_metadata']}")
except Exception as e1:
print(traceback.format_exc())
# Instead of raising an HTTPException, we'll yield a special error message
error_response = {
"error": {
"message": str(e1),
"type": "server_error",
"param": None,
"code": "500"
}
}
print(error_response)
if 'client_metadata' in request_data_dict:
logging.info(f"Chat Completions error {str_uuid}: client_metadata: {request_data_dict['client_metadata']}: {error_response}")
yield {"data": json.dumps(error_response)}
# After yielding the error, we'll close the connection
return
# avoid sending more data back as exception, just be done
# raise e1
return EventSourceResponse(generator())
else:
from openai_server.backend import astream_chat_completions
try:
response = {}
async for resp in astream_chat_completions(request_data_dict, stream_output=False):
if await request.is_disconnected():
return
response = resp
if 'client_metadata' in request_data_dict:
logging.info(f"Chat Completions non-streaming finished {str_uuid}: client_metadata: {request_data_dict['client_metadata']}")
return JSONResponse(response)
except Exception as e:
traceback.print_exc()
# For non-streaming responses, we'll return a JSON error response
error_response = {
"error": {
"message": str(e),
"type": "server_error",
"param": None,
"code": 500
}
}
print(error_response)
raise HTTPException(status_code=500, detail=error_response)
# https://platform.openai.com/docs/api-reference/models/list
@app.get("/v1/models", dependencies=check_key)
@app.get("/v1/models/{model}", dependencies=check_key)
@app.get("/v1/models/{repo}/{model}", dependencies=check_key)
@limiter.limit(status_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(status_limiter_global)
async def handle_models(request: Request):
path = request.url.path
model_name = path[len('/v1/models/'):]
from openai_server.backend import get_client
client = get_client()
model_dict = ast.literal_eval(client.predict(api_name='/model_names'))
for model_i, model in enumerate(model_dict):
model_dict[model_i].update(dict(id=model.get('base_model'), object='model', created='NA', owned_by='H2O.ai'))
if not model_name:
response = {
"object": "list",
"data": model_dict,
}
return JSONResponse(response)
else:
model_info = [x for x in model_dict if x.get('base_model') == model_name]
if model_info:
model_info = model_info[0]
response = model_info.copy() if model_info else {}
if model_info is None:
raise ValueError("No such model %s" % model_name)
return JSONResponse(response)
@app.get("/v1/internal/model/info", response_model=ModelInfoResponse, dependencies=check_key)
@limiter.limit(status_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(status_limiter_global)
async def handle_model_info(request: Request):
from openai_server.backend import get_model_info
return JSONResponse(content=get_model_info())
@app.get("/v1/internal/model/list", response_model=ModelListResponse, dependencies=check_key)
@limiter.limit(status_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(status_limiter_global)
async def handle_list_models(request: Request):
from openai_server.backend import get_model_list
return JSONResponse(content=[dict(id=x) for x in get_model_list()])
# Define your request data model
class AudiotoTextRequest(BaseModel):
model: str = ''
file: str
response_format: str = 'text' # FIXME unused (https://platform.openai.com/docs/api-reference/audio/createTranscription#images/create-response_format)
stream: bool = True # NOTE: No effect on OpenAI API client, would have to use direct API
timestamp_granularities: list = ["word"] # FIXME unused
chunk: Union[str, int] = 'silence' # or 'interval' No effect on OpenAI API client, would have to use direct API
@app.post('/v1/audio/transcriptions', dependencies=check_key)
@limiter.limit(audio_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(audio_limiter_global)
async def handle_audio_transcription(request: Request):
try:
form = await request.form()
audio_file = await form["file"].read()
model = form["model"]
stream = form.get("stream", False)
response_format = form.get("response_format", 'text')
chunk = form.get("chunk", 'interval')
request_data = dict(model=model, stream=stream, audio_file=audio_file, response_format=response_format,
chunk=chunk)
if stream:
from openai_server.backend import audio_to_text
async def generator():
try:
async for resp in audio_to_text(**request_data):
disconnected = await request.is_disconnected()
if disconnected:
break
yield {"data": json.dumps(resp)}
except Exception as e1:
error_response = {
"error": {
"message": str(e1),
"type": "server_error",
"param": None,
"code": "500"
}
}
yield {"data": json.dumps(error_response)}
# raise e1 # This will close the connection after sending the error
return
return EventSourceResponse(generator())
else:
from openai_server.backend import _audio_to_text
response = ''
async for response1 in _audio_to_text(**request_data):
response = response1
return JSONResponse(response)
except Exception as e:
# This will handle any exceptions that occur outside of the streaming context
# or in the non-streaming case
error_response = {
"error": {
"message": str(e),
"type": "server_error",
"param": None,
"code": 500
}
}
raise HTTPException(status_code=500, detail=error_response)
# Define your request data model
class AudioTextRequest(BaseModel):
model: str = ''
voice: str = '' # overrides both chatbot_role and speaker if set
input: str
response_format: str = 'wav' # "mp3", "opus", "aac", "flac", "wav", "pcm"
stream: bool = True
stream_strip: bool = True
chatbot_role: str = "Female AI Assistant" # Coqui TTS
speaker: str = "SLT (female)" # Microsoft TTS
def modify_wav_header(wav_bytes):
# Ensure the bytes start with the 'RIFF' identifier
if wav_bytes[:4] != b'RIFF':
raise ValueError("This is not a valid WAV file.")
# Get current size (which we will fake)
original_size = int.from_bytes(wav_bytes[4:8], byteorder='little')
# print("Original size:", original_size)
# Calculate fake size (Maximum value for 32-bit unsigned int minus 8)
fake_size = (2 ** 30 - 1) - 8
modified_size_bytes = fake_size.to_bytes(4, byteorder='little')
# Replace the original size with the fake size in the RIFF header
modified_wav_bytes = wav_bytes[:4] + modified_size_bytes + wav_bytes[8:]
# Find the 'data' chunk and modify its size too
data_chunk_pos = modified_wav_bytes.find(b'data')
if data_chunk_pos == -1:
raise ValueError("Data chunk not found in WAV file.")
# Set a large fake size for the data chunk as well
modified_wav_bytes = (
modified_wav_bytes[:data_chunk_pos + 4] + # 'data' text
modified_size_bytes + # fake size for data chunk
modified_wav_bytes[data_chunk_pos + 8:] # rest of data
)
return modified_wav_bytes
@app.post('/v1/audio/speech', dependencies=check_key)
@limiter.limit(audio_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(audio_limiter_global)
async def handle_audio_to_speech(request: Request):
try:
request_data = await request.json()
audio_request = AudioTextRequest(**request_data)
if audio_request.stream:
from openai_server.backend import text_to_audio
async def generator():
try:
chunki = 0
async for chunk in text_to_audio(**dict(audio_request)):
disconnected = await request.is_disconnected()
if disconnected:
break
if chunki == 0 and audio_request.response_format == 'wav':
# pretend longer than is, like OpenAI does
chunk = modify_wav_header(chunk)
# h2oGPT sends each chunk as full object, we need rest to be raw data without header for real streaming
if chunki > 0 and audio_request.stream_strip:
from pydub import AudioSegment
chunk = AudioSegment.from_file(io.BytesIO(chunk),
format=audio_request.response_format).raw_data
yield chunk
chunki += 1
except Exception as e:
# For streaming audio, we can't send a JSON error response in the middle of the stream
# Instead, we'll log the error and stop the stream
print(f"Error in audio streaming: {str(e)}")
return # This will effectively close the stream
return StreamingResponse(generator(), media_type=f"audio/{audio_request.response_format}")
else:
from openai_server.backend import text_to_audio
response = b''
async for response1 in text_to_audio(**dict(audio_request)):
response = response1
return Response(content=response, media_type=f"audio/{audio_request.response_format}")
except Exception as e:
# This will handle any exceptions that occur outside of the streaming context
# or in the non-streaming case
error_response = {
"error": {
"message": str(e),
"type": "server_error",
"param": None,
"code": 500
}
}
return JSONResponse(status_code=500, content=error_response)
class ImageGenerationRequest(BaseModel):
model: str = ''
prompt: str
size: str = '1024x1024'
quality: str = 'standard'
n: int = 1
response_format: str = 'url' # FIXME: https://platform.openai.com/docs/api-reference/images/create#images/create-response_format
style: str = 'vivid'
user: str = None
@app.post('/v1/images/generations', dependencies=check_key)
@limiter.limit(image_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(image_limiter_global)
async def handle_image_generation(request: Request):
try:
body = await request.json()
model = body.get('model', '') # will choose first if nothing passed
prompt = body['prompt']
size = body.get('size', '1024x1024')
quality = body.get('quality', 'standard')
guidance_scale = body.get('guidance_scale')
num_inference_steps = body.get('num_inference_steps')
n = body.get('n', 1) # ignore the batch limits of max 10
response_format = body.get('response_format', 'b64_json') # or url
# TODO: Why not using image_request? size, quality and stuff?
image_request = dict(model=model, prompt=prompt, size=size, quality=quality, n=n,
response_format=response_format, guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps)
except KeyError as e:
raise HTTPException(status_code=400, detail=f"Missing key in request body: {str(e)}")
# no streaming
from openai_server.backend import astream_completions
body_image = dict(prompt=prompt, langchain_action='ImageGen', visible_image_models=model,
image_size=size,
image_quality=quality,
image_guidance_scale=guidance_scale,
image_num_inference_steps=num_inference_steps)
response = {}
async for resp in astream_completions(body_image, stream_output=False):
response = resp
if 'choices' in response:
image = response['choices'][0]['text'][0]
else:
image = b''
resp = {
'created': int(time.time()),
'data': []
}
import base64
if os.path.isfile(image):
with open(image, 'rb') as f:
image = f.read()
encoded_image = base64.b64encode(image).decode('utf-8')
if response_format == 'b64_json':
resp['data'].extend([{'b64_json': encoded_image}])
return JSONResponse(resp)
else:
# FIXME: jpg vs. others
resp['data'].extend([{'url': f'data:image/jpg;base64,{encoded_image}'}])
return JSONResponse(resp)
class EmbeddingsResponse(BaseModel):
index: int
embedding: List[float]
object: str = "embedding"
class EmbeddingsRequest(BaseModel):
input: str | List[str] | List[int] | List[List[int]]
model: str | None = Field(default=None, description="Unused parameter.")
encoding_format: str = Field(default="float", description="float or base64.")
user: str | None = Field(default=None, description="Unused parameter.")
@app.post("/v1/embeddings", response_model=EmbeddingsResponse, dependencies=check_key)
@limiter.limit(embedding_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(embedding_limiter_global)
async def handle_embeddings(request: Request, request_data: EmbeddingsRequest):
# https://docs.portkey.ai/docs/api-reference/embeddings
text = request_data.input
model = request_data.model
encoding_format = request_data.encoding_format
str_uuid = str(uuid.uuid4())
logging.info(
f"Embeddings request {str_uuid}: {len(text)} items, model: {model}, encoding_format: {encoding_format}")
from openai_server.backend import text_to_embedding
response = text_to_embedding(model, text, encoding_format)
try:
return JSONResponse(response)
except Exception as e:
traceback.print_exc()
print(str(e))
finally:
if response:
logging.info(
f"Done embeddings response {str_uuid}: {len(response['data'])} items, model: {model}, encoding_format: {encoding_format}")
else:
logging.error(f"No embeddings response {str_uuid}")
# https://platform.openai.com/docs/api-reference/files
class UploadFileResponse(BaseModel):
id: str
object: str
bytes: int
created_at: int
filename: str
purpose: str
@app.post("/v1/files", response_model=UploadFileResponse, dependencies=check_key)
@limiter.limit(file_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(file_limiter_global)
async def upload_file(
request: Request,
file: UploadFile = File(...),
purpose: str = Form(...),
authorization: str = Header(None)
):
content = await file.read()
filename = file.filename
response_dict = run_upload_api(content, filename, purpose, authorization)
response = UploadFileResponse(**response_dict)
return response
class FileData(BaseModel):
id: str
object: str
bytes: int
created_at: int
filename: str
purpose: str
class ListFilesResponse(BaseModel):
data: List[FileData]
@app.get("/v1/files", response_model=ListFilesResponse, dependencies=check_key)
@limiter.limit(file_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(file_limiter_global)
async def list_files(request: Request, authorization: str = Header(None)):
user_dir = get_user_dir(authorization)
if not user_dir:
raise HTTPException(status_code=404, detail="No user_dir for authorization: %s" % authorization)
if not os.path.isdir(user_dir):
os.makedirs(user_dir, exist_ok=True)
if not os.path.exists(user_dir):
raise HTTPException(status_code=404, detail="Directory not found")
files_list = []
for file_id in os.listdir(user_dir):
file_path = os.path.join(user_dir, file_id)
if file_path.endswith(meta_ext):
continue
if os.path.isfile(file_path):
file_stat = os.stat(file_path)
file_path_meta = os.path.join(user_dir, file_id + meta_ext)
if os.path.isfile(file_path_meta):
with open(file_path_meta, "rt") as f:
meta = json.loads(f.read())
else:
meta = {}
files_list.append(
FileData(
id=file_id,
object="file",
bytes=meta.get('bytes', file_stat.st_size),
created_at=meta.get('created_at', int(file_stat.st_ctime)),
filename=meta.get('filename', file_id),
purpose=meta.get('purpose', "unknown"),
)
)
return ListFilesResponse(data=files_list)
class RetrieveFileResponse(BaseModel):
id: str
object: str
bytes: int
created_at: int
filename: str
purpose: str
@app.get("/v1/files/{file_id}", response_model=RetrieveFileResponse, dependencies=check_key)
@limiter.limit(file_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(file_limiter_global)
async def retrieve_file(request: Request, file_id: str, authorization: str = Header(None)):
user_dir = get_user_dir(authorization)
file_path = os.path.join(user_dir, file_id)
if not os.path.exists(file_path):
raise HTTPException(status_code=404, detail=f"retrieve_file: {file_id}: File not found")
file_path_meta = os.path.join(user_dir, file_id + meta_ext)
if os.path.isfile(file_path_meta):
with open(file_path_meta, "rt") as f:
meta = json.loads(f.read())
else:
meta = {}
file_stat = os.stat(file_path)
response = RetrieveFileResponse(
id=file_id,
object="file",
bytes=meta.get('bytes', file_stat.st_size),
created_at=meta.get('created_at', int(file_stat.st_ctime)),
filename=meta.get('filename', file_id),
purpose=meta.get('purpose', "unknown"),
)
return response
class DeleteFileResponse(BaseModel):
id: str
object: str
deleted: bool
@app.delete("/v1/files/{file_id}", response_model=DeleteFileResponse, dependencies=check_key)
@limiter.limit(file_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(file_limiter_global)
async def delete_file(request: Request, file_id: str, authorization: str = Header(None)):
user_dir = get_user_dir(authorization)
file_path = os.path.join(user_dir, file_id)
if not os.path.exists(file_path):
raise HTTPException(status_code=404, detail=f"delete_file {file_id}: File not found")
try:
os.remove(file_path)
deleted = True
except Exception as e:
raise HTTPException(status_code=500, detail=f"An error occurred while deleting the file: {str(e)}")
response = DeleteFileResponse(
id=file_id,
object="file",
deleted=deleted
)
return response
@app.get("/v1/files/{file_id}/content", dependencies=check_key)
@limiter.limit(file_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(file_limiter_global)
async def retrieve_file_content(request: Request, file_id: str, stream: bool = Query(False),
authorization: str = Header(None)):
user_dir = get_user_dir(authorization)
file_path = os.path.join(user_dir, file_id)
if not os.path.exists(file_path):
raise HTTPException(status_code=404, detail=f"retrieve_file_content: {file_id}: File not found")
if stream:
def iter_file():
with open(file_path, mode="rb") as file_like:
while chunk := file_like.read(1024):
yield chunk
return StreamingResponse(iter_file(), media_type="application/octet-stream")
else:
with open(file_path, mode="rb") as file:
content = file.read()
return Response(content, media_type="application/octet-stream")
|