File size: 22,258 Bytes
3943768 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
import inspect
import os
import time
from typing import Dict, Any, Optional, List, Iterator
import filelock
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.schema.output import GenerationChunk
from langchain_community.llms import gpt4all
from pydantic.v1 import root_validator
from enums import coqui_lock_name
from utils import FakeTokenizer, url_alive, download_simple, clear_torch_cache, n_gpus_global, makedirs, get_lock_file
def get_model_tokenizer_gpt4all(base_model, n_jobs=None, gpu_id=None, n_gpus=None, max_seq_len=None,
llamacpp_dict=None,
llamacpp_path=None):
cvd = os.getenv('CUDA_VISIBLE_DEVICES')
if gpu_id is not None and gpu_id != -1:
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_id)
assert llamacpp_dict is not None
# defaults (some of these are generation parameters, so need to be passed in at generation time)
model_name = base_model.lower()
llama_kwargs = dict(model_name=model_name,
model=None,
n_jobs=n_jobs,
n_gpus=n_gpus,
main_gpu=gpu_id if gpu_id not in [None, -1, '-1'] else 0,
inner_class=True,
max_seq_len=max_seq_len,
llamacpp_dict=llamacpp_dict,
llamacpp_path=llamacpp_path)
model, tokenizer, redo, max_seq_len = get_llm_gpt4all(**llama_kwargs)
if redo:
del model
del tokenizer
clear_torch_cache()
# auto max_seq_len
llama_kwargs.update(dict(max_seq_len=max_seq_len))
model, tokenizer, redo, max_seq_len = get_llm_gpt4all(**llama_kwargs)
if cvd is not None:
os.environ['CUDA_VISIBLE_DEVICES'] = cvd
else:
os.environ.pop('CUDA_VISIBLE_DEVICES', None)
return model, tokenizer, 'cpu' if n_gpus != 0 else 'cuda'
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
class H2OStreamingStdOutCallbackHandler(StreamingStdOutCallbackHandler):
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
"""Run on new LLM token. Only available when streaming is enabled."""
# streaming to std already occurs without this
# sys.stdout.write(token)
# sys.stdout.flush()
pass
def get_model_kwargs(llamacpp_dict, default_kwargs, cls, exclude_list=[]):
# default from class
model_kwargs = {k: v.default for k, v in dict(inspect.signature(cls).parameters).items() if k not in exclude_list}
# from our defaults
model_kwargs.update(default_kwargs)
# from user defaults
model_kwargs.update(llamacpp_dict)
# ensure only valid keys
func_names = list(inspect.signature(cls).parameters)
model_kwargs = {k: v for k, v in model_kwargs.items() if k in func_names}
# make int or float if can to satisfy types for class
for k, v in model_kwargs.items():
try:
if float(v) == int(v):
model_kwargs[k] = int(v)
else:
model_kwargs[k] = float(v)
except:
pass
return model_kwargs
def get_gpt4all_default_kwargs(max_new_tokens=256,
temperature=0.1,
seed=0,
repetition_penalty=1.0,
top_k=40,
top_p=0.7,
n_jobs=None,
verbose=False,
max_seq_len=None,
main_gpu=0,
):
if n_jobs in [None, -1]:
n_jobs = int(os.getenv('OMP_NUM_THREADS', str(os.cpu_count() // 2)))
n_jobs = max(1, min(20, n_jobs)) # hurts beyond some point
n_gpus = n_gpus_global
max_seq_len_local = max_seq_len if max_seq_len is not None else 2048 # fake for auto mode
default_kwargs = dict(context_erase=0.5,
n_batch=1,
max_tokens=max_new_tokens,
n_predict=max_new_tokens,
repeat_last_n=64 if repetition_penalty != 1.0 else 0,
repeat_penalty=repetition_penalty,
temp=temperature,
temperature=temperature,
seed=seed,
top_k=top_k,
top_p=top_p,
use_mlock=True,
n_ctx=max_seq_len_local,
n_threads=n_jobs,
main_gpu=main_gpu,
verbose=verbose)
if n_gpus != 0:
default_kwargs.update(dict(n_gpu_layers=100, f16_kv=True))
return default_kwargs
def get_llm_gpt4all(model_name=None,
model=None,
max_new_tokens=256,
temperature=0.1,
seed=0,
repetition_penalty=1.0,
top_k=40,
top_p=0.7,
streaming=False,
callbacks=None,
tokenizer=None,
prompter=None,
max_time=None,
context='',
iinput='',
chat_conversation=[],
user_prompt_for_fake_system_prompt=None,
n_jobs=None,
n_gpus=None,
main_gpu=0,
verbose=False,
inner_class=False,
max_seq_len=None,
llamacpp_path=None,
llamacpp_dict=None,
):
model_was_None = model is None
redo = False
if not inner_class:
assert prompter is not None
default_kwargs = \
get_gpt4all_default_kwargs(max_new_tokens=max_new_tokens,
temperature=temperature,
seed=seed,
repetition_penalty=repetition_penalty,
top_k=top_k,
top_p=top_p,
n_jobs=n_jobs,
verbose=verbose,
max_seq_len=max_seq_len,
main_gpu=main_gpu,
)
if model_name == 'llama':
# FIXME: streaming not thread safe due to:
# llama_cpp/utils.py: sys.stdout = self.outnull_file
# llama_cpp/utils.py: sys.stdout = self.old_stdout
cls = H2OLlamaCpp
if model is None:
llamacpp_dict = llamacpp_dict.copy()
model_path = llamacpp_dict.pop('model_path_llama')
model_file = model_path
if model_file.endswith('?download=true'):
model_file = model_file.replace('?download=true', '')
llamacpp_path = os.getenv('LLAMACPP_PATH', llamacpp_path) or './'
if os.path.isfile(os.path.basename(model_file)):
# e.g. if offline but previously downloaded
model_path = os.path.basename(model_file)
elif os.path.isfile(os.path.join(llamacpp_path, os.path.basename(model_file))):
# e.g. so don't have to point to full previously-downloaded path
model_path = os.path.join(llamacpp_path, os.path.basename(model_file))
elif url_alive(model_path):
# online
dest = os.path.join(llamacpp_path, os.path.basename(model_path)) if llamacpp_path else None
if dest.endswith('?download=true'):
dest = dest.replace('?download=true', '')
model_path = download_simple(model_path, dest=dest)
else:
model_path = model
model_kwargs = get_model_kwargs(llamacpp_dict, default_kwargs, cls, exclude_list=['lc_kwargs'])
model_kwargs.update(dict(model_path=model_path, callbacks=callbacks, streaming=streaming,
prompter=prompter, context=context, iinput=iinput,
tokenizer=tokenizer,
chat_conversation=chat_conversation,
user_prompt_for_fake_system_prompt=user_prompt_for_fake_system_prompt,
n_gpus=n_gpus, max_time=max_time, ))
# migration to new langchain fix:
odd_keys = ['model_kwargs', 'grammar_path', 'grammar']
for key in odd_keys:
model_kwargs.pop(key, None)
llm = cls(**model_kwargs)
llm.client.verbose = verbose
inner_model = llm.client
if max_seq_len is None:
redo = True
max_seq_len = llm.client.n_embd()
print("Auto-detected LLaMa n_ctx=%s, will unload then reload with this setting." % max_seq_len)
if model_was_None is None:
# with multiple GPUs, something goes wrong unless generation occurs early before other imports
# CUDA error 704 at /tmp/pip-install-khkugdmy/llama-cpp-python_8c0a9782b7604a5aaf95ec79856eac97/vendor/llama.cpp/ggml-cuda.cu:6408: peer access is already enabled
# But don't do this action in case another thread doing llama.cpp, so just getting model ready.
inner_model("Say exactly one word", max_tokens=1)
inner_tokenizer = FakeTokenizer(tokenizer=llm.client, is_llama_cpp=True, model_max_length=max_seq_len)
elif model_name == 'gpt4all_llama':
# FIXME: streaming not thread safe due to:
# gpt4all/pyllmodel.py: sys.stdout = stream_processor
# gpt4all/pyllmodel.py: sys.stdout = old_stdout
cls = H2OGPT4All
if model is None:
llamacpp_dict = llamacpp_dict.copy()
model_path = llamacpp_dict.pop('model_name_gpt4all_llama')
if url_alive(model_path):
# online
llamacpp_path = os.getenv('LLAMACPP_PATH', llamacpp_path) or './'
dest = os.path.join(llamacpp_path, os.path.basename(model_path)) if llamacpp_path else None
model_path = download_simple(model_path, dest=dest)
else:
model_path = model
model_kwargs = get_model_kwargs(llamacpp_dict, default_kwargs, cls, exclude_list=['lc_kwargs'])
model_kwargs.update(
dict(model=model_path, backend='llama', callbacks=callbacks, streaming=streaming,
prompter=prompter, context=context, iinput=iinput,
tokenizer=tokenizer,
chat_conversation=chat_conversation,
user_prompt_for_fake_system_prompt=user_prompt_for_fake_system_prompt,
))
llm = cls(**model_kwargs)
inner_model = llm.client
inner_tokenizer = FakeTokenizer(model_max_length=max_seq_len)
elif model_name == 'gptj':
# FIXME: streaming not thread safe due to:
# gpt4all/pyllmodel.py: sys.stdout = stream_processor
# gpt4all/pyllmodel.py: sys.stdout = old_stdout
cls = H2OGPT4All
if model is None:
llamacpp_dict = llamacpp_dict.copy()
model_path = llamacpp_dict.pop('model_name_gptj') if model is None else model
if url_alive(model_path):
llamacpp_path = os.getenv('LLAMACPP_PATH', llamacpp_path) or './'
dest = os.path.join(llamacpp_path, os.path.basename(model_path)) if llamacpp_path else None
model_path = download_simple(model_path, dest=dest)
else:
model_path = model
model_kwargs = get_model_kwargs(llamacpp_dict, default_kwargs, cls, exclude_list=['lc_kwargs'])
model_kwargs.update(
dict(model=model_path, backend='gptj', callbacks=callbacks, streaming=streaming,
prompter=prompter, context=context, iinput=iinput,
tokenizer=tokenizer,
chat_conversation=chat_conversation,
user_prompt_for_fake_system_prompt=user_prompt_for_fake_system_prompt,
))
llm = cls(**model_kwargs)
inner_model = llm.client
inner_tokenizer = FakeTokenizer(model_max_length=max_seq_len)
else:
raise RuntimeError("No such model_name %s" % model_name)
if inner_class:
return inner_model, inner_tokenizer, redo, max_seq_len
else:
return llm
class H2OGPT4All(gpt4all.GPT4All):
model: Any
tokenizer: Any = None
prompter: Any
context: Any = ''
iinput: Any = ''
chat_conversation = []
user_prompt_for_fake_system_prompt: Any = None
"""Path to the pre-trained GPT4All model file."""
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that the python package exists in the environment."""
try:
if isinstance(values["model"], str):
from gpt4all import GPT4All as GPT4AllModel
full_path = values["model"]
model_path, delimiter, model_name = full_path.rpartition("/")
model_path += delimiter
values["client"] = GPT4AllModel(
model_name=model_name,
model_path=model_path or None,
model_type=values["backend"],
allow_download=True,
)
if values["n_threads"] is not None:
# set n_threads
values["client"].model.set_thread_count(values["n_threads"])
else:
values["client"] = values["model"]
if values["n_threads"] is not None:
# set n_threads
values["client"].model.set_thread_count(values["n_threads"])
try:
values["backend"] = values["client"].model_type
except AttributeError:
# The below is for compatibility with GPT4All Python bindings <= 0.2.3.
values["backend"] = values["client"].model.model_type
except ImportError:
raise ValueError(
"Could not import gpt4all python package. "
"Please install it with `pip install gpt4all`."
)
return values
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs,
) -> str:
# Roughly 4 chars per token if natural language
n_ctx = 2048
prompt = prompt[-self.max_tokens * 4:]
# use instruct prompting
data_point = dict(context=self.context, instruction=prompt, input=self.iinput)
prompt = self.prompter.generate_prompt(data_point,
chat_conversation=self.chat_conversation,
user_prompt_for_fake_system_prompt=self.user_prompt_for_fake_system_prompt,
)
verbose = False
if verbose:
print("_call prompt: %s" % prompt, flush=True)
# FIXME: GPT4ALl doesn't support yield during generate, so cannot support streaming except via itself to stdout
return super()._call(prompt, stop=stop, run_manager=run_manager)
# FIXME: Unsure what uses
# def get_token_ids(self, text: str) -> List[int]:
# return self.client.tokenize(b" " + text.encode("utf-8"))
from langchain_community.llms import LlamaCpp
class H2OLlamaCpp(LlamaCpp):
"""Path to the pre-trained GPT4All model file."""
model_path: Any
tokenizer: Any = None
prompter: Any
context: Any
iinput: Any
chat_conversation = []
count_input_tokens: Any = 0
prompts: Any = []
count_output_tokens: Any = 0
n_gpus: Any = -1
max_time: Any = None
user_prompt_for_fake_system_prompt: Any = None
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that llama-cpp-python library is installed."""
if isinstance(values["model_path"], str):
model_path = values["model_path"]
model_param_names = [
"lora_path",
"lora_base",
"n_ctx",
"n_parts",
"seed",
"f16_kv",
"logits_all",
"vocab_only",
"use_mlock",
"n_threads",
"n_batch",
"use_mmap",
"last_n_tokens_size",
]
model_params = {k: values[k] for k in model_param_names}
# For backwards compatibility, only include if non-null.
if values["n_gpu_layers"] is not None:
model_params["n_gpu_layers"] = values["n_gpu_layers"]
try:
try:
from llama_cpp import Llama
except Exception as e:
print("Failed to listen to n_gpus: %s, trying llama_cpp module" % str(e), flush=True)
try:
from llama_cpp import Llama
except ImportError:
from llama_cpp_cuda import Llama
values["client"] = Llama(model_path, **model_params)
except ImportError:
raise ModuleNotFoundError(
"Could not import llama-cpp-python library. "
"Please install the llama-cpp-python library to "
"use this embedding model: pip install llama-cpp-python"
)
except Exception as e:
raise ValueError(
f"Could not load Llama model from path: {model_path}. "
f"Received error {e}"
)
else:
values["client"] = values["model_path"]
return values
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs,
) -> str:
t0 = time.time()
verbose = False
inner_tokenizer = FakeTokenizer(tokenizer=self.client, is_llama_cpp=True, model_max_length=self.n_ctx)
assert inner_tokenizer is not None
from h2oai_pipeline import H2OTextGenerationPipeline
prompt, num_prompt_tokens = H2OTextGenerationPipeline.limit_prompt(prompt, inner_tokenizer,
max_prompt_length=self.max_tokens)
# use instruct prompting
data_point = dict(context=self.context, instruction=prompt, input=self.iinput)
prompt = self.prompter.generate_prompt(data_point,
chat_conversation=self.chat_conversation,
user_prompt_for_fake_system_prompt=self.user_prompt_for_fake_system_prompt,
)
self.count_input_tokens += self.get_num_tokens(prompt)
self.prompts.append(prompt)
if stop is None:
stop = []
stop.extend(self.prompter.stop_sequences)
if verbose:
print("_call prompt: %s" % prompt, flush=True)
# can't run llamacpp and coqui at same time, one has to win
with filelock.FileLock(get_lock_file('llamacpp')):
with filelock.FileLock(get_lock_file(coqui_lock_name)):
if self.streaming:
# parent handler of streamer expects to see prompt first else output="" and lose if prompt=None in prompter
text = ""
for token in self.stream(input=prompt, stop=stop):
if self.max_time is not None and (time.time() - t0) > self.max_time:
if verbose:
print("LLaMa.cpp reached max_time=%s" % self.max_time, flush=True)
break
# for token in self.stream(input=prompt, stop=stop, run_manager=run_manager):
text_chunk = token # ["choices"][0]["text"]
text += text_chunk
self.count_output_tokens += self.get_num_tokens(text)
text = self.remove_stop_text(text, stop=stop)
return text
else:
params = self._get_parameters(stop)
params = {**params, **kwargs}
result = self.client(prompt=prompt, **params)
text = result["choices"][0]["text"]
self.count_output_tokens += self.get_num_tokens(text)
text = self.remove_stop_text(text, stop=stop)
return text
def remove_stop_text(self, text, stop=None):
# remove stop sequences from the end of the generated text
if stop is None:
return text
for stop_seq in stop:
if stop_seq in text:
text = text[:text.index(stop_seq)]
return text
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
# parent expects only see actual new tokens, not prompt too
total_text = ''
for chunk in super()._stream(prompt, stop=stop, run_manager=run_manager, **kwargs):
# remove stop sequences from the end of the generated text
total_text += chunk.text
got_stop = False
if stop:
for stop_seq in stop:
if stop_seq in total_text:
got_stop = True
if not got_stop:
yield chunk
def get_token_ids(self, text: str) -> List[int]:
return self.client.tokenize(b" " + text.encode("utf-8"))
|