File size: 4,905 Bytes
3943768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import base64
import io
import traceback

import numpy as np
from pydub import AudioSegment

from utils import get_device


def get_transcriber(model="openai/whisper-base.en", use_gpu=True, gpu_id='auto'):
    if gpu_id == 'auto':
        gpu_id = 0
    device = get_device()
    if device == 'cpu' or not use_gpu:
        device_map = 'auto'  # {"", 'cpu'}
    else:
        device_map = {"": gpu_id} if gpu_id >= 0 else {'': 'cuda'}

    from transformers import pipeline
    transcriber = pipeline("automatic-speech-recognition", model=model, device_map=device_map)
    return transcriber


def audio_bytes_to_numpy(audio_bytes):
    # Load the audio bytes into a BytesIO object
    audio_stream = io.BytesIO(audio_bytes)

    # Use pydub to read the audio data from the BytesIO object
    audio = AudioSegment.from_file(audio_stream)

    # Convert pydub AudioSegment to a numpy array
    samples = np.array(audio.get_array_of_samples())

    # Get the sampling rate
    sr = audio.frame_rate

    # If the audio is stereo, we need to reshape the numpy array to [n_samples, n_channels]
    if audio.channels > 1:
        samples = samples.reshape((-1, audio.channels))

    return sr, samples


def transcribe(audio_state1, new_chunk, transcriber=None, max_chunks=None, sst_floor=100.0, reject_no_new_text=True,
               debug=False):
    if debug:
        print("start transcribe", flush=True)

    if audio_state1[0] is None:
        audio_state1[0] = ''
    if audio_state1[2] is None:
        audio_state1[2] = []
    if max_chunks is not None and audio_state1[2] is not None and len(audio_state1[2]) > max_chunks:
        # refuse to update
        return audio_state1, audio_state1[1]
    if audio_state1[3] == 'off':
        if debug:
            print("Already ended", flush=True)
        return audio_state1, audio_state1[1]
    # assume sampling rate always same
    # keep chunks so don't normalize on noise periods, which would then saturate noise with non-noise
    if isinstance(new_chunk, str):
        audio_bytes = base64.b64decode(new_chunk.encode('utf-8'))
        sr, y = audio_bytes_to_numpy(audio_bytes)
    else:
        sr, y = new_chunk

    if debug:
        print("post encode", flush=True)

    if y.shape[0] == 0:
        avg = 0.0
    else:
        # stereo to mono if needed
        if len(y.shape) > 1:
            if y.shape[0] == 2:
                y = np.mean(y, axis=0)
            else:
                y = np.mean(y, axis=1)
        avg = np.average(np.abs(y))
    if not np.isfinite(avg):
        avg = 0.0
    if avg > sst_floor:
        if debug:
            print("Got possible chunk: %s" % avg, flush=True)
        chunks_new = audio_state1[2] + [y]
    else:
        chunks_new = audio_state1[2]
        if debug:
            print("Rejected quiet chunk: %s" % avg, flush=True)
    if chunks_new:
        stream = np.concatenate(chunks_new)
        stream = stream.astype(np.float32)
        max_stream = np.max(np.abs(stream) + 1E-7)
        stream /= max_stream
        if debug:
            print("pre transcriber", flush=True)
        text = transcriber({"sampling_rate": sr, "raw": stream})["text"]
        if debug:
            print("post transcriber", flush=True)

        if audio_state1[2]:
            try:
                stream0 = np.concatenate(audio_state1[2])
            except Exception as e:
                print("Exception: %s %s" % (str(e), traceback.format_exc()), flush=True)
                raise
            stream0 = stream0.astype(np.float32)
            max_stream0 = np.max(np.abs(stream0) + 1E-7)
            stream0 /= max_stream0
            if debug:
                print("pre stranscriber", flush=True)
            text_y = transcriber({"sampling_rate": sr, "raw": stream0})["text"]
            if debug:
                print("post stranscriber", flush=True)
        else:
            text_y = None

        if debug:
            print("y.shape: %s stream.shape: %s text0=%s text=%s text_y=%s" % (
                str(y.shape), str(stream.shape), audio_state1[0], text, text_y))
        if reject_no_new_text and (text == text_y):
            if debug:
                print("Rejected non-textual chunk: %s" % avg, flush=True)
                # if didn't generate text, reject the chunk.
                # E.g. when typing on keyboard that ends up being loud enough but is definitely not words.
        else:
            audio_state1[2] = chunks_new
    else:
        text = ''
        # print("H9: %s %s" % (audio_state1[0], text), flush=True)

    # work-around race
    if audio_state1[0] == text:
        # print("H10: %s %s" % (audio_state1[0], text), flush=True)
        text = ''

    if audio_state1[0] is not None:
        # For race, when action hits done while streaming occurs, to know now to use updated result
        audio_state1[1] = audio_state1[0] + text
    return audio_state1, audio_state1[1]