File size: 76,242 Bytes
3943768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
import ast
import copy
import functools
import json
import os
import tempfile
import time
import traceback
import uuid
import filelock

from enums import LangChainMode, LangChainAction, no_model_str, LangChainTypes, langchain_modes_intrinsic, \
    DocumentSubset, unknown_prompt_type, my_db_state0, selection_docs_state0, requests_state0, roles_state0, noneset, \
    images_num_max_dict, image_batch_image_prompt0, image_batch_final_prompt0, images_limit_max_new_tokens, \
    images_limit_max_new_tokens_list
from model_utils import model_lock_to_state
from tts_utils import combine_audios
from utils import _save_generate_tokens, clear_torch_cache, remove, save_generate_output, str_to_list, \
    get_accordion_named, check_input_type, download_image, deepcopy_by_pickle_object
from db_utils import length_db1
from evaluate_params import input_args_list, eval_func_param_names, key_overrides, in_model_state_and_evaluate
from vision.utils_vision import process_file_list


def evaluate_nochat(*args1, default_kwargs1=None, str_api=False, plain_api=False, verifier=False, kwargs={},
                    my_db_state1=None,
                    selection_docs_state1=None,
                    requests_state1=None,
                    roles_state1=None,
                    model_states=[],
                    **kwargs1):
    is_public = kwargs1.get('is_public', False)
    verbose = kwargs1.get('verbose', False)

    if my_db_state1 is None:
        if 'my_db_state0' in kwargs1 and kwargs1['my_db_state0'] is not None:
            my_db_state1 = kwargs1['my_db_state0']
        else:
            my_db_state1 = copy.deepcopy(my_db_state0)
    if selection_docs_state1 is None:
        if 'selection_docs_state0' in kwargs1 and kwargs1['selection_docs_state0'] is not None:
            selection_docs_state1 = kwargs1['selection_docs_state0']
        else:
            selection_docs_state1 = copy.deepcopy(selection_docs_state0)
    if requests_state1 is None:
        if 'requests_state0' in kwargs1 and kwargs1['requests_state0'] is not None:
            requests_state1 = kwargs1['requests_state0']
        else:
            requests_state1 = copy.deepcopy(requests_state0)
    if roles_state1 is None:
        if 'roles_state0' in kwargs1 and kwargs1['roles_state0'] is not None:
            roles_state1 = kwargs1['roles_state0']
        else:
            roles_state1 = copy.deepcopy(roles_state0)
    kwargs_eval_pop_keys = ['selection_docs_state0', 'requests_state0', 'roles_state0']
    for k in kwargs_eval_pop_keys:
        if k in kwargs1:
            kwargs1.pop(k)

    ###########################################
    # fill args_list with states
    args_list = list(args1)
    if str_api:
        if plain_api:
            if not verifier:
                # i.e. not fresh model, tells evaluate to use model_state0
                args_list.insert(0, kwargs['model_state_none'].copy())
            else:
                args_list.insert(0, kwargs['verifier_model_state0'].copy())
            args_list.insert(1, my_db_state1.copy())
            args_list.insert(2, selection_docs_state1.copy())
            args_list.insert(3, requests_state1.copy())
            args_list.insert(4, roles_state1.copy())
        user_kwargs = args_list[len(input_args_list)]
        assert isinstance(user_kwargs, str)
        user_kwargs = ast.literal_eval(user_kwargs)
    else:
        assert not plain_api
        user_kwargs = {k: v for k, v in zip(eval_func_param_names, args_list[len(input_args_list):])}

    ###########################################
    # control kwargs1 for evaluate
    if 'answer_with_sources' not in user_kwargs:
        kwargs1['answer_with_sources'] = -1  # just text chunk, not URL etc.
    if 'sources_show_text_in_accordion' not in user_kwargs:
        kwargs1['sources_show_text_in_accordion'] = False
    if 'append_sources_to_chat' not in user_kwargs:
        kwargs1['append_sources_to_chat'] = False
    if 'append_sources_to_answer' not in user_kwargs:
        kwargs1['append_sources_to_answer'] = False
    if 'show_link_in_sources' not in user_kwargs:
        kwargs1['show_link_in_sources'] = False
    # kwargs1['top_k_docs_max_show'] = 30

    ###########################################
    # modify some user_kwargs
    # only used for submit_nochat_api
    user_kwargs['chat'] = False
    if 'stream_output' not in user_kwargs:
        user_kwargs['stream_output'] = False
    if plain_api:
        user_kwargs['stream_output'] = False
    if 'langchain_mode' not in user_kwargs:
        # if user doesn't specify, then assume disabled, not use default
        if LangChainMode.LLM.value in kwargs['langchain_modes']:
            user_kwargs['langchain_mode'] = LangChainMode.LLM.value
        elif len(kwargs['langchain_modes']) >= 1:
            user_kwargs['langchain_mode'] = kwargs['langchain_modes'][0]
        else:
            # disabled should always be allowed
            user_kwargs['langchain_mode'] = LangChainMode.DISABLED.value
    if 'langchain_action' not in user_kwargs:
        user_kwargs['langchain_action'] = LangChainAction.QUERY.value
    if 'langchain_agents' not in user_kwargs:
        user_kwargs['langchain_agents'] = []
    # be flexible
    if 'instruction' in user_kwargs and 'instruction_nochat' not in user_kwargs:
        user_kwargs['instruction_nochat'] = user_kwargs['instruction']
    if 'iinput' in user_kwargs and 'iinput_nochat' not in user_kwargs:
        user_kwargs['iinput_nochat'] = user_kwargs['iinput']
    if 'visible_models' not in user_kwargs:
        if kwargs['visible_models']:
            if isinstance(kwargs['visible_models'], int):
                user_kwargs['visible_models'] = [kwargs['visible_models']]
            elif isinstance(kwargs['visible_models'], list):
                # only take first one
                user_kwargs['visible_models'] = [kwargs['visible_models'][0]]
            else:
                user_kwargs['visible_models'] = [0]
        else:
            # if no user version or default version, then just take first
            user_kwargs['visible_models'] = [0]
    if 'visible_vision_models' not in user_kwargs or user_kwargs['visible_vision_models'] is None:
        # don't assume None, which will trigger default_kwargs
        # the None case is never really directly useful
        user_kwargs['visible_vision_models'] = 'auto'

    if 'h2ogpt_key' not in user_kwargs:
        user_kwargs['h2ogpt_key'] = None
    if 'system_prompt' in user_kwargs and user_kwargs['system_prompt'] is None:
        # avoid worrying about below default_kwargs -> args_list that checks if None
        user_kwargs['system_prompt'] = 'None'
    # by default don't do TTS unless specifically requested
    if 'chatbot_role' not in user_kwargs:
        user_kwargs['chatbot_role'] = 'None'
    if 'speaker' not in user_kwargs:
        user_kwargs['speaker'] = 'None'

    set1 = set(list(default_kwargs1.keys()))
    set2 = set(eval_func_param_names)
    assert set1 == set2, "Set diff: %s %s: %s" % (set1, set2, set1.symmetric_difference(set2))

    ###########################################
    # correct ordering.  Note some things may not be in default_kwargs, so can't be default of user_kwargs.get()
    model_state1 = args_list[0]
    my_db_state1 = args_list[1]
    selection_docs_state1 = args_list[2]
    requests_state1 = args_list[3]
    roles_state1 = args_list[4]

    args_list = [user_kwargs[k] if k in user_kwargs and user_kwargs[k] is not None else default_kwargs1[k] for k
                 in eval_func_param_names]
    assert len(args_list) == len(eval_func_param_names)

    ###########################################
    # select model
    model_lock_client = args_list[eval_func_param_names.index('model_lock')]
    if model_lock_client:
        # because cache, if has local model state, then stays in memory
        # kwargs should be fixed and unchanging, and user should be careful if mutating model_lock_client
        model_state1 = model_lock_to_state(model_lock_client, cache_model_state=True, **kwargs)
    elif len(model_states) >= 1:
        visible_models1 = args_list[eval_func_param_names.index('visible_models')]
        model_active_choice1 = visible_models_to_model_choice(visible_models1, model_states, api=True)
        model_state1 = model_states[model_active_choice1 % len(model_states)]

    for key in key_overrides:
        if user_kwargs.get(key) is None and model_state1.get(key) is not None:
            args_list[eval_func_param_names.index(key)] = model_state1[key]
    if isinstance(model_state1, dict) and \
            'tokenizer' in model_state1 and \
            hasattr(model_state1['tokenizer'], 'model_max_length'):
        # ensure listen to limit, with some buffer
        # buffer = 50
        buffer = 0
        args_list[eval_func_param_names.index('max_new_tokens')] = min(
            args_list[eval_func_param_names.index('max_new_tokens')],
            model_state1['tokenizer'].model_max_length - buffer)

    ###########################################
    # override overall visible_models and h2ogpt_key if have model_specific one
    # NOTE: only applicable if len(model_states) > 1 at moment
    # else controlled by evaluate()
    if 'visible_models' in model_state1 and model_state1['visible_models'] is not None:
        assert isinstance(model_state1['visible_models'], (int, str, list, tuple))
        which_model = visible_models_to_model_choice(model_state1['visible_models'], model_states)
        args_list[eval_func_param_names.index('visible_models')] = which_model
    if 'visible_vision_models' in model_state1 and model_state1['visible_vision_models'] is not None:
        assert isinstance(model_state1['visible_vision_models'], (int, str, list, tuple))
        which_model = visible_models_to_model_choice(model_state1['visible_vision_models'], model_states)
        args_list[eval_func_param_names.index('visible_vision_models')] = which_model
    if 'h2ogpt_key' in model_state1 and model_state1['h2ogpt_key'] is not None:
        # remote server key if present
        # i.e. may be '' and used to override overall local key
        assert isinstance(model_state1['h2ogpt_key'], str)
        args_list[eval_func_param_names.index('h2ogpt_key')] = model_state1['h2ogpt_key']

    ###########################################
    # final full bot() like input for prep_bot etc.
    instruction_nochat1 = args_list[eval_func_param_names.index('instruction_nochat')] or \
                          args_list[eval_func_param_names.index('instruction')]
    args_list[eval_func_param_names.index('instruction_nochat')] = \
        args_list[eval_func_param_names.index('instruction')] = \
        instruction_nochat1
    history = [[instruction_nochat1, None]]
    # NOTE: Set requests_state1 to None, so don't allow UI-like access, in case modify state via API
    requests_state1_bot = None
    args_list_bot = args_list + [model_state1, my_db_state1, selection_docs_state1, requests_state1_bot,
                                 roles_state1] + [history]

    # at this point like bot() as input
    history, fun1, langchain_mode1, db1, requests_state1, \
        valid_key, h2ogpt_key1, \
        max_time1, stream_output1, \
        chatbot_role1, speaker1, tts_language1, roles_state1, tts_speed1, langchain_action1, \
        image_files_to_delete = \
        prep_bot(*args_list_bot, kwargs_eval=kwargs1, plain_api=plain_api, kwargs=kwargs, verbose=verbose)

    save_dict = dict()
    ret = {'error': "No response", 'sources': [], 'sources_str': '', 'prompt_raw': instruction_nochat1,
           'llm_answers': []}
    ret_old = ''
    history_str_old = ''
    error_old = ''
    audios = []  # in case not streaming, since audio is always streaming, need to accumulate for when yield
    last_yield = None
    res_dict = {}
    try:
        tgen0 = time.time()
        for res in get_response(fun1, history, chatbot_role1, speaker1, tts_language1, roles_state1,
                                tts_speed1,
                                langchain_action1,
                                langchain_mode1,
                                kwargs=kwargs,
                                api=True,
                                verbose=verbose):
            history, error, sources, sources_str, prompt_raw, llm_answers, save_dict, audio1 = res
            res_dict = {}
            res_dict['response'] = history[-1][1] or ''
            res_dict['error'] = error
            res_dict['sources'] = sources
            res_dict['sources_str'] = sources_str
            res_dict['prompt_raw'] = prompt_raw
            res_dict['llm_answers'] = llm_answers
            res_dict['save_dict'] = save_dict
            res_dict['audio'] = audio1

            error = res_dict.get('error', '')
            sources = res_dict.get('sources', [])
            save_dict = res_dict.get('save_dict', {})

            # update save_dict
            save_dict['error'] = error
            save_dict['sources'] = sources
            save_dict['valid_key'] = valid_key
            save_dict['h2ogpt_key'] = h2ogpt_key1

            # below works for both list and string for any reasonable string of image that's been byte encoded with b' to start or as file name
            image_file_check = args_list[eval_func_param_names.index('image_file')]
            save_dict['image_file_present'] = len(image_file_check) if \
                isinstance(image_file_check, (str, list, tuple)) else 0
            text_context_list_check = args_list[eval_func_param_names.index('text_context_list')]
            save_dict['text_context_list_present'] = len(text_context_list_check) if \
                isinstance(text_context_list_check, (list, tuple)) else 0

            if str_api and plain_api:
                save_dict['which_api'] = 'str_plain_api'
            elif str_api:
                save_dict['which_api'] = 'str_api'
            elif plain_api:
                save_dict['which_api'] = 'plain_api'
            else:
                save_dict['which_api'] = 'nochat_api'
            if 'extra_dict' not in save_dict:
                save_dict['extra_dict'] = {}
            if requests_state1:
                save_dict['extra_dict'].update(requests_state1)
            else:
                save_dict['extra_dict'].update(dict(username='NO_REQUEST'))

            if is_public:
                # don't want to share actual endpoints
                if 'save_dict' in res_dict and isinstance(res_dict['save_dict'], dict):
                    res_dict['save_dict'].pop('inference_server', None)
                    if 'extra_dict' in res_dict['save_dict'] and isinstance(res_dict['save_dict']['extra_dict'],
                                                                            dict):
                        res_dict['save_dict']['extra_dict'].pop('inference_server', None)

            # get response
            if str_api:
                # full return of dict, except constant items that can be read-off at end
                res_dict_yield = res_dict.copy()
                # do not stream: ['save_dict', 'prompt_raw', 'sources', 'sources_str', 'response_no_refs']
                only_stream = ['response', 'llm_answers', 'audio']
                for key in res_dict:
                    if key not in only_stream:
                        if isinstance(res_dict[key], str):
                            res_dict_yield[key] = ''
                        elif isinstance(res_dict[key], list):
                            res_dict_yield[key] = []
                        elif isinstance(res_dict[key], dict):
                            res_dict_yield[key] = {}
                        else:
                            print("Unhandled pop: %s" % key)
                            res_dict_yield.pop(key)
                ret = res_dict_yield
            elif kwargs['langchain_mode'] == 'Disabled':
                ret = fix_text_for_gradio(res_dict['response'], fix_latex_dollars=False,
                                          fix_angle_brackets=False)
            else:
                ret = '<br>' + fix_text_for_gradio(res_dict['response'], fix_latex_dollars=False,
                                                   fix_angle_brackets=False)

            do_yield = False
            could_yield = ret != ret_old
            if kwargs['gradio_api_use_same_stream_limits']:
                history_str = str(ret['response'] if isinstance(ret, dict) else str(ret))
                delta_history = abs(len(history_str) - len(str(history_str_old)))
                # even if enough data, don't yield if has been less than min_seconds
                enough_data = delta_history > kwargs['gradio_ui_stream_chunk_size'] or (error != error_old)
                beyond_min_time = last_yield is None or \
                                  last_yield is not None and \
                                  (time.time() - last_yield) > kwargs['gradio_ui_stream_chunk_min_seconds']
                do_yield |= enough_data and beyond_min_time
                # yield even if new data not enough if been long enough and have at least something to yield
                enough_time = last_yield is None or \
                              last_yield is not None and \
                              (time.time() - last_yield) > kwargs['gradio_ui_stream_chunk_seconds']
                do_yield |= enough_time and could_yield
                # DEBUG: print("do_yield: %s : %s %s %s" % (do_yield, enough_data, beyond_min_time, enough_time), flush=True)
            else:
                do_yield = could_yield

            if stream_output1 and do_yield:
                last_yield = time.time()
                # yield as it goes, else need to wait since predict only returns first yield
                if isinstance(ret, dict):
                    ret_old = ret.copy()  # copy normal one first
                    from tts_utils import combine_audios
                    ret['audio'] = combine_audios(audios, audio=audio1, sr=24000 if chatbot_role1 else 16000,
                                                  expect_bytes=kwargs['return_as_byte'], verbose=verbose)
                    audios = []  # reset accumulation
                    yield ret
                else:
                    ret_old = ret
                    yield ret
                # just last response, not actually full history like bot() and all_bot() but that's all that changes
                # we can ignore other dict entries as consequence of changes to main stream in 100% of current cases
                # even if sources added last after full response done, final yield still yields left over
                history_str_old = str(ret_old['response'] if isinstance(ret_old, dict) else str(ret_old))
            else:
                # collect unstreamed audios
                audios.append(res_dict['audio'])
            if time.time() - tgen0 > max_time1 + 10:  # don't use actual, so inner has chance to complete
                msg = "Took too long evaluate_nochat: %s" % (time.time() - tgen0)
                if str_api:
                    res_dict['save_dict']['extra_dict']['timeout'] = time.time() - tgen0
                    res_dict['save_dict']['error'] = msg
                if verbose:
                    print(msg, flush=True)
                break

        # yield if anything left over as can happen
        # return back last ret
        if str_api:
            res_dict['save_dict']['extra_dict'] = _save_generate_tokens(res_dict.get('response', ''),
                                                                        res_dict.get('save_dict', {}).get(
                                                                            'extra_dict', {}))
            ret = res_dict.copy()
        if isinstance(ret, dict):
            from tts_utils import combine_audios
            ret['audio'] = combine_audios(audios, audio=None,
                                          expect_bytes=kwargs['return_as_byte'])
        yield ret

    except Exception as e:
        ex = traceback.format_exc()
        if verbose:
            print("Error in evaluate_nochat: %s" % ex, flush=True)
        if str_api:
            ret = {'error': str(e), 'error_ex': str(ex), 'sources': [], 'sources_str': '', 'prompt_raw': '',
                   'llm_answers': []}
            yield ret
        raise
    finally:
        clear_torch_cache(allow_skip=True)
        db1s = my_db_state1
        clear_embeddings(user_kwargs['langchain_mode'], kwargs['db_type'], db1s, kwargs['dbs'])
        for image_file1 in image_files_to_delete:
            if image_file1 and os.path.isfile(image_file1):
                remove(image_file1)
    save_dict['save_dir'] = kwargs['save_dir']
    save_generate_output(**save_dict)


def visible_models_to_model_choice(visible_models1, model_states1, api=False):
    if isinstance(visible_models1, list):
        assert len(
            visible_models1) >= 1, "Invalid visible_models1=%s, can only be single entry" % visible_models1
        # just take first
        model_active_choice1 = visible_models1[0]
    elif isinstance(visible_models1, (str, int)):
        model_active_choice1 = visible_models1
    else:
        assert isinstance(visible_models1, type(None)), "Invalid visible_models1=%s" % visible_models1
        model_active_choice1 = visible_models1
    if model_active_choice1 is not None:
        if isinstance(model_active_choice1, str):
            display_model_list = [x['display_name'] for x in model_states1]
            if model_active_choice1 in display_model_list:
                model_active_choice1 = display_model_list.index(model_active_choice1)
            else:
                # NOTE: Could raise, but sometimes raising in certain places fails too hard and requires UI restart
                if api:
                    raise ValueError(
                        "Invalid model %s, valid models are: %s" % (model_active_choice1, display_model_list))
                model_active_choice1 = 0
    else:
        model_active_choice1 = 0
    return model_active_choice1


def clear_embeddings(langchain_mode1, db_type, db1s, dbs=None):
    # clear any use of embedding that sits on GPU, else keeps accumulating GPU usage even if clear torch cache
    if db_type in ['chroma', 'chroma_old'] and langchain_mode1 not in ['LLM', 'Disabled', None, '']:
        from gpt_langchain import clear_embedding, length_db1
        if dbs is not None:
            db = dbs.get(langchain_mode1)
            if db is not None and not isinstance(db, str):
                clear_embedding(db)
        if db1s is not None and langchain_mode1 in db1s:
            db1 = db1s[langchain_mode1]
            if len(db1) == length_db1():
                clear_embedding(db1[0])


def fix_text_for_gradio(text, fix_new_lines=False, fix_latex_dollars=True, fix_angle_brackets=True):
    if isinstance(text, tuple):
        # images, audio, etc.
        return text

    if not isinstance(text, str):
        # e.g. list for extraction
        text = str(text)

    if fix_latex_dollars:
        ts = text.split('```')
        for parti, part in enumerate(ts):
            inside = parti % 2 == 1
            if not inside:
                ts[parti] = ts[parti].replace('$', '﹩')
        text = '```'.join(ts)

    if fix_new_lines:
        # let Gradio handle code, since got improved recently
        ## FIXME: below conflicts with Gradio, but need to see if can handle multiple \n\n\n etc. properly as is.
        # ensure good visually, else markdown ignores multiple \n
        # handle code blocks
        ts = text.split('```')
        for parti, part in enumerate(ts):
            inside = parti % 2 == 1
            if not inside:
                ts[parti] = ts[parti].replace('\n', '<br>')
        text = '```'.join(ts)
    if fix_angle_brackets:
        # handle code blocks
        ts = text.split('```')
        for parti, part in enumerate(ts):
            inside = parti % 2 == 1
            if not inside:
                if '<a href' not in ts[parti] and \
                        '<img src=' not in ts[parti] and \
                        '<div ' not in ts[parti] and \
                        '</div>' not in ts[parti] and \
                        '<details><summary>' not in ts[parti]:
                    # try to avoid html best one can
                    ts[parti] = ts[parti].replace('<', '\<').replace('>', '\>')
        text = '```'.join(ts)
    return text


def get_images_num_max(model_choice, fun_args, visible_vision_models, do_batching, cli_images_num_max):
    images_num_max1 = None
    if cli_images_num_max is not None:
        images_num_max1 = cli_images_num_max
    if model_choice['images_num_max'] is not None:
        images_num_max1 = model_choice['images_num_max']
    images_num_max_api = fun_args[len(input_args_list) + eval_func_param_names.index('images_num_max')]
    if images_num_max_api is not None:
        images_num_max1 = images_num_max_api
    if isinstance(images_num_max1, float):
        images_num_max1 = int(images_num_max1)
    if model_choice['images_num_max'] is not None:
        images_num_max1 = model_choice['images_num_max']
    if images_num_max1 is None:
        images_num_max1 = images_num_max_dict.get(visible_vision_models)
    if images_num_max1 == -1:
        # treat as if didn't set, but we will just change behavior
        do_batching = True
        images_num_max1 = None
    elif images_num_max1 is not None and images_num_max1 < -1:
        # super expert control over auto-batching
        do_batching = True
        images_num_max1 = -images_num_max1 - 1

    # may be None now, set from model-specific model_lock or dict as final choice
    if images_num_max1 is None or images_num_max1 <= -1:
        images_num_max1 = model_choice.get('images_num_max', images_num_max1)
    if images_num_max1 is None or images_num_max1 <= -1:
        # in case not coming from api
        if model_choice.get('is_actually_vision_model'):
            images_num_max1 = images_num_max_dict.get(visible_vision_models, 1)
            if images_num_max1 == -1:
                # mean never set actual value, revert to 1
                images_num_max1 = 1
        else:
            images_num_max1 = images_num_max_dict.get(visible_vision_models, 0)
            if images_num_max1 == -1:
                # mean never set actual value, revert to 0
                images_num_max1 = 0
    if images_num_max1 < -1:
        images_num_max1 = -images_num_max1 - 1
        do_batching = True

    assert images_num_max1 != -1, "Should not be -1 here"

    if images_num_max1 is None:
        # no target, so just default of no vision
        images_num_max1 = 0

    return images_num_max1, do_batching


def get_response(fun1, history, chatbot_role1, speaker1, tts_language1, roles_state1, tts_speed1,
                 langchain_action1, langchain_mode1, kwargs={}, api=False, verbose=False):
    if fun1 is None:
        yield from _get_response(fun1, history, chatbot_role1, speaker1, tts_language1, roles_state1, tts_speed1,
                                 langchain_action1, kwargs=kwargs, api=api, verbose=verbose)
        return

    image_files = fun1.args[len(input_args_list) + eval_func_param_names.index('image_file')]
    if image_files is None:
        image_files = []
    else:
        image_files = image_files.copy()

    import pyexiv2
    meta_data_images = []
    for image_files1 in image_files:
        try:
            with pyexiv2.Image(image_files1) as img:
                metadata = img.read_exif()
        except RuntimeError as e:
            if 'unknown image type' in str(e):
                metadata = {}
            else:
                raise
        if metadata is None:
            metadata = {}
        meta_data_images.append(metadata)

    fun1_args_list = list(fun1.args)
    chosen_model_state = fun1.args[input_args_list.index('model_state')]
    base_model = chosen_model_state.get('base_model')
    display_name = chosen_model_state.get('display_name')

    visible_vision_models = ''
    if kwargs['visible_vision_models']:
        # if in UI, 'auto' is default, but CLI has another default, so use that if set
        visible_vision_models = kwargs['visible_vision_models']
    if chosen_model_state['is_actually_vision_model']:
        visible_vision_models = chosen_model_state['display_name']

    # by here these are just single names, not integers or list
    # args_list is not just from API, but also uses default_kwargs from CLI if not None but user_args is None or ''
    visible_vision_models1 = fun1_args_list[len(input_args_list) + eval_func_param_names.index('visible_vision_models')]
    if visible_vision_models1:
        if isinstance(visible_vision_models1, list):
            visible_vision_models1 = visible_vision_models1[0]
        if visible_vision_models1 != 'auto' and visible_vision_models1 in kwargs['all_possible_vision_display_names']:
            # e.g. CLI might have had InternVL but model lock only Haiku, filter that out here
            visible_vision_models = visible_vision_models1

    if not visible_vision_models:
        visible_vision_models = ''
    if isinstance(visible_vision_models, list):
        visible_vision_models = visible_vision_models[0]

    force_batching = False
    images_num_max, force_batching = get_images_num_max(chosen_model_state, fun1.args, visible_vision_models,
                                                        force_batching, kwargs['images_num_max'])

    do_batching = force_batching or len(image_files) > images_num_max or \
                  visible_vision_models != display_name and \
                  display_name not in kwargs['all_possible_vision_display_names']
    do_batching &= visible_vision_models != ''
    do_batching &= len(image_files) > 0

    # choose batching model
    if do_batching and visible_vision_models:
        model_states1 = kwargs['model_states']
        model_batch_choice1 = visible_models_to_model_choice(visible_vision_models, model_states1, api=api)
        model_batch_choice = model_states1[model_batch_choice1 % len(model_states1)]
        images_num_max_batch, do_batching = get_images_num_max(model_batch_choice, fun1.args, visible_vision_models,
                                                               do_batching, kwargs['images_num_max'])

    else:
        model_batch_choice = None
        images_num_max_batch = images_num_max
    batch_display_name = model_batch_choice.get('display_name') if model_batch_choice is not None else display_name

    do_batching &= images_num_max_batch not in [0, None]  # not 0 or None, maybe some unknown model, don't do batching

    if not do_batching:
        yield from _get_response(fun1, history, chatbot_role1, speaker1, tts_language1, roles_state1, tts_speed1,
                                 langchain_action1, kwargs=kwargs, api=api, verbose=verbose)
        return
    else:
        instruction = fun1_args_list[len(input_args_list) + eval_func_param_names.index('instruction')]
        instruction_nochat = fun1_args_list[len(input_args_list) + eval_func_param_names.index('instruction_nochat')]
        instruction = instruction or instruction_nochat or ""
        prompt_summary = fun1_args_list[len(input_args_list) + eval_func_param_names.index('prompt_summary')]
        if prompt_summary is None:
            prompt_summary = kwargs['prompt_summary'] or ''
        image_batch_image_prompt = fun1_args_list[len(input_args_list) + eval_func_param_names.index(
            'image_batch_image_prompt')] or kwargs['image_batch_image_prompt'] or image_batch_image_prompt0
        image_batch_final_prompt = fun1_args_list[len(input_args_list) + eval_func_param_names.index(
            'image_batch_final_prompt')] or kwargs['image_batch_final_prompt'] or image_batch_final_prompt0
        # inject system prompt late, since if early then might not listen to it and generally high priority instructions
        system_prompt = fun1_args_list[len(input_args_list) + eval_func_param_names.index('system_prompt')]
        if system_prompt not in [None, 'None', 'auto']:
            system_prompt_xml = f"""\n<system_prompt>\n{system_prompt}\n</system_prompt>\n""" if system_prompt else ''
        else:
            system_prompt_xml = ''
        if langchain_action1 == LangChainAction.QUERY.value:
            instruction_batch = image_batch_image_prompt + system_prompt_xml + instruction
            instruction_final = image_batch_final_prompt + system_prompt_xml + instruction
            prompt_summary_batch = prompt_summary
            prompt_summary_final = prompt_summary
        elif langchain_action1 == LangChainAction.SUMMARIZE_MAP.value:
            instruction_batch = instruction
            instruction_final = instruction
            prompt_summary_batch = image_batch_image_prompt + system_prompt_xml + prompt_summary
            prompt_summary_final = image_batch_final_prompt + system_prompt_xml + prompt_summary
        else:
            instruction_batch = instruction
            instruction_final = instruction
            prompt_summary_batch = prompt_summary
            prompt_summary_final = prompt_summary

        batch_output_tokens = 0
        batch_time = 0
        batch_input_tokens = 0
        batch_tokenspersec = 0
        batch_results = []

        text_context_list = fun1_args_list[len(input_args_list) + eval_func_param_names.index('text_context_list')]
        text_context_list = str_to_list(text_context_list)
        text_context_list_copy = copy.deepcopy(text_context_list)
        # copy before mutating it
        fun1_args_list_copy = fun1_args_list.copy()
        # sync all args with model
        for k, v in model_batch_choice.items():
            if k in eval_func_param_names and k in in_model_state_and_evaluate and v is not None:
                fun1_args_list_copy[len(input_args_list) + eval_func_param_names.index(k)] = v
        for batch in range(0, len(image_files), images_num_max_batch):
            fun1_args_list2 = fun1_args_list_copy.copy()
            # then handle images in batches
            images_batch = image_files[batch:batch + images_num_max_batch]
            fun1_args_list2[len(input_args_list) + eval_func_param_names.index('image_file')] = images_batch
            # disable batching if gradio to gradio, back to auto based upon batch size we sent
            # Can't pass None, default_kwargs will override, so pass actual value instead
            fun1_args_list2[len(input_args_list) + eval_func_param_names.index('images_num_max')] = len(images_batch)
            batch_size = len(fun1_args_list2[len(input_args_list) + eval_func_param_names.index('image_file')])
            fun1_args_list2[len(input_args_list) + eval_func_param_names.index('instruction')] = instruction_batch
            fun1_args_list2[len(input_args_list) + eval_func_param_names.index('prompt_summary')] = prompt_summary_batch
            # unlikely extended image description possible or required
            if batch_display_name in images_limit_max_new_tokens_list:
                max_new_tokens = fun1_args_list2[len(input_args_list) + eval_func_param_names.index('max_new_tokens')]
                fun1_args_list2[len(input_args_list) + eval_func_param_names.index('max_new_tokens')] = min(
                    images_limit_max_new_tokens, max_new_tokens)
            # don't include context list, just do image only
            fun1_args_list2[len(input_args_list) + eval_func_param_names.index('text_context_list')] = []
            # intermediate vision results for batching nominally should be normal, let final model do json or others
            fun1_args_list2[len(input_args_list) + eval_func_param_names.index('response_format')] = 'text'
            fun1_args_list2[len(input_args_list) + eval_func_param_names.index('guided_json')] = None
            fun1_args_list2[len(input_args_list) + eval_func_param_names.index('guided_regex')] = None
            fun1_args_list2[len(input_args_list) + eval_func_param_names.index('guided_grammar')] = None
            fun1_args_list2[len(input_args_list) + eval_func_param_names.index('guided_choice')] = None
            # no docs from DB, just image.  Don't switch langchain_mode.
            fun1_args_list2[
                len(input_args_list) + eval_func_param_names.index('document_subset')] = []
            fun1_args_list2[len(input_args_list) + eval_func_param_names.index('text_context_list')] = []
            # don't cause batching inside
            fun1_args_list2[
                len(input_args_list) + eval_func_param_names.index('visible_vision_models')] = visible_vision_models
            if model_batch_choice:
                # override for batch model
                fun1_args_list2[0] = model_batch_choice
                fun1_args_list2[
                    len(input_args_list) + eval_func_param_names.index('visible_models')] = visible_vision_models
            history1 = deepcopy_by_pickle_object(history)  # FIXME: is this ok?  What if byte images?
            if not history1:
                history1 = [['', '']]
            history1[-1][0] = instruction_batch
            fun1_args_list2[len(input_args_list) + eval_func_param_names.index('chat_conversation')] = history1
            # but don't change what user sees for instruction
            history1 = deepcopy_by_pickle_object(history)
            history2 = deepcopy_by_pickle_object(history)
            fun2 = functools.partial(fun1.func, *tuple(fun1_args_list2), **fun1.keywords)

            text = ''
            prompt_raw_saved = ''
            save_dict1_saved = {}
            error_saved = ''
            history_saved = []
            sources_saved = []
            sources_str_saved = ''
            llm_answers_saved = {}
            image_batch_stream = fun1_args_list2[
                len(input_args_list) + eval_func_param_names.index('image_batch_stream')]
            if image_batch_stream is None:
                image_batch_stream = kwargs['image_batch_stream']
            if not image_batch_stream and not api:
                if not history2:
                    history2 = [['', '']]
                if len(image_files) > images_num_max_batch:
                    history2[-1][1] = '<b>%s querying image %s/%s<b>' % (
                        visible_vision_models, 1 + batch, 1 + len(image_files))
                else:
                    history2[-1][1] = '<b>%s querying image(s)<b>' % visible_vision_models
                audio3 = b''  # don't yield audio if not streaming batches
                yield history2, '', [], '', '', [], {}, audio3
            t0_batch = time.time()
            for response in _get_response(fun2, history1, chatbot_role1, speaker1, tts_language1, roles_state1,
                                          tts_speed1,
                                          langchain_action1,
                                          kwargs=kwargs, api=api, verbose=verbose):
                if image_batch_stream:
                    yield response
                history1, error1, sources1, sources_str1, prompt_raw1, llm_answers1, save_dict1, audio2 = response
                prompt_raw_saved = prompt_raw1
                save_dict1_saved = save_dict1
                error_saved = error1
                history_saved = history1
                sources_saved = sources1
                sources_str_saved = sources_str1
                llm_answers_saved = llm_answers1
                text = history1[-1][1] or '' if history1 else ''
            batch_input_tokens += save_dict1_saved['extra_dict'].get('num_prompt_tokens', 0)
            save_dict1_saved['extra_dict'] = _save_generate_tokens(text, save_dict1_saved['extra_dict'])
            ntokens1 = save_dict1_saved['extra_dict'].get('ntokens', 0)
            batch_output_tokens += ntokens1
            batch_time += (time.time() - t0_batch)
            tokens_per_sec1 = save_dict1_saved['extra_dict'].get('tokens_persecond', 0)
            batch_tokenspersec += tokens_per_sec1

            meta_data = ''
            for meta_data_image in meta_data_images[batch:batch + images_num_max_batch]:
                if not meta_data_image:
                    continue
                meta_data += '\n'.join(
                    [f"""<{key}><{value}</{key}>\n""" for key, value in meta_data_image.items()]).strip() + '\n'
            response_final = f'<images>\n<batch_name>\nImage {batch}\n</batch_name>\n{meta_data}\n\n{text}\n\n</images>'

            batch_results.append(dict(image_ids=list(range(batch, batch + images_num_max_batch)),
                                      response=text,
                                      response_final=response_final,
                                      prompt_raw=prompt_raw_saved,
                                      save_dict=save_dict1_saved,
                                      error=error_saved,
                                      history=history_saved,
                                      sources=sources_saved,
                                      sources_str=sources_str_saved,
                                      llm_answers=llm_answers_saved,
                                      ))

        # last response with no images
        responses = [x['response_final'] for x in batch_results]
        batch_tokens_persecond = batch_output_tokens / batch_time if batch_time > 0 else 0
        history1 = deepcopy_by_pickle_object(history)  # FIXME: is this ok?  What if byte images?
        fun1_args_list2 = fun1_args_list.copy()
        # sync all args with model
        for k, v in chosen_model_state.items():
            if k in eval_func_param_names and k in in_model_state_and_evaluate and v is not None:
                fun1_args_list2[len(input_args_list) + eval_func_param_names.index(k)] = v
        fun1_args_list2[len(input_args_list) + eval_func_param_names.index('image_file')] = []
        if not history1:
            history1 = [['', '']]
        history1[-1][0] = fun1_args_list2[
            len(input_args_list) + eval_func_param_names.index('instruction')] = instruction_final
        fun1_args_list2[len(input_args_list) + eval_func_param_names.index('chat_conversation')] = history1
        # but don't change what user sees for instruction
        history1 = deepcopy_by_pickle_object(history)
        fun1_args_list2[len(input_args_list) + eval_func_param_names.index('prompt_summary')] = prompt_summary_final
        if langchain_action1 == LangChainAction.QUERY.value:
            instruction = fun1_args_list2[len(input_args_list) + eval_func_param_names.index('instruction')]
            if langchain_mode1 == LangChainMode.LLM.value and instruction:
                # pre-append to context directly
                fun1_args_list2[
                    len(input_args_list) + eval_func_param_names.index('instruction')] = '\n\n'.join(
                    responses) + instruction
            else:
                # pre-append to ensure images used, since first is highest priority for text_context_list
                fun1_args_list2[len(input_args_list) + eval_func_param_names.index(
                    'text_context_list')] = responses + text_context_list_copy
        else:
            # for summary/extract, put at end, so if part of single call similar to Query in order for best_near_prompt
            fun1_args_list2[len(input_args_list) + eval_func_param_names.index(
                'text_context_list')] = text_context_list_copy + responses
        fun2 = functools.partial(fun1.func, *tuple(fun1_args_list2), **fun1.keywords)
        for response in _get_response(fun2, history1, chatbot_role1, speaker1, tts_language1, roles_state1,
                                      tts_speed1, langchain_action1, kwargs=kwargs, api=api, verbose=verbose):
            response_list = list(response)
            save_dict1 = response_list[6]
            if 'extra_dict' in save_dict1:
                if 'num_prompt_tokens' in save_dict1['extra_dict']:
                    save_dict1['extra_dict']['batch_vision_visible_model'] = batch_display_name

                    save_dict1['extra_dict']['batch_num_prompt_tokens'] = batch_input_tokens
                    save_dict1['extra_dict']['batch_ntokens'] = batch_output_tokens
                    save_dict1['extra_dict']['batch_tokens_persecond'] = batch_tokens_persecond
                    if batch_display_name == display_name:
                        save_dict1['extra_dict']['num_prompt_tokens'] += batch_input_tokens
                        # get ntokens so can add to it
                        history1new = response_list[0]
                        if history1new and len(history1new) > 0 and len(history1new[0]) == 2 and history1new[-1][1]:
                            save_dict1['extra_dict'] = _save_generate_tokens(history1new[-1][1],
                                                                             save_dict1['extra_dict'])
                        save_dict1['extra_dict']['ntokens'] += batch_output_tokens
                    save_dict1['extra_dict']['batch_results'] = batch_results
                    response_list[6] = save_dict1
            yield tuple(response_list)
        return


def _get_response(fun1, history, chatbot_role1, speaker1, tts_language1, roles_state1, tts_speed1,
                  langchain_action1, kwargs={}, api=False, verbose=False):
    """
    bot that consumes history for user input
    instruction (from input_list) itself is not consumed by bot
    :return:
    """
    error = ''
    sources = []
    save_dict = dict()
    output_no_refs = ''
    sources_str = ''
    prompt_raw = ''
    llm_answers = {}

    audio0, audio1, no_audio, generate_speech_func_func = \
        prepare_audio(chatbot_role1, speaker1, tts_language1, roles_state1, tts_speed1, langchain_action1,
                      kwargs=kwargs, verbose=verbose)

    if not fun1:
        yield history, error, sources, sources_str, prompt_raw, llm_answers, save_dict, audio1
        return
    try:
        for output_fun in fun1():
            output = output_fun['response']
            output_no_refs = output_fun['response_no_refs']
            sources = output_fun['sources']  # FIXME: can show sources in separate text box etc.
            sources_iter = []  # don't yield full prompt_raw every iteration, just at end
            sources_str = output_fun['sources_str']
            sources_str_iter = ''  # don't yield full prompt_raw every iteration, just at end
            prompt_raw = output_fun['prompt_raw']
            prompt_raw_iter = ''  # don't yield full prompt_raw every iteration, just at end
            llm_answers = output_fun['llm_answers']
            save_dict = output_fun.get('save_dict', {})
            save_dict_iter = {}
            # ensure good visually, else markdown ignores multiple \n
            bot_message = fix_text_for_gradio(output, fix_latex_dollars=not api, fix_angle_brackets=not api)
            history[-1][1] = bot_message

            if generate_speech_func_func is not None:
                while True:
                    audio1, sentence, sentence_state = generate_speech_func_func(output_no_refs, is_final=False)
                    if audio0 is not None:
                        yield history, error, sources_iter, sources_str_iter, prompt_raw_iter, llm_answers, save_dict_iter, audio0
                        audio0 = None
                    yield history, error, sources_iter, sources_str_iter, prompt_raw_iter, llm_answers, save_dict_iter, audio1
                    if not sentence:
                        # while True to handle case when streaming is fast enough that see multiple sentences in single go
                        break
            else:
                yield history, error, sources_iter, sources_str_iter, prompt_raw_iter, llm_answers, save_dict_iter, audio0
        if generate_speech_func_func:
            # print("final %s %s" % (history[-1][1] is None, audio1 is None), flush=True)
            audio1, sentence, sentence_state = generate_speech_func_func(output_no_refs, is_final=True)
            if audio0 is not None:
                yield history, error, sources, sources_str, prompt_raw, llm_answers, save_dict, audio0
        else:
            audio1 = None
        # print("final2 %s %s" % (history[-1][1] is None, audio1 is None), flush=True)
        yield history, error, sources, sources_str, prompt_raw, llm_answers, save_dict, audio1
    except StopIteration:
        # print("STOP ITERATION", flush=True)
        yield history, error, sources, sources_str, prompt_raw, llm_answers, save_dict, no_audio
        raise
    except RuntimeError as e:
        if "generator raised StopIteration" in str(e):
            # assume last entry was bad, undo
            history.pop()
            yield history, error, sources, sources_str, prompt_raw, llm_answers, save_dict, no_audio
        else:
            if history and len(history) > 0 and len(history[0]) > 1 and history[-1][1] is None:
                history[-1][1] = ''
            yield history, str(e), sources, sources_str, prompt_raw, llm_answers, save_dict, no_audio
            raise
    except Exception as e:
        # put error into user input
        ex = "Exception: %s" % str(e)
        if history and len(history) > 0 and len(history[0]) > 1 and history[-1][1] is None:
            history[-1][1] = ''
        yield history, ex, sources, sources_str, prompt_raw, llm_answers, save_dict, no_audio
        raise
    finally:
        # clear_torch_cache()
        # don't clear torch cache here, too early and stalls generation if used for all_bot()
        pass
    return


def prepare_audio(chatbot_role1, speaker1, tts_language1, roles_state1, tts_speed1, langchain_action1, kwargs={},
                  verbose=False):
    assert kwargs
    from tts_sentence_parsing import init_sentence_state
    sentence_state = init_sentence_state()
    if langchain_action1 in [LangChainAction.EXTRACT.value]:
        # don't do audio for extraction in any case
        generate_speech_func_func = None
        audio0 = None
        audio1 = None
        no_audio = None
    elif kwargs['tts_model'].startswith('microsoft') and speaker1 not in [None, "None"]:
        audio1 = None
        from tts import get_speaker_embedding
        speaker_embedding = get_speaker_embedding(speaker1, kwargs['model_tts'].device)
        # audio0 = 16000, np.array([]).astype(np.int16)
        from tts_utils import prepare_speech, get_no_audio
        sr = 16000
        audio0 = prepare_speech(sr=sr)
        no_audio = get_no_audio(sr=sr)
        generate_speech_func_func = functools.partial(kwargs['generate_speech_func'],
                                                      speaker=speaker1,
                                                      speaker_embedding=speaker_embedding,
                                                      sentence_state=sentence_state,
                                                      return_as_byte=kwargs['return_as_byte'],
                                                      sr=sr,
                                                      tts_speed=tts_speed1,
                                                      verbose=verbose)
    elif kwargs['tts_model'].startswith('tts_models/') and chatbot_role1 not in [None, "None"]:
        audio1 = None
        from tts_utils import prepare_speech, get_no_audio
        from tts_coqui import get_latent
        sr = 24000
        audio0 = prepare_speech(sr=sr)
        no_audio = get_no_audio(sr=sr)
        latent = get_latent(roles_state1[chatbot_role1], model=kwargs['model_xtt'])
        generate_speech_func_func = functools.partial(kwargs['generate_speech_func'],
                                                      latent=latent,
                                                      language=tts_language1,
                                                      sentence_state=sentence_state,
                                                      return_as_byte=kwargs['return_as_byte'],
                                                      sr=sr,
                                                      tts_speed=tts_speed1,
                                                      verbose=verbose)
    else:
        generate_speech_func_func = None
        audio0 = None
        audio1 = None
        no_audio = None
    return audio0, audio1, no_audio, generate_speech_func_func


def prep_bot(*args, retry=False, which_model=0, kwargs_eval={}, plain_api=False, kwargs={}, verbose=False):
    """

    :param args:
    :param retry:
    :param which_model: identifies which model if doing model_lock
         API only called for which_model=0, default for inputs_list, but rest should ignore inputs_list
    :return: last element is True if should run bot, False if should just yield history
    """
    assert kwargs
    isize = len(input_args_list) + 1  # states + chat history
    # don't deepcopy, can contain model itself
    # NOTE: Update plain_api in evaluate_nochat too
    args_list = list(args).copy()
    model_state1 = args_list[-isize]
    my_db_state1 = args_list[-isize + 1]
    selection_docs_state1 = args_list[-isize + 2]
    requests_state1 = args_list[-isize + 3]
    roles_state1 = args_list[-isize + 4]
    history = args_list[-1]
    if not history:
        history = []
    # NOTE: For these, could check if None, then automatically use CLI values, but too complex behavior
    prompt_type1 = args_list[eval_func_param_names.index('prompt_type')]
    if prompt_type1 == no_model_str:
        # deal with gradio dropdown
        prompt_type1 = args_list[eval_func_param_names.index('prompt_type')] = None
    prompt_dict1 = args_list[eval_func_param_names.index('prompt_dict')]
    max_time1 = args_list[eval_func_param_names.index('max_time')]
    stream_output1 = args_list[eval_func_param_names.index('stream_output')]
    langchain_mode1 = args_list[eval_func_param_names.index('langchain_mode')]
    langchain_action1 = args_list[eval_func_param_names.index('langchain_action')]
    document_subset1 = args_list[eval_func_param_names.index('document_subset')]
    h2ogpt_key1 = args_list[eval_func_param_names.index('h2ogpt_key')]
    chat_conversation1 = args_list[eval_func_param_names.index('chat_conversation')]
    valid_key = is_valid_key(kwargs['enforce_h2ogpt_api_key'],
                             kwargs['enforce_h2ogpt_ui_key'],
                             kwargs['h2ogpt_api_keys'], h2ogpt_key1,
                             requests_state1=requests_state1)
    chatbot_role1 = args_list[eval_func_param_names.index('chatbot_role')]
    speaker1 = args_list[eval_func_param_names.index('speaker')]
    tts_language1 = args_list[eval_func_param_names.index('tts_language')]
    tts_speed1 = args_list[eval_func_param_names.index('tts_speed')]

    dummy_return = history, None, langchain_mode1, my_db_state1, requests_state1, \
        valid_key, h2ogpt_key1, \
        max_time1, stream_output1, chatbot_role1, speaker1, tts_language1, roles_state1, tts_speed1, \
        langchain_action1, []

    if not plain_api and (model_state1['model'] is None or model_state1['model'] == no_model_str):
        # plain_api has no state, let evaluate() handle switch
        return dummy_return

    args_list = args_list[:-isize]  # only keep rest needed for evaluate()
    if not history:
        if verbose:
            print("No history", flush=True)
        return dummy_return
    instruction1 = history[-1][0]
    if retry and history:
        # if retry, pop history and move onto bot stuff
        history = get_llm_history(history)
        instruction1 = history[-1][0] if history and history[-1] and len(history[-1]) == 2 else None
        if history and history[-1]:
            history[-1][1] = None
        if not instruction1:
            return dummy_return
    elif not instruction1:
        if not allow_empty_instruction(langchain_mode1, document_subset1, langchain_action1):
            # if not retrying, then reject empty query
            return dummy_return
    elif len(history) > 0 and history[-1][1] not in [None, '']:
        # reject submit button if already filled and not retrying
        # None when not filling with '' to keep client happy
        return dummy_return

    from gen import evaluate, evaluate_fake
    evaluate_local = evaluate if valid_key else functools.partial(evaluate_fake, langchain_action=langchain_action1)

    # shouldn't have to specify in API prompt_type if CLI launched model, so prefer global CLI one if have it
    prompt_type1, prompt_dict1 = update_prompt(prompt_type1, prompt_dict1, model_state1,
                                               which_model=which_model, **kwargs)
    # apply back to args_list for evaluate()
    args_list[eval_func_param_names.index('prompt_type')] = prompt_type1
    args_list[eval_func_param_names.index('prompt_dict')] = prompt_dict1
    context1 = args_list[eval_func_param_names.index('context')]

    chat_conversation1 = merge_chat_conversation_history(chat_conversation1, history)
    args_list[eval_func_param_names.index('chat_conversation')] = chat_conversation1

    if 'visible_models' in model_state1 and model_state1['visible_models'] is not None:
        assert isinstance(model_state1['visible_models'], (int, str))
        args_list[eval_func_param_names.index('visible_models')] = model_state1['visible_models']
    if 'visible_vision_models' in model_state1 and model_state1['visible_vision_models'] is not None:
        assert isinstance(model_state1['visible_vision_models'], (int, str))
        args_list[eval_func_param_names.index('visible_vision_models')] = model_state1['visible_vision_models']
    if 'h2ogpt_key' in model_state1 and model_state1['h2ogpt_key'] is not None:
        # i.e. may be '' and used to override overall local key
        assert isinstance(model_state1['h2ogpt_key'], str)
        args_list[eval_func_param_names.index('h2ogpt_key')] = model_state1['h2ogpt_key']
    elif not args_list[eval_func_param_names.index('h2ogpt_key')]:
        # now that checked if key was valid or not, now can inject default key in case gradio inference server
        # only do if key not already set by user
        args_list[eval_func_param_names.index('h2ogpt_key')] = kwargs['h2ogpt_key']

    ###########################################
    # deal with image files
    image_files = args_list[eval_func_param_names.index('image_file')]
    if isinstance(image_files, str):
        image_files = [image_files]
    if image_files is None:
        image_files = []
    video_files = args_list[eval_func_param_names.index('video_file')]
    if isinstance(video_files, str):
        video_files = [video_files]
    if video_files is None:
        video_files = []
    # NOTE: Once done with gradio, image_file and video_file are all in same list
    image_files.extend(video_files)

    image_files_to_delete = []
    b2imgs = []
    for img_file_one in image_files:
        str_type = check_input_type(img_file_one)
        if str_type == 'unknown':
            continue

        img_file_path = os.path.join(tempfile.gettempdir(), 'image_file_%s' % str(uuid.uuid4()))
        if str_type == 'url':
            img_file_one = download_image(img_file_one, img_file_path)
            # only delete if was made by us
            image_files_to_delete.append(img_file_one)
        elif str_type == 'base64':
            from vision.utils_vision import base64_to_img
            img_file_one = base64_to_img(img_file_one, img_file_path)
            # only delete if was made by us
            image_files_to_delete.append(img_file_one)
        else:
            # str_type='file' or 'youtube' or video (can be cached)
            pass
        if img_file_one is not None:
            b2imgs.append(img_file_one)
    # always just make list
    args_list[eval_func_param_names.index('image_file')] = b2imgs
    ###########################################
    # deal with videos in image list
    images_file_path = os.path.join(tempfile.gettempdir(), 'image_path_%s' % str(uuid.uuid4()))
    # don't try to convert resolution here, do later as images
    image_files = args_list[eval_func_param_names.index('image_file')]
    image_resolution = args_list[eval_func_param_names.index('image_resolution')]
    image_format = args_list[eval_func_param_names.index('image_format')]
    video_frame_period = args_list[eval_func_param_names.index('video_frame_period')]
    if video_frame_period is not None:
        video_frame_period = int(video_frame_period)
    extract_frames = args_list[eval_func_param_names.index('extract_frames')] or kwargs.get('extract_frames', 20)
    rotate_align_resize_image = args_list[eval_func_param_names.index('rotate_align_resize_image')] or kwargs.get(
        'rotate_align_resize_image', True)
    process_args = (image_files, images_file_path)
    process_kwargs = dict(resolution=image_resolution,
                          image_format=image_format,
                          rotate_align_resize_image=rotate_align_resize_image,
                          video_frame_period=video_frame_period,
                          extract_frames=extract_frames,
                          verbose=verbose)
    if image_files and kwargs['function_server']:
        from function_client import call_function_server
        image_files = call_function_server('0.0.0.0', kwargs['function_server_port'], 'process_file_list',
                                           process_args, process_kwargs,
                                           use_disk=True, use_pickle=True,
                                           function_api_key=kwargs['function_api_key'],
                                           verbose=verbose)
    else:
        image_files = process_file_list(*process_args, **process_kwargs)
    args_list[eval_func_param_names.index('image_file')] = image_files

    ###########################################
    # override original instruction with history from user
    args_list[0] = instruction1
    args_list[2] = context1

    ###########################################
    # allow override of expert/user input for other parameters
    for k in eval_func_param_names:
        if k in in_model_state_and_evaluate:
            # already handled
            continue
        if k in model_state1 and model_state1[k] is not None:
            args_list[eval_func_param_names.index(k)] = model_state1[k]

    eval_args = (model_state1, my_db_state1, selection_docs_state1, requests_state1, roles_state1)
    assert len(eval_args) == len(input_args_list)
    fun1 = functools.partial(evaluate_local, *eval_args, *tuple(args_list), **kwargs_eval)

    return history, fun1, langchain_mode1, my_db_state1, requests_state1, \
        valid_key, h2ogpt_key1, \
        max_time1, stream_output1, \
        chatbot_role1, speaker1, tts_language1, roles_state1, tts_speed1, \
        langchain_action1, image_files_to_delete


def choose_exc(x, is_public=True):
    # don't expose ports etc. to exceptions window
    if is_public:
        return x #"Endpoint unavailable or failed"
    else:
        return x


def bot(*args, retry=False, kwargs_evaluate={}, kwargs={}, db_type=None, dbs=None, verbose=False):
    history, fun1, langchain_mode1, db1, requests_state1, \
        valid_key, h2ogpt_key1, \
        max_time1, stream_output1, \
        chatbot_role1, speaker1, tts_language1, roles_state1, tts_speed1, \
        image_files_to_delete, \
        langchain_action1 = prep_bot(*args, retry=retry, kwargs_eval=kwargs_evaluate, kwargs=kwargs, verbose=verbose)
    save_dict = dict()
    error = ''
    error_with_str = ''
    sources = []
    history_str_old = ''
    error_old = ''
    sources_str = None
    from tts_utils import get_no_audio
    no_audio = get_no_audio()
    audios = []  # in case not streaming, since audio is always streaming, need to accumulate for when yield
    last_yield = None
    try:
        tgen0 = time.time()
        for res in get_response(fun1, history, chatbot_role1, speaker1, tts_language1, roles_state1,
                                tts_speed1,
                                langchain_action1,
                                langchain_mode1,
                                kwargs=kwargs,
                                api=False,
                                verbose=verbose,
                                ):
            do_yield = False
            history, error, sources, sources_str, prompt_raw, llm_answers, save_dict, audio1 = res
            error_with_str = get_accordion_named(choose_exc(error), "Generate Error",
                                                 font_size=2) if error not in ['', None, 'None'] else ''

            # pass back to gradio only these, rest are consumed in this function
            history_str = str(history)
            could_yield = (
                    history_str != history_str_old or
                    error != error_old and
                    (error not in noneset or
                     error_old not in noneset))
            if kwargs['gradio_ui_stream_chunk_size'] <= 0:
                do_yield |= could_yield
            else:
                delta_history = abs(len(history_str) - len(history_str_old))
                # even if enough data, don't yield if has been less than min_seconds
                enough_data = delta_history > kwargs['gradio_ui_stream_chunk_size'] or (error != error_old)
                beyond_min_time = last_yield is None or \
                                  last_yield is not None and \
                                  (time.time() - last_yield) > kwargs['gradio_ui_stream_chunk_min_seconds']
                do_yield |= enough_data and beyond_min_time
                # yield even if new data not enough if been long enough and have at least something to yield
                enough_time = last_yield is None or \
                              last_yield is not None and \
                              (time.time() - last_yield) > kwargs['gradio_ui_stream_chunk_seconds']
                do_yield |= enough_time and could_yield
                # DEBUG: print("do_yield: %s : %s %s %s %s" % (do_yield, delta_history, enough_data, beyond_min_time, enough_time), flush=True)
            if stream_output1 and do_yield:
                audio1 = combine_audios(audios, audio=audio1, sr=24000 if chatbot_role1 else 16000,
                                        expect_bytes=kwargs['return_as_byte'], verbose=verbose)
                audios = []  # reset accumulation

                yield history, error, audio1
                history_str_old = history_str
                error_old = error
                last_yield = time.time()
            else:
                audios.append(audio1)

            if time.time() - tgen0 > max_time1 + 10:  # don't use actual, so inner has chance to complete
                if verbose:
                    print("Took too long bot: %s" % (time.time() - tgen0), flush=True)
                break

        # yield if anything left over
        final_audio = combine_audios(audios, audio=no_audio,
                                     expect_bytes=kwargs['return_as_byte'], verbose=verbose)
        if error_with_str:
            if history and history[-1] and len(history[-1]) == 2 and error_with_str:
                if not history[-1][1]:
                    history[-1][1] = error_with_str
                else:
                    # separate bot if already text present
                    history.append((None, error_with_str))
        if kwargs['append_sources_to_chat'] and sources_str:
            history.append((None, sources_str))

        yield history, error, final_audio
    except BaseException as e:
        print("evaluate_nochat exception: %s: %s" % (str(e), str(args)), flush=True)
        raise
    finally:
        clear_torch_cache(allow_skip=True)
        clear_embeddings(langchain_mode1, db_type, db1, dbs)
        for image_file1 in image_files_to_delete:
            if os.path.isfile(image_file1):
                remove(image_file1)

    # save
    if 'extra_dict' not in save_dict:
        save_dict['extra_dict'] = {}
    save_dict['valid_key'] = valid_key
    save_dict['h2ogpt_key'] = h2ogpt_key1
    if requests_state1:
        save_dict['extra_dict'].update(requests_state1)
    else:
        save_dict['extra_dict'].update(dict(username='NO_REQUEST'))
    save_dict['error'] = error
    save_dict['sources'] = sources
    save_dict['which_api'] = 'bot'
    save_dict['save_dir'] = kwargs['save_dir']
    save_generate_output(**save_dict)


def is_from_ui(requests_state1):
    return isinstance(requests_state1, dict) and 'username' in requests_state1 and requests_state1['username']


def is_valid_key(enforce_h2ogpt_api_key, enforce_h2ogpt_ui_key, h2ogpt_api_keys, h2ogpt_key1, requests_state1=None):
    from_ui = is_from_ui(requests_state1)

    if from_ui and not enforce_h2ogpt_ui_key:
        # no token barrier
        return 'not enforced'
    elif not from_ui and not enforce_h2ogpt_api_key:
        # no token barrier
        return 'not enforced'
    else:
        valid_key = False
        if isinstance(h2ogpt_api_keys, list) and h2ogpt_key1 in h2ogpt_api_keys:
            # passed token barrier
            valid_key = True
        elif isinstance(h2ogpt_api_keys, str) and os.path.isfile(h2ogpt_api_keys):
            with filelock.FileLock(h2ogpt_api_keys + '.lock'):
                with open(h2ogpt_api_keys, 'rt') as f:
                    h2ogpt_api_keys = json.load(f)
                if h2ogpt_key1 in h2ogpt_api_keys:
                    valid_key = True
        return valid_key


def get_one_key(h2ogpt_api_keys, enforce_h2ogpt_api_key):
    if not enforce_h2ogpt_api_key:
        # return None so OpenAI server has no keyed access if not enforcing API key on h2oGPT regardless if keys passed
        return None
    if isinstance(h2ogpt_api_keys, list) and h2ogpt_api_keys:
        return h2ogpt_api_keys[0]
    elif isinstance(h2ogpt_api_keys, str) and os.path.isfile(h2ogpt_api_keys):
        with filelock.FileLock(h2ogpt_api_keys + '.lock'):
            with open(h2ogpt_api_keys, 'rt') as f:
                h2ogpt_api_keys = json.load(f)
            if h2ogpt_api_keys:
                return h2ogpt_api_keys[0]


def get_model_max_length(model_state1, model_state0):
    if model_state1 and not isinstance(model_state1["tokenizer"], str):
        tokenizer = model_state1["tokenizer"]
    elif model_state0 and not isinstance(model_state0["tokenizer"], str):
        tokenizer = model_state0["tokenizer"]
    else:
        tokenizer = None
    if tokenizer is not None:
        return int(tokenizer.model_max_length)
    else:
        return 2000


def get_llm_history(history):
    # avoid None users used for sources, errors, etc.
    if history is None:
        history = []
    for ii in range(len(history) - 1, -1, -1):
        if history[ii] and history[ii][0] is not None:
            last_user_ii = ii
            history = history[:last_user_ii + 1]
            break
    return history


def gen1_fake(fun1, history):
    error = ''
    sources = []
    sources_str = ''
    prompt_raw = ''
    llm_answers = {}
    save_dict = dict()
    audio1 = None
    yield history, error, sources, sources_str, prompt_raw, llm_answers, save_dict, audio1
    return


def merge_chat_conversation_history(chat_conversation1, history):
    # chat_conversation and history ordered so largest index of list is most recent
    if chat_conversation1:
        chat_conversation1 = str_to_list(chat_conversation1)
        for conv1 in chat_conversation1:
            assert isinstance(conv1, (list, tuple))
            assert len(conv1) == 2

    if isinstance(history, list):
        # make copy so only local change
        if chat_conversation1:
            # so priority will be newest that comes from actual chat history from UI, then chat_conversation
            history = chat_conversation1 + history.copy()
    elif chat_conversation1:
        history = chat_conversation1
    else:
        history = []
    return history


def update_langchain_mode_paths(selection_docs_state1):
    dup = selection_docs_state1['langchain_mode_paths'].copy()
    for k, v in dup.items():
        if k not in selection_docs_state1['langchain_modes']:
            selection_docs_state1['langchain_mode_paths'].pop(k)
    for k in selection_docs_state1['langchain_modes']:
        if k not in selection_docs_state1['langchain_mode_types']:
            # if didn't specify shared, then assume scratch if didn't login or personal if logged in
            selection_docs_state1['langchain_mode_types'][k] = LangChainTypes.PERSONAL.value
    return selection_docs_state1


# Setup some gradio states for per-user dynamic state
def my_db_state_done(state):
    if isinstance(state, dict):
        for langchain_mode_db, db_state in state.items():
            scratch_data = state[langchain_mode_db]
            if langchain_mode_db in langchain_modes_intrinsic:
                if len(scratch_data) == length_db1() and hasattr(scratch_data[0], 'delete_collection') and \
                        scratch_data[1] == scratch_data[2]:
                    # scratch if not logged in
                    scratch_data[0].delete_collection()
            # try to free from memory
            scratch_data[0] = None
            del scratch_data[0]


def process_audio(file1, t1=0, t2=30):
    # use no more than 30 seconds
    from pydub import AudioSegment
    # in milliseconds
    t1 = t1 * 1000
    t2 = t2 * 1000
    newAudio = AudioSegment.from_wav(file1)[t1:t2]
    new_file = file1 + '.new.wav'
    newAudio.export(new_file, format="wav")
    return new_file


def allow_empty_instruction(langchain_mode1, document_subset1, langchain_action1):
    allow = False
    allow |= langchain_action1 not in [LangChainAction.QUERY.value,
                                       LangChainAction.IMAGE_QUERY.value,
                                       LangChainAction.IMAGE_CHANGE.value,
                                       LangChainAction.IMAGE_GENERATE.value,
                                       LangChainAction.IMAGE_STYLE.value,
                                       ]
    allow |= document_subset1 in [DocumentSubset.TopKSources.name]
    if langchain_mode1 in [LangChainMode.LLM.value]:
        allow = False
    return allow


def update_prompt(prompt_type1, prompt_dict1, model_state1, which_model=0, global_scope=False, **kwargs):
    assert kwargs
    if not prompt_type1 or which_model != 0:
        # keep prompt_type and prompt_dict in sync if possible
        prompt_type1 = kwargs.get('prompt_type', prompt_type1)
        prompt_dict1 = kwargs.get('prompt_dict', prompt_dict1)
        # prefer model specific prompt type instead of global one
        if not global_scope:
            if not prompt_type1 or which_model != 0:
                prompt_type1 = model_state1.get('prompt_type', prompt_type1)
                prompt_dict1 = model_state1.get('prompt_dict', prompt_dict1)

    if not prompt_dict1 or which_model != 0:
        # if still not defined, try to get
        prompt_dict1 = kwargs.get('prompt_dict', prompt_dict1)
        if not global_scope:
            if not prompt_dict1 or which_model != 0:
                prompt_dict1 = model_state1.get('prompt_dict', prompt_dict1)
    if not global_scope and not prompt_type1:
        # if still not defined, use unknown
        prompt_type1 = unknown_prompt_type
    return prompt_type1, prompt_dict1


def get_fun_with_dict_str_plain(default_kwargs, kwargs, **kwargs_evaluate_nochat):
    fun_with_dict_str_plain = functools.partial(evaluate_nochat,
                                                default_kwargs1=default_kwargs,
                                                str_api=True,
                                                plain_api=True,
                                                kwargs=kwargs,
                                                **kwargs_evaluate_nochat,
                                                )
    return fun_with_dict_str_plain