File size: 26,740 Bytes
3943768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
"""
Client test.

Run server:

python generate.py  --base_model=h2oai/h2ogpt-oig-oasst1-512-6_9b

NOTE: For private models, add --use-auth_token=True

NOTE: --use_gpu_id=True (default) must be used for multi-GPU in case see failures with cuda:x cuda:y mismatches.
Currently, this will force model to be on a single GPU.

Then run this client as:

python src/client_test.py



For HF spaces:

HOST="https://h2oai-h2ogpt-chatbot.hf.space" python src/client_test.py

Result:

Loaded as API: https://h2oai-h2ogpt-chatbot.hf.space ✔
{'instruction_nochat': 'Who are you?', 'iinput_nochat': '', 'response': 'I am h2oGPT, a large language model developed by LAION.', 'sources': ''}


For demo:

HOST="https://gpt.h2o.ai" python src/client_test.py

Result:

Loaded as API: https://gpt.h2o.ai ✔
{'instruction_nochat': 'Who are you?', 'iinput_nochat': '', 'response': 'I am h2oGPT, a chatbot created by LAION.', 'sources': ''}

NOTE: Raw output from API for nochat case is a string of a python dict and will remain so if other entries are added to dict:

{'response': "I'm h2oGPT, a large language model by H2O.ai, the visionary leader in democratizing AI.", 'sources': ''}


"""
import ast
import time
import os
import markdown  # pip install markdown
import pytest
from bs4 import BeautifulSoup  # pip install beautifulsoup4

from utils import is_gradio_version4

try:
    from enums import DocumentSubset, LangChainAction
except:
    from enums import DocumentSubset, LangChainAction

from tests.utils import get_inf_server

debug = False

os.environ['HF_HUB_DISABLE_TELEMETRY'] = '1'


def get_client(serialize=not is_gradio_version4):
    from gradio_client import Client

    client = Client(get_inf_server(), serialize=serialize)
    if debug:
        print(client.view_api(all_endpoints=True))
    return client


def get_args(prompt, prompt_type=None, chat=False,
             stream_output=False,
             enable_caching=False,
             max_new_tokens=50,
             top_k_docs=3,
             langchain_mode='Disabled',
             add_chat_history_to_context=True,
             langchain_action=LangChainAction.QUERY.value,
             langchain_agents=[],
             prompt_dict=None,
             chat_template=None,
             version=None,
             h2ogpt_key=None,
             visible_models=None,
             visible_image_models=None,
             image_size=None,
             image_quality=None,
             image_guidance_scale=None,
             image_num_inference_steps=None,
             system_prompt='',  # default of no system prompt triggered by empty string
             add_search_to_context=False,
             chat_conversation=None,
             text_context_list=None,
             document_choice=[],
             document_source_substrings=[],
             document_source_substrings_op='and',
             document_content_substrings=[],
             document_content_substrings_op='and',
             max_time=40,  # nominally want test to complete, not exercise timeout code (llama.cpp gets stuck behind file lock if prior generation is still going)
             repetition_penalty=1.0,
             do_sample=True,
             seed=0,
             metadata_in_context=[],
             ):
    from collections import OrderedDict
    kwargs = OrderedDict(instruction=prompt if chat else '',  # only for chat=True
                         iinput='',  # only for chat=True
                         context='',
                         # streaming output is supported, loops over and outputs each generation in streaming mode
                         # but leave stream_output=False for simple input/output mode
                         stream_output=stream_output,
                         enable_caching=enable_caching,
                         prompt_type=prompt_type,
                         prompt_dict=prompt_dict,
                         chat_template=chat_template,
                         temperature=0.1,
                         top_p=1.0,
                         top_k=40,
                         penalty_alpha=0,
                         num_beams=1,
                         max_new_tokens=max_new_tokens,
                         min_new_tokens=0,
                         early_stopping=False,
                         max_time=max_time,
                         repetition_penalty=repetition_penalty,
                         num_return_sequences=1,
                         do_sample=do_sample,
                         seed=seed,
                         chat=chat,
                         instruction_nochat=prompt if not chat else '',
                         iinput_nochat='',  # only for chat=False
                         langchain_mode=langchain_mode,
                         add_chat_history_to_context=add_chat_history_to_context,
                         langchain_action=langchain_action,
                         langchain_agents=langchain_agents,
                         top_k_docs=top_k_docs,
                         chunk=True,
                         chunk_size=512,
                         document_subset=DocumentSubset.Relevant.name,
                         document_choice=[] or document_choice,
                         document_source_substrings=[] or document_source_substrings,
                         document_source_substrings_op='and' or document_source_substrings_op,
                         document_content_substrings=[] or document_content_substrings,
                         document_content_substrings_op='and' or document_content_substrings_op,
                         pre_prompt_query=None,
                         prompt_query=None,
                         pre_prompt_summary=None,
                         prompt_summary=None,
                         hyde_llm_prompt=None,
                         all_docs_start_prompt=None,
                         all_docs_finish_prompt=None,

                         user_prompt_for_fake_system_prompt=None,
                         json_object_prompt=None,
                         json_object_prompt_simpler=None,
                         json_code_prompt=None,
                         json_code_prompt_if_no_schema=None,
                         json_schema_instruction=None,
                         json_preserve_system_prompt=None,
                         json_object_post_prompt_reminder=None,
                         json_code_post_prompt_reminder=None,
                         json_code2_post_prompt_reminder=None,

                         system_prompt=system_prompt,
                         image_audio_loaders=None,
                         pdf_loaders=None,
                         url_loaders=None,
                         jq_schema=None,
                         extract_frames=None,
                         llava_prompt=None,
                         visible_models=visible_models,
                         visible_image_models=visible_image_models,
                         image_size=image_size,
                         image_quality=image_quality,
                         image_guidance_scale=image_guidance_scale,
                         image_num_inference_steps=image_num_inference_steps,
                         h2ogpt_key=h2ogpt_key,
                         add_search_to_context=add_search_to_context,
                         chat_conversation=chat_conversation,
                         text_context_list=text_context_list,
                         docs_ordering_type=None,
                         min_max_new_tokens=None,
                         max_input_tokens=None,
                         max_total_input_tokens=None,
                         docs_token_handling=None,
                         docs_joiner=None,
                         hyde_level=0,
                         hyde_template=None,
                         hyde_show_only_final=False,
                         doc_json_mode=False,
                         metadata_in_context=metadata_in_context,

                         chatbot_role='None',
                         speaker='None',
                         tts_language='autodetect',
                         tts_speed=1.0,

                         image_file=None,
                         image_control=None,
                         images_num_max=None,
                         image_resolution=None,
                         image_format=None,
                         rotate_align_resize_image=None,
                         video_frame_period=None,
                         image_batch_image_prompt=None,
                         image_batch_final_prompt=None,
                         image_batch_stream=None,
                         visible_vision_models=None,
                         video_file=None,

                         response_format=None,
                         guided_json=None,
                         guided_regex=None,
                         guided_choice=None,
                         guided_grammar=None,
                         guided_whitespace_pattern=None,

                         model_lock=None,
                         client_metadata=None,
                         )
    diff = 0
    from evaluate_params import eval_func_param_names
    assert len(set(eval_func_param_names).difference(set(list(kwargs.keys())))) == diff
    assert eval_func_param_names == list(kwargs.keys())
    if chat:
        # add chatbot output on end.  Assumes serialize=False
        kwargs.update(dict(chatbot=[]))

    return kwargs, list(dict(kwargs).values())


@pytest.mark.skip(reason="For manual use against some server, no server launched")
def test_client_basic(prompt_type='human_bot', version=None, visible_models=None, prompt='Who are you?',
                      h2ogpt_key=None):
    return run_client_nochat(prompt=prompt, prompt_type=prompt_type, max_new_tokens=50, version=version,
                             visible_models=visible_models, h2ogpt_key=h2ogpt_key)


"""
time HOST=https://gpt-internal.h2o.ai PYTHONPATH=. pytest -n 20 src/client_test.py::test_client_basic_benchmark
32 seconds to answer 20 questions at once with 70B llama2 on 4x A100 80GB using TGI 0.9.3
"""


@pytest.mark.skip(reason="For manual use against some server, no server launched")
@pytest.mark.parametrize("id", range(20))
def test_client_basic_benchmark(id, prompt_type='human_bot', version=None):
    return run_client_nochat(prompt="""
/nfs4/llm/h2ogpt/h2ogpt/bin/python /home/arno/pycharm-2022.2.2/plugins/python/helpers/pycharm/_jb_pytest_runner.py --target src/client_test.py::test_client_basic
Testing started at 8:41 AM ...
Launching pytest with arguments src/client_test.py::test_client_basic --no-header --no-summary -q in /nfs4/llm/h2ogpt

============================= test session starts ==============================
collecting ...
src/client_test.py:None (src/client_test.py)
ImportError while importing test module '/nfs4/llm/h2ogpt/src/client_test.py'.
Hint: make sure your test modules/packages have valid Python names.
Traceback:
h2ogpt/lib/python3.10/site-packages/_pytest/python.py:618: in _importtestmodule
    mod = import_path(self.path, mode=importmode, root=self.config.rootpath)
h2ogpt/lib/python3.10/site-packages/_pytest/pathlib.py:533: in import_path
    importlib.import_module(module_name)
/usr/lib/python3.10/importlib/__init__.py:126: in import_module
    return _bootstrap._gcd_import(name[level:], package, level)
<frozen importlib._bootstrap>:1050: in _gcd_import
    ???
<frozen importlib._bootstrap>:1027: in _find_and_load
    ???
<frozen importlib._bootstrap>:1006: in _find_and_load_unlocked
    ???
<frozen importlib._bootstrap>:688: in _load_unlocked
    ???
h2ogpt/lib/python3.10/site-packages/_pytest/assertion/rewrite.py:168: in exec_module
    exec(co, module.__dict__)
src/client_test.py:51: in <module>
    from enums import DocumentSubset, LangChainAction
E   ModuleNotFoundError: No module named 'enums'


collected 0 items / 1 error

=============================== 1 error in 0.14s ===============================
ERROR: not found: /nfs4/llm/h2ogpt/src/client_test.py::test_client_basic
(no name '/nfs4/llm/h2ogpt/src/client_test.py::test_client_basic' in any of [<Module client_test.py>])


Process finished with exit code 4

What happened?
""", prompt_type=prompt_type, max_new_tokens=100, version=version)


def run_client_nochat(prompt, prompt_type, max_new_tokens, version=None, h2ogpt_key=None, visible_models=None):
    kwargs, args = get_args(prompt, prompt_type, chat=False, max_new_tokens=max_new_tokens, version=version,
                            visible_models=visible_models, h2ogpt_key=h2ogpt_key)

    api_name = '/submit_nochat'
    client = get_client(serialize=not is_gradio_version4)
    res = client.predict(
        *tuple(args),
        api_name=api_name,
    )
    print("Raw client result: %s" % res, flush=True)
    res_dict = dict(prompt=kwargs['instruction_nochat'], iinput=kwargs['iinput_nochat'],
                    response=md_to_text(res))
    print(res_dict)
    return res_dict, client


@pytest.mark.skip(reason="For manual use against some server, no server launched")
def test_client_basic_api(prompt_type='human_bot', version=None, h2ogpt_key=None):
    return run_client_nochat_api(prompt='Who are you?', prompt_type=prompt_type, max_new_tokens=50, version=version,
                                 h2ogpt_key=h2ogpt_key)


def run_client_nochat_api(prompt, prompt_type, max_new_tokens, version=None, h2ogpt_key=None):
    kwargs, args = get_args(prompt, prompt_type, chat=False, max_new_tokens=max_new_tokens, version=version,
                            h2ogpt_key=h2ogpt_key)

    api_name = '/submit_nochat_api'  # NOTE: like submit_nochat but stable API for string dict passing
    client = get_client(serialize=not is_gradio_version4)
    res = client.predict(
        str(dict(kwargs)),
        api_name=api_name,
    )
    print("Raw client result: %s" % res, flush=True)
    res_dict = dict(prompt=kwargs['instruction_nochat'], iinput=kwargs['iinput_nochat'],
                    response=md_to_text(ast.literal_eval(res)['response']),
                    sources=ast.literal_eval(res)['sources'])
    print(res_dict)
    return res_dict, client


@pytest.mark.skip(reason="For manual use against some server, no server launched")
def test_client_basic_api_lean(prompt='Who are you?', prompt_type='human_bot', version=None, h2ogpt_key=None,
                               chat_conversation=None, system_prompt=''):
    return run_client_nochat_api_lean(prompt=prompt, prompt_type=prompt_type, max_new_tokens=50,
                                      version=version, h2ogpt_key=h2ogpt_key,
                                      chat_conversation=chat_conversation,
                                      system_prompt=system_prompt)


def run_client_nochat_api_lean(prompt, prompt_type, max_new_tokens, version=None, h2ogpt_key=None,
                               chat_conversation=None, system_prompt=''):
    kwargs = dict(instruction_nochat=prompt, h2ogpt_key=h2ogpt_key, chat_conversation=chat_conversation,
                  system_prompt=system_prompt)

    api_name = '/submit_nochat_api'  # NOTE: like submit_nochat but stable API for string dict passing
    client = get_client(serialize=not is_gradio_version4)
    res = client.predict(
        str(dict(kwargs)),
        api_name=api_name,
    )
    print("Raw client result: %s" % res, flush=True)
    res_dict = dict(prompt=kwargs['instruction_nochat'],
                    response=md_to_text(ast.literal_eval(res)['response']),
                    sources=ast.literal_eval(res)['sources'],
                    h2ogpt_key=h2ogpt_key)
    print(res_dict)
    return res_dict, client


@pytest.mark.skip(reason="For manual use against some server, no server launched")
def test_client_basic_api_lean_morestuff(prompt_type='human_bot', version=None, h2ogpt_key=None):
    return run_client_nochat_api_lean_morestuff(prompt='Who are you?', prompt_type=prompt_type, max_new_tokens=50,
                                                version=version, h2ogpt_key=h2ogpt_key)


def run_client_nochat_api_lean_morestuff(prompt, prompt_type='human_bot', max_new_tokens=512, version=None,
                                         h2ogpt_key=None):
    kwargs = dict(
        instruction='',
        iinput='',
        context='',
        stream_output=False,
        prompt_type=prompt_type,
        temperature=0.1,
        top_p=1.0,
        top_k=40,
        penalty_alpha=0,
        num_beams=1,
        max_new_tokens=1024,
        min_new_tokens=0,
        early_stopping=False,
        max_time=20,
        repetition_penalty=1.0,
        num_return_sequences=1,
        do_sample=True,
        seed=0,
        chat=False,
        instruction_nochat=prompt,
        iinput_nochat='',
        langchain_mode='Disabled',
        add_chat_history_to_context=True,
        langchain_action=LangChainAction.QUERY.value,
        langchain_agents=[],
        top_k_docs=4,
        document_subset=DocumentSubset.Relevant.name,
        document_choice=[],
        document_source_substrings=[],
        document_source_substrings_op='and',
        document_content_substrings=[],
        document_content_substrings_op='and',
        h2ogpt_key=h2ogpt_key,
        add_search_to_context=False,
    )

    api_name = '/submit_nochat_api'  # NOTE: like submit_nochat but stable API for string dict passing
    client = get_client(serialize=not is_gradio_version4)
    res = client.predict(
        str(dict(kwargs)),
        api_name=api_name,
    )
    print("Raw client result: %s" % res, flush=True)
    res_dict = dict(prompt=kwargs['instruction_nochat'],
                    response=md_to_text(ast.literal_eval(res)['response']),
                    sources=ast.literal_eval(res)['sources'],
                    h2ogpt_key=h2ogpt_key)
    print(res_dict)
    return res_dict, client


@pytest.mark.skip(reason="For manual use against some server, no server launched")
def test_client_chat(prompt_type='human_bot', version=None, h2ogpt_key=None):
    return run_client_chat(prompt='Who are you?', prompt_type=prompt_type, stream_output=False, max_new_tokens=50,
                           langchain_mode='Disabled',
                           langchain_action=LangChainAction.QUERY.value,
                           langchain_agents=[],
                           version=version,
                           h2ogpt_key=h2ogpt_key)


@pytest.mark.skip(reason="For manual use against some server, no server launched")
def test_client_chat_stream(prompt_type='human_bot', version=None, h2ogpt_key=None):
    return run_client_chat(prompt="Tell a very long kid's story about birds.", prompt_type=prompt_type,
                           stream_output=True, max_new_tokens=512,
                           langchain_mode='Disabled',
                           langchain_action=LangChainAction.QUERY.value,
                           langchain_agents=[],
                           version=version,
                           h2ogpt_key=h2ogpt_key)


def run_client_chat(prompt='',
                    stream_output=None,
                    max_new_tokens=128,
                    langchain_mode='Disabled',
                    langchain_action=LangChainAction.QUERY.value,
                    langchain_agents=[],
                    prompt_type=None, prompt_dict=None, chat_template=None,
                    version=None,
                    h2ogpt_key=None,
                    chat_conversation=None,
                    system_prompt='',
                    document_choice=[],
                    document_content_substrings=[],
                    document_content_substrings_op='and',
                    document_source_substrings=[],
                    document_source_substrings_op='and',
                    top_k_docs=3,
                    max_time=20,
                    repetition_penalty=1.0,
                    do_sample=True,
                    seed=0,
                    ):
    client = get_client(serialize=False)

    kwargs, args = get_args(prompt, prompt_type, chat=True, stream_output=stream_output,
                            max_new_tokens=max_new_tokens,
                            langchain_mode=langchain_mode,
                            langchain_action=langchain_action,
                            langchain_agents=langchain_agents,
                            prompt_dict=prompt_dict,
                            chat_template=chat_template,
                            version=version,
                            h2ogpt_key=h2ogpt_key,
                            chat_conversation=chat_conversation,
                            system_prompt=system_prompt,
                            document_choice=document_choice,
                            document_source_substrings=document_source_substrings,
                            document_source_substrings_op=document_source_substrings_op,
                            document_content_substrings=document_content_substrings,
                            document_content_substrings_op=document_content_substrings_op,
                            top_k_docs=top_k_docs,
                            max_time=max_time,
                            repetition_penalty=repetition_penalty,
                            do_sample=do_sample,
                            seed=seed,
                            )
    return run_client(client, prompt, args, kwargs)


def run_client(client, prompt, args, kwargs, do_md_to_text=True, verbose=False):
    if is_gradio_version4:
        kwargs['answer_with_sources'] = True
        kwargs['sources_show_text_in_accordion'] = True
        kwargs['append_sources_to_answer'] = True
        kwargs['append_sources_to_chat'] = False
        kwargs['show_link_in_sources'] = True
        res_dict, client = run_client_gen(client, kwargs, do_md_to_text=do_md_to_text)
        res_dict['response'] += str(res_dict.get('sources_str', ''))
        return res_dict, client
        # FIXME: https://github.com/gradio-app/gradio/issues/6592

    assert kwargs['chat'], "Chat mode only"
    res = client.predict(*tuple(args), api_name='/instruction')
    args[-1] += [res[-1]]

    res_dict = kwargs
    res_dict['prompt'] = prompt
    if not kwargs['stream_output']:
        res = client.predict(*tuple(args), api_name='/instruction_bot')
        res_dict['response'] = res[0][-1][1]
        print(md_to_text(res_dict['response'], do_md_to_text=do_md_to_text))
        return res_dict, client
    else:
        job = client.submit(*tuple(args), api_name='/instruction_bot')
        res1 = ''
        while not job.done():
            outputs_list = job.outputs().copy()
            if outputs_list:
                res = outputs_list[-1]
                res1 = res[0][-1][-1]
                res1 = md_to_text(res1, do_md_to_text=do_md_to_text)
                print(res1)
            time.sleep(0.1)
        full_outputs = job.outputs().copy()
        if verbose:
            print('job.outputs: %s' % str(full_outputs))
        # ensure get ending to avoid race
        # -1 means last response if streaming
        # 0 means get text_output, ignore exception_text
        # 0 means get list within text_output that looks like [[prompt], [answer]]
        # 1 means get bot answer, so will have last bot answer
        res_dict['response'] = md_to_text(full_outputs[-1][0][0][1], do_md_to_text=do_md_to_text)
        return res_dict, client


@pytest.mark.skip(reason="For manual use against some server, no server launched")
def test_client_nochat_stream(prompt_type='human_bot', version=None, h2ogpt_key=None):
    return run_client_nochat_gen(prompt="Tell a very long kid's story about birds.", prompt_type=prompt_type,
                                 stream_output=True, max_new_tokens=512,
                                 langchain_mode='Disabled',
                                 langchain_action=LangChainAction.QUERY.value,
                                 langchain_agents=[],
                                 version=version,
                                 h2ogpt_key=h2ogpt_key)


def run_client_nochat_gen(prompt, prompt_type, stream_output, max_new_tokens,
                          langchain_mode, langchain_action, langchain_agents, version=None,
                          h2ogpt_key=None):
    client = get_client(serialize=False)

    kwargs, args = get_args(prompt, prompt_type, chat=False, stream_output=stream_output,
                            max_new_tokens=max_new_tokens, langchain_mode=langchain_mode,
                            langchain_action=langchain_action, langchain_agents=langchain_agents,
                            version=version, h2ogpt_key=h2ogpt_key)
    return run_client_gen(client, kwargs)


def run_client_gen(client, kwargs, do_md_to_text=True):
    res_dict = kwargs
    res_dict['prompt'] = kwargs['instruction'] or kwargs['instruction_nochat']
    if not kwargs['stream_output']:
        res = client.predict(str(dict(kwargs)), api_name='/submit_nochat_api')
        res_dict1 = ast.literal_eval(res)
        res_dict.update(res_dict1)
        print(md_to_text(res_dict['response'], do_md_to_text=do_md_to_text))
        return res_dict, client
    else:
        job = client.submit(str(dict(kwargs)), api_name='/submit_nochat_api')
        while not job.done():
            outputs_list = job.outputs().copy()
            if outputs_list:
                res = outputs_list[-1]
                res_dict1 = ast.literal_eval(res)
                print('Stream: %s' % res_dict1['response'])
            time.sleep(0.1)
        res_list = job.outputs().copy()
        assert len(res_list) > 0, "No response, check server"
        res = res_list[-1]
        res_dict1 = ast.literal_eval(res)
        print('Final: %s' % res_dict1['response'])
        res_dict.update(res_dict1)
        return res_dict, client


def md_to_text(md, do_md_to_text=True):
    if not do_md_to_text:
        return md
    assert md is not None, "Markdown is None"
    html = markdown.markdown(md)
    soup = BeautifulSoup(html, features='html.parser')
    return soup.get_text()


def run_client_many(prompt_type='human_bot', version=None, h2ogpt_key=None):
    kwargs = dict(prompt_type=prompt_type, version=version, h2ogpt_key=h2ogpt_key)
    ret1, _ = test_client_chat(**kwargs)
    ret2, _ = test_client_chat_stream(**kwargs)
    ret3, _ = test_client_nochat_stream(**kwargs)
    ret4, _ = test_client_basic(**kwargs)
    ret5, _ = test_client_basic_api(**kwargs)
    ret6, _ = test_client_basic_api_lean(**kwargs)
    ret7, _ = test_client_basic_api_lean_morestuff(**kwargs)
    return ret1, ret2, ret3, ret4, ret5, ret6, ret7


if __name__ == '__main__':
    run_client_many()