File size: 16,317 Bytes
3943768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import os
import numpy as np
import pandas as pd
import torch
from matplotlib import pyplot as plt

from evaluate_params import eval_func_param_names, eval_extra_columns, input_args_list
from gen import evaluate, check_locals, score_qa
from prompter import Prompter
from utils import clear_torch_cache, NullContext, get_kwargs, makedirs


def run_eval(  # for local function:
        base_model=None, lora_weights=None, inference_server=None,
        regenerate_clients=None, regenerate_gradio_clients=None, validate_clients=None, fail_if_invalid_client=None,
        prompt_type=None, prompt_dict=None, chat_template=None, system_prompt=None,
        debug=None, chat=False,
        stream_output=None, enable_caching=None, async_output=None, num_async=None, stream_map=None,
        eval_filename=None, eval_prompts_only_num=None, eval_prompts_only_seed=None, eval_as_output=None,
        examples=None, memory_restriction_level=None,
        # evaluate kwargs
        n_jobs=None, llamacpp_path=None, llamacpp_dict=None, exllama_dict=None, gptq_dict=None, attention_sinks=None,
        sink_dict=None, truncation_generation=None,
        hf_model_dict=None,
        force_seq2seq_type=None, force_t5_type=None,
        load_exllama=None,

        force_streaming_on_to_handle_timeouts=None,

        use_pymupdf=None,
        use_unstructured_pdf=None,
        use_pypdf=None,
        enable_pdf_ocr=None,
        enable_pdf_doctr=None,
        enable_image=None,
        visible_image_models=None,
        image_size=None,
        image_quality=None,
        image_guidance_scale=None,
        image_num_inference_steps=None,

        try_pdf_as_html=None,
        # for evaluate args beyond what's already above, or things that are always dynamic and locally created
        load_awq='',
        temperature=None,
        top_p=None,
        top_k=None,
        penalty_alpha=None,
        num_beams=None,
        max_new_tokens=None,
        min_new_tokens=None,
        early_stopping=None,
        max_time=None,
        repetition_penalty=None,
        num_return_sequences=None,
        do_sample=None,
        seed=None,
        langchain_mode=None,
        langchain_action=None,
        langchain_agents=[],
        top_k_docs=None,
        chunk=None,
        chunk_size=None,
        document_subset=None,
        document_choice=None,
        document_source_substrings=None,
        document_source_substrings_op=None,
        document_content_substrings=None,
        document_content_substrings_op=None,
        pre_prompt_query=None, prompt_query=None,
        pre_prompt_summary=None, prompt_summary=None, hyde_llm_prompt=None,
        all_docs_start_prompt=None,
        all_docs_finish_prompt=None,

        user_prompt_for_fake_system_prompt=None,
        json_object_prompt=None,
        json_object_prompt_simpler=None,
        json_code_prompt=None,
        json_code_prompt_if_no_schema=None,
        json_schema_instruction=None,
        json_preserve_system_prompt=None,
        json_object_post_prompt_reminder=None,
        json_code_post_prompt_reminder=None,
        json_code2_post_prompt_reminder=None,

        image_audio_loaders=None,
        pdf_loaders=None,
        url_loaders=None,
        jq_schema=None,
        extract_frames=None,
        extract_frames0=None,
        guided_whitespace_pattern0=None,
        metadata_in_context0=None,
        llava_prompt=None,
        visible_models=None,
        h2ogpt_key=None,
        add_search_to_context=None,
        chat_conversation=None,
        text_context_list=None,
        docs_ordering_type=None,
        min_max_new_tokens=None,
        max_input_tokens=None,
        max_total_input_tokens=None,
        docs_token_handling=None,
        docs_joiner=None,
        hyde_level=None,
        hyde_template=None,
        hyde_show_only_final=None,
        hyde_show_intermediate_in_accordion=None,
        map_reduce_show_intermediate_in_accordion=None,
        doc_json_mode=None,
        metadata_in_context=None,
        chatbot_role=None,
        speaker=None,
        tts_language=None,
        tts_speed=None,
        image_file=None,
        image_control=None,
        images_num_max=None,
        image_resolution=None,
        image_format=None,
        rotate_align_resize_image=None,
        video_frame_period=None,
        image_batch_image_prompt=None,
        image_batch_final_prompt=None,
        image_batch_stream=None,
        visible_vision_models=None,
        video_file=None,

        response_format=None,
        guided_json=None,
        guided_regex=None,
        guided_choice=None,
        guided_grammar=None,
        guided_whitespace_pattern=None,
        client_metadata=None,

        # for evaluate kwargs:
        captions_model=None,
        caption_loader=None,
        doctr_loader=None,
        pix2struct_loader=None,
        llava_model=None,
        image_model_dict=None,

        asr_model=None,
        asr_loader=None,

        image_audio_loaders_options0=None,
        pdf_loaders_options0=None,
        url_loaders_options0=None,
        jq_schema0=None,
        keep_sources_in_context=None,
        gradio_errors_to_chatbot=None,
        allow_chat_system_prompt=None,
        src_lang=None, tgt_lang=None, concurrency_count=None, save_dir=None, sanitize_bot_response=None,
        model_state0=None,
        use_auth_token=None,
        trust_remote_code=None,
        score_model_state0=None,
        max_max_new_tokens=None,
        is_public=None,
        max_max_time=None,
        raise_generate_gpu_exceptions=None, load_db_if_exists=None, use_llm_if_no_docs=None,
        my_db_state0=None, selection_docs_state0=None, dbs=None, langchain_modes=None, langchain_mode_paths=None,
        detect_user_path_changes_every_query=None,
        use_openai_embedding=None, use_openai_model=None,
        hf_embedding_model=None, migrate_embedding_model=None,
        cut_distance=None,
        answer_with_sources=None,
        append_sources_to_answer=None,
        append_sources_to_chat=None,
        sources_show_text_in_accordion=None,
        top_k_docs_max_show=None,
        show_link_in_sources=None,
        langchain_instruct_mode=None,
        add_chat_history_to_context=None,
        context=None, iinput=None,
        db_type=None, first_para=None, text_limit=None, verbose=None,
        gradio=None, cli=None,
        use_cache=None,
        auto_reduce_chunks=None, max_chunks=None, headsize=None,
        model_lock=None, force_langchain_evaluate=None,
        model_state_none=None,
):
    from_ui = False
    # makes no sense to evaluate document content for langchain case
    answer_with_sources = False
    show_link_in_sources = False
    append_sources_to_answer = False
    append_sources_to_chat = False

    check_locals(**locals().copy())

    if not context:
        context = ''

    if eval_prompts_only_num > 0:
        np.random.seed(eval_prompts_only_seed)
        example1 = examples[-1]  # pick reference example
        examples = []
        responses = []
        if eval_filename is None:
            # override default examples with shareGPT ones for human-level eval purposes only
            eval_filename = 'ShareGPT_V3_unfiltered_cleaned_split_no_imsorry.json'
            if not os.path.isfile(eval_filename):
                os.system(
                    'wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/%s' % eval_filename)
            import json
            with open(eval_filename, 'r', encoding='utf-8') as f:
                data = json.load(f)
            # focus on data that starts with human, else likely chopped from other data
            turn_start = 0  # odd in general
            data = [x for x in data if len(x['conversations']) > turn_start + 1 and
                    x['conversations'][turn_start]['from'] == 'human' and
                    x['conversations'][turn_start + 1]['from'] == 'gpt']
            for i in sorted(np.random.randint(0, len(data), size=eval_prompts_only_num)):
                assert data[i]['conversations'][turn_start]['from'] == 'human'
                instruction = data[i]['conversations'][turn_start]['value']
                assert data[i]['conversations'][turn_start + 1]['from'] == 'gpt'
                output = data[i]['conversations'][turn_start + 1]['value']
                examplenew = example1.copy()
                assert not chat, "No gradio must use chat=False, uses nochat instruct"
                examplenew[eval_func_param_names.index('instruction_nochat')] = instruction
                examplenew[eval_func_param_names.index('iinput_nochat')] = iinput
                examplenew[eval_func_param_names.index('context')] = context
                examples.append(examplenew)
                responses.append(output)
        else:
            # get data, assume in correct format: json of rows of dict of instruction and output
            # only instruction is required
            import json
            with open(eval_filename, 'r', encoding='utf-8') as f:
                data = json.load(f)
            for i in sorted(np.random.randint(0, len(data), size=eval_prompts_only_num)):
                examplenew = example1.copy()
                instruction = data[i]['instruction']
                output = data[i].get('output', '')  # not required
                assert not chat, "No gradio must use chat=False, uses nochat instruct"
                examplenew[eval_func_param_names.index('instruction_nochat')] = instruction
                examplenew[eval_func_param_names.index('iinput_nochat')] = iinput
                examplenew[eval_func_param_names.index('context')] = context
                examples.append(examplenew)
                responses.append(output)

    num_examples = len(examples)
    scoring_path = 'scoring'
    # if no permissions, assume may not want files, put into temp
    scoring_path = makedirs(scoring_path, tmp_ok=True, use_base=True)
    if eval_as_output:
        used_base_model = 'gpt35'
        used_lora_weights = ''
        used_inference_server = ''
    else:
        used_base_model = str(base_model.split('/')[-1])
        used_lora_weights = str(lora_weights.split('/')[-1])
        used_inference_server = str(inference_server.split('/')[-1])
    eval_out_filename = "df_scores_%s_%s_%s_%s_%s_%s_%s.parquet" % (num_examples, eval_prompts_only_num,
                                                                    eval_prompts_only_seed,
                                                                    eval_as_output,
                                                                    used_base_model,
                                                                    used_lora_weights,
                                                                    used_inference_server,
                                                                    )
    eval_out_filename = os.path.join(scoring_path, eval_out_filename)

    smodel = score_model_state0['model']
    stokenizer = score_model_state0['tokenizer']
    sdevice = score_model_state0['device']

    # torch.device("cuda") leads to cuda:x cuda:y mismatches for multi-GPU consistently
    n_gpus = torch.cuda.device_count() if torch.cuda.is_available() else 0
    device = 'cpu' if n_gpus == 0 else 'cuda'
    context_class = NullContext if n_gpus > 1 or n_gpus == 0 else torch.device

    with context_class(device):
        # ensure was set right above before examples generated
        assert not stream_output, "stream_output=True does not make sense with example loop"
        import time
        from functools import partial

        if not eval_as_output:
            requests_state0 = {}
            roles_state0 = None
            args = (None, my_db_state0, selection_docs_state0, requests_state0, roles_state0)
            assert len(args) == len(input_args_list)
            fun = partial(evaluate,
                          *args,
                          **get_kwargs(evaluate, exclude_names=input_args_list + eval_func_param_names,
                                       **locals().copy()))
        else:
            assert eval_prompts_only_num > 0

            def get_response(*args, exi=0):
                # assumes same ordering of examples and responses
                yield responses[exi]

            fun = get_response
        t0 = time.time()
        score_dump = []
        score_avg = 0
        score_median = 0

        for exi, ex in enumerate(examples):
            clear_torch_cache(allow_skip=True)

            instruction = ex[eval_func_param_names.index('instruction_nochat')]
            iinput = ex[eval_func_param_names.index('iinput_nochat')]
            context = ex[eval_func_param_names.index('context')]
            clear_torch_cache(allow_skip=True)
            print("")
            print("START" + "=" * 100)
            print("Question: %s %s" % (instruction, ('input=%s' % iinput if iinput else '')))
            print("-" * 105)
            # fun yields as generator, so have to iterate over it
            # Also means likely do NOT want --stream_output=True, else would show all generations
            t1 = time.time()

            # grab other parameters, like langchain_mode
            eval_vars = ex.copy()
            for k in eval_func_param_names:
                if k in locals().copy():
                    eval_vars[eval_func_param_names.index(k)] = locals().copy()[k]

            gener = fun(*tuple(eval_vars), exi=exi) if eval_as_output else fun(*tuple(eval_vars))
            for res_fun in gener:
                res = res_fun['response']
                sources = res_fun.get('sources', 'Failure of Generation')
                print(res)
                if smodel:
                    score_with_prompt = False
                    if score_with_prompt:
                        data_point = dict(instruction=instruction, input=iinput, context=context)
                        prompter = Prompter(prompt_type, prompt_dict,
                                            debug=debug, stream_output=stream_output, base_model=base_model)
                        prompt = prompter.generate_prompt(data_point, context_from_history=False, image_file=image_file)
                    else:
                        # just raw input and output
                        if eval_prompts_only_num > 0:
                            # only our own examples have this filled at moment
                            assert iinput in [None, ''], iinput  # should be no iinput
                        prompt = instruction
                    score = score_qa(smodel, stokenizer, prompt, res, memory_restriction_level=memory_restriction_level)
                    score_dump.append(ex + [prompt, res, score, sources])
                    # dump every score in case abort
                    df_scores = pd.DataFrame(score_dump,
                                             columns=eval_func_param_names +
                                                     eval_extra_columns)
                    df_scores.to_parquet(eval_out_filename, index=False)
                    if not isinstance(score, str):
                        # plot histogram so far
                        plt.figure(figsize=(10, 10))
                        plt.hist(df_scores['score'], bins=20)
                        score_avg = np.mean(df_scores['score'])
                        score_median = np.median(df_scores['score'])
                        print("SCORE %s: %s  So far: AVG: %s MEDIAN: %s" % (exi, score, score_avg, score_median),
                              flush=True)
                        plt.title("Score avg: %s median: %s" % (score_avg, score_median))
                        plt.savefig(eval_out_filename.replace('.parquet', '.png'))
                        plt.close()

            print("END" + "=" * 102)
            print("")
            t2 = time.time()
            print("Time taken for example: %s Time taken so far: %.4f about %.4g per example" % (
                t2 - t1, t2 - t0, (t2 - t0) / (1 + exi)))
        t1 = time.time()
        print("Total time taken: %.4f about %.4g per example" % (t1 - t0, (t1 - t0) / num_examples))
        print("Score avg: %s median: %s" % (score_avg, score_median), flush=True)
    return eval_out_filename