File size: 17,068 Bytes
3943768 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
from __future__ import annotations
import functools
import io
import os
import tempfile
import traceback
import filelock
import numpy as np
import uuid
import subprocess
import time
from enums import coqui_lock_name
from tts_sentence_parsing import init_sentence_state, get_sentence, clean_sentence, detect_language
from tts_utils import prepare_speech, get_no_audio, chunk_speed_change, combine_audios
from utils import cuda_vis_check, get_lock_file
import torch
n_gpus1 = torch.cuda.device_count() if torch.cuda.is_available() else 0
n_gpus1, gpu_ids = cuda_vis_check(n_gpus1)
def list_models():
from TTS.utils.manage import ModelManager
return ModelManager().list_tts_models()
def get_xtt(model_name="tts_models/multilingual/multi-dataset/xtts_v2", deepspeed=True, use_gpu=True, gpu_id='auto'):
if n_gpus1 == 0:
use_gpu = False
# By using XTTS you agree to CPML license https://coqui.ai/cpml
os.environ["COQUI_TOS_AGREED"] = "1"
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
from TTS.utils.generic_utils import get_user_data_dir
# This will trigger downloading model
print("Downloading if not downloaded Coqui XTTS V2")
from TTS.utils.manage import ModelManager
ModelManager().download_model(model_name)
model_path = os.path.join(get_user_data_dir("tts"), model_name.replace("/", "--"))
print("XTTS downloaded")
print("Loading XTTS")
config = XttsConfig()
config.load_json(os.path.join(model_path, "config.json"))
# Config will have more correct languages, they may be added before we append here
##["en","es","fr","de","it","pt","pl","tr","ru","nl","cs","ar","zh-cn","ja"]
supported_languages = config.languages
model = Xtts.init_from_config(config)
with filelock.FileLock(get_lock_file(coqui_lock_name)):
model.load_checkpoint(
config,
checkpoint_dir=os.path.dirname(os.path.join(model_path, "model.pth")),
checkpoint_path=os.path.join(model_path, "model.pth"),
vocab_path=os.path.join(model_path, "vocab.json"),
eval=True,
use_deepspeed=deepspeed,
)
if use_gpu:
if gpu_id == 'auto':
model.cuda()
else:
model.cuda(device='cuda:%d' % gpu_id)
print("Done loading TTS")
return model, supported_languages
def get_latent(speaker_wav, voice_cleanup=False, model=None, gpt_cond_len=30, max_ref_length=60, sr=24000):
if model is None:
model, supported_languages = get_xtt()
if voice_cleanup:
speaker_wav = filter_wave_1(speaker_wav)
# speaker_wav = filter_wave_2(speaker_wav)
else:
speaker_wav = speaker_wav
# create as function as we can populate here with voice cleanup/filtering
# note diffusion_conditioning not used on hifigan (default mode), it will be empty but need to pass it to model.inference
# latent = (gpt_cond_latent, speaker_embedding)
with filelock.FileLock(get_lock_file(coqui_lock_name)):
latent = model.get_conditioning_latents(audio_path=speaker_wav, gpt_cond_len=gpt_cond_len,
max_ref_length=max_ref_length, load_sr=sr)
return latent
def get_voice_streaming(prompt, language, latent, suffix="0", model=None, sr=24000, tts_speed=1.0):
if model is None:
model, supported_languages = get_xtt()
gpt_cond_latent, speaker_embedding = latent
try:
t0 = time.time()
chunks = model.inference_stream(
prompt,
language,
gpt_cond_latent,
speaker_embedding,
repetition_penalty=7.0,
temperature=0.85,
)
first_chunk = True
for i, chunk in enumerate(chunks):
if first_chunk:
first_chunk_time = time.time() - t0
first_chunk = False
chunk = chunk.detach().cpu().numpy().squeeze()
chunk = (chunk * 32767).astype(np.int16)
chunk = chunk_speed_change(chunk, sr, tts_speed=tts_speed)
yield chunk.tobytes()
except RuntimeError as e:
if "device-side assert" in str(e):
print(f"Restarted required due to exception: %s" % str(e), flush=True)
else:
print("Failed to generate wave: %s" % str(e))
traceback.print_exc()
except Exception as e:
traceback.print_exc()
print("Failed to generate wave: %s" % str(e))
def generate_speech(response,
model=None,
language='autodetect',
supported_languages=None,
latent=None,
sentence_state=None,
return_as_byte=True,
return_nonbyte_as_file=False,
sr=24000,
tts_speed=1.0,
return_gradio=False,
is_final=False,
verbose=False,
debug=False):
if model is None or supported_languages is None:
model, supported_languages = get_xtt()
if sentence_state is None:
sentence_state = init_sentence_state()
if latent is None:
latent = get_latent("models/female.wav", model=model)
sentence, sentence_state, _ = get_sentence(response, sentence_state=sentence_state, is_final=is_final,
verbose=verbose)
if sentence:
t0 = time.time()
if verbose:
print("sentence_to_wave: %s" % sentence)
audio = sentence_to_wave(sentence,
supported_languages,
tts_speed,
model=model,
latent=latent,
return_as_byte=return_as_byte,
return_nonbyte_as_file=return_nonbyte_as_file,
sr=sr,
language=language,
return_gradio=return_gradio)
if verbose:
print("done sentence_to_wave: %s" % (time.time() - t0), flush=True)
else:
if verbose and debug: # too much in general
print("No audio", flush=True)
no_audio = get_no_audio(sr=sr, return_as_byte=return_as_byte, return_nonbyte_as_file=return_nonbyte_as_file)
if return_gradio:
import gradio as gr
audio = gr.Audio(value=no_audio, autoplay=False)
else:
audio = no_audio
return audio, sentence, sentence_state
def sentence_to_wave(sentence, supported_languages, tts_speed,
latent=None,
return_as_byte=False,
return_nonbyte_as_file=False,
sr=24000, model=None,
return_gradio=True, language='autodetect', verbose=False):
"""
generate speech audio file per sentence
"""
import noisereduce as nr
import wave
sentence = clean_sentence(sentence, verbose=verbose)
sentence_list = [sentence]
try:
wav_bytestream = b""
for sentence in sentence_list:
# have to lock entire sentence, model doesn't handle threads,
# this is ok since usually have many sentences
with filelock.FileLock(get_lock_file(coqui_lock_name)):
if any(c.isalnum() for c in sentence):
if language == "autodetect":
# on first call autodetect, next sentence calls will use same language
language = detect_language(sentence, supported_languages, verbose=verbose)
# exists at least 1 alphanumeric (utf-8)
audio_stream = get_voice_streaming(
sentence, language, latent,
model=model,
tts_speed=tts_speed,
)
else:
# likely got a ' or " or some other text without alphanumeric in it
audio_stream = None
if audio_stream is not None:
frame_length = 0
for chunk in audio_stream:
try:
wav_bytestream += chunk
frame_length += len(chunk)
except Exception as e:
print("Exception in chunk appending: %s" % str(e), flush=True)
continue
# Filter output for better voice
filter_output = False
if filter_output:
data_s16 = np.frombuffer(wav_bytestream, dtype=np.int16, count=len(wav_bytestream) // 2, offset=0)
float_data = data_s16 * 0.5 ** 15
reduced_noise = nr.reduce_noise(y=float_data, sr=sr, prop_decrease=0.8, n_fft=1024)
wav_bytestream = (reduced_noise * 32767).astype(np.int16)
if return_as_byte:
wav_bytestream = wav_bytestream.tobytes()
if audio_stream is not None:
if not return_as_byte:
if return_nonbyte_as_file:
tmpdir = os.getenv('TMPDDIR', tempfile.mkdtemp())
audio_unique_filename = os.path.join(tmpdir, str(uuid.uuid4()) + ".wav")
with wave.open(audio_unique_filename, "w") as f:
f.setnchannels(1)
# 2 bytes per sample.
f.setsampwidth(2)
f.setframerate(sr)
f.writeframes(wav_bytestream)
ret_value = audio_unique_filename
else:
data_s16 = np.frombuffer(wav_bytestream, dtype=np.int16, count=len(wav_bytestream) // 2,
offset=0)
float_data = data_s16 * 0.5 ** 15
reduced_noise = nr.reduce_noise(y=float_data, sr=sr, prop_decrease=0.8, n_fft=1024)
wav_np = (reduced_noise * 32767).astype(np.int16)
ret_value = wav_np
else:
ret_value = wav_bytestream
if return_gradio:
import gradio as gr
return gr.Audio(value=ret_value, autoplay=True)
else:
return ret_value
except RuntimeError as e:
if "device-side assert" in str(e):
print(f"Restarted required due to exception: %s" % str(e), flush=True)
else:
print("Failed to generate wave: %s" % str(e))
raise
def get_role_to_wave_map():
# only for test and initializing state
roles_map = {}
roles_map["Female AI Assistant"] = "models/female.wav"
roles_map["Male AI Assistant"] = "models/male.wav"
roles_map["AI Beard The Pirate"] = "models/pirate_by_coqui.wav"
roles_map["None"] = ""
return roles_map
def allowed_roles():
return list(get_role_to_wave_map().keys())
def get_roles(choices=None, value=None):
if choices is None:
choices = allowed_roles()
if value is None:
value = choices[0]
import gradio as gr
chatbot_role = gr.Dropdown(
label="Speech Style",
choices=choices,
value=value,
)
return chatbot_role
def predict_from_text(response, chatbot_role, language, roles_map, tts_speed,
model=None,
supported_languages=None,
return_as_byte=True, sr=24000,
return_prefix_every_yield=False,
include_audio0=True,
return_dict=False,
verbose=False):
if chatbot_role == "None":
return
audio0 = prepare_speech(sr=sr)
if not return_prefix_every_yield and include_audio0:
if not return_dict:
yield audio0
else:
yield dict(audio=audio0, sr=sr)
latent = get_latent(roles_map[chatbot_role], model=model)
sentence_state = init_sentence_state()
generate_speech_func = functools.partial(generate_speech,
model=model,
language=language,
supported_languages=supported_languages,
latent=latent,
sentence_state=sentence_state,
return_as_byte=return_as_byte,
sr=sr,
tts_speed=tts_speed,
verbose=verbose)
while True:
audio1, sentence, sentence_state = generate_speech_func(response, is_final=False)
if sentence is not None:
if return_prefix_every_yield and include_audio0:
audio_out = combine_audios([audio0], audio=audio1, channels=1, sample_width=2, sr=sr, expect_bytes=return_as_byte, verbose=verbose)
else:
audio_out = audio1
if not return_dict:
yield audio_out
else:
yield dict(audio=audio_out, sr=sr)
else:
break
audio1, sentence, sentence_state = generate_speech_func(response, is_final=True)
if return_prefix_every_yield and include_audio0:
audio_out = combine_audios([audio0], audio=audio1, channels=1, sample_width=2, sr=sr, expect_bytes=return_as_byte, verbose=verbose)
else:
audio_out = audio1
if not return_dict:
yield audio_out
else:
yield dict(audio=audio_out, sr=sr)
def filter_wave_1(speaker_wav):
try:
cleanup_filter = "lowpass=8000,highpass=75,areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02,areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02"
resample_filter = "-ac 1 -ar 22050"
out_filename = speaker_wav + str(uuid.uuid4()) + ".wav" # ffmpeg to know output format
# we will use newer ffmpeg as that has afftn denoise filter
shell_command = f"ffmpeg -y -i {speaker_wav} -af {cleanup_filter} {resample_filter} {out_filename}".split(
" ")
command_result = subprocess.run([item for item in shell_command], capture_output=False, text=True,
check=True)
speaker_wav = out_filename
print("Filtered microphone input")
except subprocess.CalledProcessError:
# There was an error - command exited with non-zero code
print("Error: failed filtering, use original microphone input")
return speaker_wav
def filter_wave_2(speaker_wav):
# Filtering for microphone input, as it has BG noise, maybe silence in beginning and end
# This is fast filtering not perfect
# Apply all on demand
lowpassfilter = denoise = trim = loudness = True
if lowpassfilter:
lowpass_highpass = "lowpass=8000,highpass=75,"
else:
lowpass_highpass = ""
if trim:
# better to remove silence in beginning and end for microphone
trim_silence = "areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02,areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02,"
else:
trim_silence = ""
try:
out_filename = (
speaker_wav + str(uuid.uuid4()) + ".wav"
) # ffmpeg to know output format
# we will use newer ffmpeg as that has afftn denoise filter
shell_command = f"./ffmpeg -y -i {speaker_wav} -af {lowpass_highpass}{trim_silence} {out_filename}".split(
" "
)
command_result = subprocess.run(
[item for item in shell_command],
capture_output=False,
text=True,
check=True,
)
speaker_wav = out_filename
print("Filtered microphone input")
except subprocess.CalledProcessError:
# There was an error - command exited with non-zero code
print("Error: failed filtering, use original microphone input")
return speaker_wav
def get_languages_gr(visible=True, value=None):
import gradio as gr
choices = [
"autodetect",
"en",
"es",
"fr",
"de",
"it",
"pt",
"pl",
"tr",
"ru",
"nl",
"cs",
"ar",
"zh-cn",
"ja",
"ko",
"hu"
]
if value is None:
value = choices[0]
language_gr = gr.Dropdown(
label="Language",
info="Select an output language for the synthesised speech",
choices=choices,
value=value,
visible=visible,
)
return language_gr
|