|
import asyncio |
|
import copy |
|
import functools |
|
import json |
|
import logging |
|
import os |
|
import re |
|
import shutil |
|
import subprocess |
|
import sys |
|
import tempfile |
|
import typing |
|
import warnings |
|
from collections import defaultdict |
|
from hashlib import md5 |
|
from pathlib import Path |
|
from typing import Any, Callable, ClassVar, Dict, List, Optional, Union |
|
from types import SimpleNamespace |
|
import uuid |
|
|
|
from autogen.code_utils import PYTHON_VARIANTS, WIN32, _cmd, TIMEOUT_MSG, decide_use_docker, \ |
|
check_can_use_docker_or_throw, content_str |
|
from autogen.coding import LocalCommandLineCodeExecutor, CodeBlock, CodeExecutorFactory |
|
from autogen.coding.base import CommandLineCodeResult |
|
from autogen import ConversableAgent, Agent, OpenAIWrapper |
|
from autogen import GroupChatManager |
|
import backoff |
|
|
|
from autogen.coding.func_with_reqs import ( |
|
FunctionWithRequirements, |
|
FunctionWithRequirementsStr, |
|
) |
|
from autogen.coding.utils import silence_pip |
|
from autogen.io import IOStream |
|
from autogen.runtime_logging import logging_enabled, log_new_agent |
|
from pydantic import Field |
|
from termcolor import colored |
|
|
|
from typing_extensions import ParamSpec |
|
|
|
A = ParamSpec("A") |
|
|
|
from openai_server.autogen_streaming import iostream_generator |
|
from openai_server.backend_utils import convert_gen_kwargs |
|
from openai_server.agent_utils import in_pycharm, set_python_path, extract_agent_tool |
|
|
|
verbose = os.getenv('VERBOSE', '0').lower() == '1' |
|
|
|
danger_mark = 'Potentially dangerous operation detected' |
|
bad_output_mark = 'Output contains sensitive information' |
|
|
|
|
|
class H2OCodeBlock(CodeBlock): |
|
"""(Experimental) A class that represents a code block.""" |
|
|
|
execute: bool = Field(description="Whether to execute the code.") |
|
|
|
|
|
class H2OLocalCommandLineCodeExecutor(LocalCommandLineCodeExecutor): |
|
def __init__( |
|
self, |
|
timeout: int = 60, |
|
virtual_env_context: Optional[SimpleNamespace] = None, |
|
work_dir: Union[Path, str] = Path("."), |
|
functions: List[ |
|
Union[FunctionWithRequirements[Any, A], Callable[..., Any], FunctionWithRequirementsStr]] = [], |
|
functions_module: str = "functions", |
|
execution_policies: Optional[Dict[str, bool]] = None, |
|
autogen_code_restrictions_level: int = 2, |
|
stream_output: bool = True, |
|
agent_tools_usage_hard_limits: Dict[str, int] = {}, |
|
agent_tools_usage_soft_limits: Dict[str, int] = {}, |
|
max_stream_length: int = 4096, |
|
max_memory_usage: Optional[int] = 16 * 1024 ** 3, |
|
): |
|
super().__init__(timeout, virtual_env_context, work_dir, functions, functions_module, execution_policies) |
|
self.autogen_code_restrictions_level = autogen_code_restrictions_level |
|
self.stream_output = stream_output |
|
self.agent_tools_usage_hard_limits = agent_tools_usage_hard_limits |
|
self.agent_tools_usage_soft_limits = agent_tools_usage_soft_limits |
|
self.agent_tools_usage = {} |
|
self.max_stream_length = max_stream_length |
|
self.max_memory_usage = max_memory_usage |
|
self.turns = 0 |
|
|
|
self.filename_patterns: List[re.Pattern] = [ |
|
re.compile(r"^<!--\s*filename:\s*([\w.-/]+)\s*-->$"), |
|
re.compile(r"^/\*\s*filename:\s*([\w.-/]+)\s*\*/$"), |
|
re.compile(r"^//\s*filename:\s*([\w.-/]+)\s*$"), |
|
re.compile(r"^#\s*filename:\s*([\w.-/]+)\s*$"), |
|
] |
|
|
|
@staticmethod |
|
def remove_comments_strings(code: str, lang: str) -> str: |
|
if verbose: |
|
print(f"Original code:\n{code}", file=sys.stderr) |
|
|
|
if lang in ["bash", "shell", "sh"]: |
|
|
|
code = re.sub(r'#.*$', '', code, flags=re.MULTILINE) |
|
|
|
code = re.sub(r'"[^"]*"', '', code) |
|
code = re.sub(r"'[^']*'", '', code) |
|
elif lang == "python": |
|
|
|
code = re.sub(r'#.*$', '', code, flags=re.MULTILINE) |
|
|
|
code = re.sub(r'"{3}[\s\S]*?"{3}', '', code) |
|
code = re.sub(r"'{3}[\s\S]*?'{3}", '', code) |
|
|
|
code = re.sub(r'"[^"]*"', '', code) |
|
code = re.sub(r"'[^']*'", '', code) |
|
|
|
cleaned_code = code.strip() |
|
if verbose: |
|
print(f"Cleaned code:\n{cleaned_code}", file=sys.stderr) |
|
return cleaned_code |
|
|
|
@staticmethod |
|
def sanitize_command(lang: str, code: str) -> None: |
|
shell_patterns: typing.Dict[str, str] = { |
|
r"\brm\b": "Deleting files or directories is not allowed.", |
|
r"\brm\s+-rf\b": "Use of 'rm -rf' command is not allowed.", |
|
r"\bmv\b.*?/dev/null": "Moving files to /dev/null is not allowed.", |
|
r"\bdd\b": "Use of 'dd' command is not allowed.", |
|
r">\s*/dev/sd[a-z][1-9]?": "Overwriting disk blocks directly is not allowed.", |
|
r":\(\)\{.*?\}:": "Fork bombs are not allowed.", |
|
r"\bsudo\b": "Use of 'sudo' command is not allowed.", |
|
r"\bsu\b": "Use of 'su' command is not allowed.", |
|
r"\bchmod\b": "Changing file permissions is not allowed.", |
|
r"\bchown\b": "Changing file ownership is not allowed.", |
|
r"\bnc\b.*?-e": "Use of netcat in command execution mode is not allowed.", |
|
r"\bcurl\b.*?\|\s*bash": "Piping curl output to bash is not allowed.", |
|
r"\bwget\b.*?\|\s*bash": "Piping wget output to bash is not allowed.", |
|
r"\b(systemctl|service)\s+(start|stop|restart)": "Starting, stopping, or restarting services is not allowed.", |
|
r"\bnohup\b": "Use of 'nohup' command is not allowed.", |
|
r"&\s*$": "Running commands in the background is not allowed.", |
|
r"\bkill\b": "Use of 'kill' command is not allowed.", |
|
r"\bpkill\b": "Use of 'pkill' command is not allowed.", |
|
r"\b(python|python3|php|node|ruby)\s+-m\s+http\.server": "Starting an HTTP server is not allowed.", |
|
r"\biptables\b": "Modifying firewall rules is not allowed.", |
|
r"\bufw\b": "Modifying firewall rules is not allowed.", |
|
r"\bexport\b": "Exporting environment variables is not allowed.", |
|
r"\benv\b": "Accessing or modifying environment variables is not allowed.", |
|
r"\becho\b.*?>\s*/etc/": "Writing to system configuration files is not allowed.", |
|
r"\bsed\b.*?-i": "In-place file editing with sed is not allowed.", |
|
r"\bawk\b.*?-i": "In-place file editing with awk is not allowed.", |
|
r"\bcrontab\b": "Modifying cron jobs is not allowed.", |
|
r"\bat\b": "Scheduling tasks with 'at' is not allowed.", |
|
r"\b(shutdown|reboot|init\s+6|telinit\s+6)\b": "System shutdown or reboot commands are not allowed.", |
|
r"\b(apt-get|yum|dnf|pacman)\b": "Use of package managers is not allowed.", |
|
r"\$\(.*?\)": "Command substitution is not allowed.", |
|
r"`.*?`": "Command substitution is not allowed.", |
|
} |
|
|
|
python_patterns: typing.Dict[str, str] = { |
|
|
|
r"\bos\.(remove|unlink|rmdir)\s*\(": "Deleting files or directories is not allowed.", |
|
r"\bshutil\.rmtree\s*\(": "Deleting directory trees is not allowed.", |
|
|
|
|
|
r"\bos\.system\s*\(": "Use of os.system() is not allowed.", |
|
r"\bsubprocess\.(run|Popen|call|check_output)\s*\(": "Use of subprocess module is not allowed.", |
|
|
|
|
|
r"\bexec\s*\(": "Use of exec() is not allowed.", |
|
r"\beval\s*\(": "Use of eval() is not allowed.", |
|
r"\b__import__\s*\(": "Use of __import__() is not allowed.", |
|
|
|
|
|
r"\bimport\s+smtplib\b": "Importing smtplib (for sending emails) is not allowed.", |
|
r"\bfrom\s+smtplib\s+import\b": "Importing from smtplib (for sending emails) is not allowed.", |
|
|
|
r"\bimport\s+ctypes\b": "Importing ctypes module is not allowed.", |
|
r"\bfrom\s+ctypes\b": "Importing ctypes module is not allowed.", |
|
r"\bctypes\.\w+": "Use of ctypes module is not allowed.", |
|
|
|
r"\bimport\s+pty\b": "Importing pty module is not allowed.", |
|
r"\bpty\.\w+": "Use of pty module is not allowed.", |
|
|
|
r"\bplatform\.\w+": "Use of platform module is not allowed.", |
|
|
|
|
|
r"\bsys\.exit\s*\(": "Use of sys.exit() is not allowed.", |
|
r"\bos\.chmod\s*\(": "Changing file permissions is not allowed.", |
|
r"\bos\.chown\s*\(": "Changing file ownership is not allowed.", |
|
r"\bos\.setuid\s*\(": "Changing process UID is not allowed.", |
|
r"\bos\.setgid\s*\(": "Changing process GID is not allowed.", |
|
r"\bos\.fork\s*\(": "Forking processes is not allowed.", |
|
|
|
|
|
r"\bsched\.\w+": "Use of sched module (for scheduling) is not allowed.", |
|
r"\bcommands\.\w+": "Use of commands module is not allowed.", |
|
r"\bpdb\.\w+": "Use of pdb (debugger) is not allowed.", |
|
r"\bpickle\.loads\s*\(": "Use of pickle.loads() is not allowed.", |
|
r"\bmarshall\.loads\s*\(": "Use of marshall.loads() is not allowed.", |
|
|
|
|
|
r"\bhttp\.server\b": "Running HTTP servers is not allowed.", |
|
} |
|
|
|
|
|
any_patterns = ['H2OGPT_MODEL_LOCK', 'H2OGPT_MAIN_KWARGS', 'H2OGPT_FUNCTION_API_KEY', |
|
'H2OGPT_FUNCTION_PORT', 'H2OGPT_SSL_KEYFILE_PASSWORD', 'H2OGPT_AUTH', 'H2OGPT_AUTH_FILENAME', |
|
'H2OGPT_ENFORCE_H2OGPT_API_KEY', 'H2OGPT_ENFORCE_H2OGPT_UI_KEY', |
|
'H2OGPT_H2OGPT_API_KEYS', 'H2OGPT_KEY', 'GRADIO_H2OGPT_H2OGPT_KEY', |
|
'H2OGPT_H2OGPT_KEY', |
|
] |
|
|
|
if os.getenv('STRICT_KEY_USAGE', '0') == '1': |
|
|
|
any_patterns += ['REPLICATE_API_TOKEN', |
|
'ANTHROPIC_API_KEY', 'AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY', |
|
'GOOGLE_API_KEY', 'TWILIO_AUTH_TOKEN', 'OPENAI_AZURE_KEY', |
|
'PINECONE_API_KEY', 'GROQ_SECRET_ACCESS_KEY', 'OPENAI_APY_KEY', |
|
'ELEVENLABS_API_KEY', 'PINECONE_ENV', 'GROQ_API_KEY', 'OPENAI_AZURE_KEY', |
|
'HUGGINGFACE_API_TOKEN', |
|
'MISTRAL_API_KEY', 'OPENAI_API_KEY', |
|
] |
|
|
|
|
|
used_by_tools = ['H2OGPT_OPENAI_API_KEY', 'S2_API_KEY,' 'NEWS_API_KEY', 'SERPAPI_API_KEY', |
|
'WOLFRAM_ALPHA_APPID', 'STT_OPENAI_API_KEY', 'IMAGEGEN_OPENAI_API_KEY'] |
|
assert used_by_tools |
|
|
|
patterns = shell_patterns if lang in ["bash", "shell", "sh"] else python_patterns |
|
combined_pattern = "|".join(f"(?P<pat{i}>{pat})" for i, pat in enumerate(patterns.keys())) |
|
combined_pattern = re.compile(combined_pattern, re.MULTILINE | re.IGNORECASE) |
|
|
|
|
|
cleaned_code = H2OLocalCommandLineCodeExecutor.remove_comments_strings(code, lang) |
|
|
|
match = re.search(combined_pattern, cleaned_code) |
|
if match: |
|
for i, pattern in enumerate(patterns.keys()): |
|
if match.group(f"pat{i}"): |
|
raise ValueError(f"{danger_mark}: {patterns[pattern]}\n\n{cleaned_code}") |
|
|
|
if any(any_pattern in code for any_pattern in any_patterns): |
|
raise ValueError(f"{danger_mark}: {any_patterns}\n\n{cleaned_code}") |
|
|
|
def _get_file_name_from_content(self, code: str, workspace_path: Path) -> Optional[str]: |
|
lines = code.split("\n") |
|
for line in lines: |
|
line = line.strip() |
|
for pattern in self.filename_patterns: |
|
matches = pattern.match(line) |
|
if matches is not None: |
|
filename = matches.group(1).strip() |
|
|
|
|
|
if not re.match(r'^[\w.-/]+$', filename): |
|
continue |
|
|
|
|
|
path = Path(filename) |
|
|
|
|
|
workspace_path = workspace_path.resolve() |
|
|
|
|
|
try: |
|
resolved_path = workspace_path.joinpath(path).resolve() |
|
if resolved_path.is_relative_to(workspace_path): |
|
return str(resolved_path) |
|
except ValueError: |
|
|
|
continue |
|
|
|
return None |
|
|
|
def __execute_code_dont_check_setup(self, code_blocks: List[CodeBlock]) -> CommandLineCodeResult: |
|
|
|
logs_all = "" |
|
file_names = [] |
|
exitcode = -2 |
|
for code_block in code_blocks: |
|
lang, code = code_block.language, code_block.code |
|
|
|
|
|
lang = lang.lower() |
|
|
|
|
|
try: |
|
|
|
filename = self._get_file_name_from_content(code, self._work_dir) |
|
|
|
cwd = os.path.abspath(os.getcwd()) |
|
if filename and \ |
|
code_block.execute and \ |
|
f'python {cwd}/openai_server/agent_tools/' in code and \ |
|
filename.endswith('.py'): |
|
|
|
code_block.language = lang = 'shell' |
|
filename = filename.replace('.py', '.sh') |
|
|
|
elif filename and filename.endswith('.sh'): |
|
code_block.language = lang = 'shell' |
|
elif filename and filename.endswith('.py'): |
|
code_block.language = lang = 'python' |
|
except ValueError: |
|
return CommandLineCodeResult(exit_code=1, output="Filename is not in the workspace") |
|
|
|
if self.autogen_code_restrictions_level >= 2: |
|
self.sanitize_command(lang, code) |
|
elif self.autogen_code_restrictions_level == 1: |
|
LocalCommandLineCodeExecutor.sanitize_command(lang, code) |
|
code = silence_pip(code, lang) |
|
|
|
if lang in PYTHON_VARIANTS: |
|
lang = "python" |
|
|
|
if WIN32 and lang in ["sh", "shell"]: |
|
lang = "ps1" |
|
|
|
if lang not in self.SUPPORTED_LANGUAGES: |
|
|
|
exitcode = 1 |
|
logs_all += "\n" + f"unknown language {lang}" |
|
break |
|
|
|
execute_code = self.execution_policies.get(lang, False) |
|
|
|
if filename is None: |
|
|
|
code_hash = md5(code.encode()).hexdigest() |
|
filename = f"tmp_code_{code_hash}.{'py' if lang.startswith('python') else lang}" |
|
written_file = (self._work_dir / filename).resolve() |
|
with written_file.open("w", encoding="utf-8") as f: |
|
f.write(code) |
|
file_names.append(written_file) |
|
|
|
if not execute_code or hasattr(code_block, 'execute') and not code_block.execute: |
|
|
|
logs_all += f"Code saved to {str(written_file)}\n" |
|
exitcode = 0 |
|
continue |
|
|
|
program = _cmd(lang) |
|
cmd = [program, str(written_file.absolute())] |
|
env = os.environ.copy() |
|
|
|
if self._virtual_env_context: |
|
virtual_env_abs_path = os.path.abspath(self._virtual_env_context.bin_path) |
|
path_with_virtualenv = rf"{virtual_env_abs_path}{os.pathsep}{env['PATH']}" |
|
env["PATH"] = path_with_virtualenv |
|
if WIN32: |
|
activation_script = os.path.join(virtual_env_abs_path, "activate.bat") |
|
cmd = [activation_script, "&&", *cmd] |
|
|
|
try: |
|
if self.stream_output: |
|
if 'src' not in sys.path: |
|
sys.path.append('src') |
|
from src.utils import execute_cmd_stream |
|
exec_func = execute_cmd_stream |
|
else: |
|
exec_func = subprocess.run |
|
from autogen.io import IOStream |
|
iostream = IOStream.get_default() |
|
result = exec_func( |
|
cmd, cwd=self._work_dir, capture_output=True, text=True, |
|
timeout=float(self._timeout), env=env, |
|
print_func=iostream.print, |
|
guard_func=functools.partial(H2OLocalCommandLineCodeExecutor.text_guardrail, any_fail=False), |
|
max_stream_length=self.max_stream_length, |
|
max_memory_usage=self.max_memory_usage, |
|
) |
|
iostream.print("\n\n**Completed execution of code block.**\n\nENDOFTURN\n") |
|
except subprocess.TimeoutExpired: |
|
logs_all += "\n" + TIMEOUT_MSG |
|
|
|
exitcode = 124 |
|
break |
|
|
|
logs_all += result.stderr |
|
logs_all += result.stdout |
|
exitcode = result.returncode |
|
|
|
if exitcode != 0: |
|
break |
|
|
|
code_file = str(file_names[0]) if len(file_names) > 0 else None |
|
self.turns += 1 |
|
return CommandLineCodeResult(exit_code=exitcode, output=logs_all, code_file=code_file) |
|
|
|
@staticmethod |
|
def is_in_container() -> bool: |
|
|
|
try: |
|
with open("/proc/self/cgroup", "r") as f: |
|
for l in f.readlines(): |
|
if "docker" in l or "kubepods" in l: |
|
return True |
|
except FileNotFoundError: |
|
pass |
|
return False |
|
|
|
def _execute_code_dont_check_setup(self, code_blocks: List[CodeBlock]) -> CommandLineCodeResult: |
|
multiple_executable_code_detected = False |
|
try: |
|
|
|
code_blocks_len0 = len(code_blocks) |
|
|
|
code_blocks_new = [] |
|
for code_block in code_blocks: |
|
if '# execution: false' not in code_block.code and \ |
|
'# execution:' in code_block.code in code_block.code: |
|
code_block_new = H2OCodeBlock(code=code_block.code, language=code_block.language, execute=True) |
|
else: |
|
code_block_new = H2OCodeBlock(code=code_block.code, language=code_block.language, execute=False) |
|
code_blocks_new.append(code_block_new) |
|
code_blocks = code_blocks_new |
|
code_blocks_exec = [x for x in code_blocks if x.execute] |
|
|
|
if len(code_blocks_exec) > 1: |
|
multiple_executable_code_detected = True |
|
code_blocks_exec = code_blocks_exec[:1] |
|
|
|
code_blocks_no_exec = [x for x in code_blocks if not x.execute] |
|
|
|
|
|
if not self.is_in_container(): |
|
for code_block in code_blocks_exec: |
|
lang, code = code_block.language, code_block.code |
|
if lang == 'python': |
|
code_block.code = """ |
|
# BEGIN: user added these matplotlib lines to ensure any plots do not pop-up in their UI |
|
import matplotlib |
|
matplotlib.use('Agg') # Set the backend to non-interactive |
|
import matplotlib.pyplot as plt |
|
plt.ioff() |
|
import os |
|
os.environ['TERM'] = 'dumb' |
|
# END: user added these matplotlib lines to ensure any plots do not pop-up in their UI |
|
""" + code_block.code |
|
|
|
code_blocks = code_blocks_exec + code_blocks_no_exec |
|
|
|
|
|
self.update_agent_tool_usages(code_blocks_exec) |
|
ret = self.__execute_code_dont_check_setup(code_blocks) |
|
|
|
if ret.exit_code == -2 or len(code_blocks_exec) == 0 and code_blocks_len0 > 0: |
|
ret = CommandLineCodeResult(exit_code=0, |
|
output=""" |
|
<no_code_executed_notes> |
|
* Code block present, but no code executed (execution tag was false or not present for all code blocks). |
|
* This is expected if you had code blocks but they were not meant for python or shell execution. |
|
* For example, you may have shown code for demonstration purposes. |
|
* If you intended to execute code, be sure to add the comment: # execution: true and try again. |
|
* If no code execution was expected, do not respond or react to this "no_code_execution" text and instead directly and immediately provide the actual answer to the user's original question. You can repeat your non-executable code mentioned in your previous message if that's what the user is looking for. |
|
</no_code_executed_notes> |
|
""") |
|
except Exception as e: |
|
if danger_mark in str(e): |
|
print(f"Code Danger Error: {e}\n\n{code_blocks}", file=sys.stderr) |
|
|
|
ret = CommandLineCodeResult(exit_code=1, output=str(e)) |
|
else: |
|
raise |
|
try: |
|
ret = self.output_guardrail(ret) |
|
except Exception as e: |
|
if bad_output_mark in str(e): |
|
print(f"Code Output Danger Error: {e}\n\n{code_blocks}\n\n{ret}", file=sys.stderr) |
|
|
|
ret = CommandLineCodeResult(exit_code=1, output=str(e)) |
|
else: |
|
raise |
|
|
|
|
|
ret = self.truncate_output(ret) |
|
|
|
ret = self.executed_code_note(ret, multiple_executable_code_detected) |
|
ret = self.agent_tool_usage_note(ret) |
|
return ret |
|
|
|
def update_agent_tool_usages(self, code_blocks: List[CodeBlock]) -> None: |
|
any_update = False |
|
for code_block in code_blocks: |
|
agent_tool = extract_agent_tool(code_block.code) |
|
if agent_tool: |
|
agent_tool = os.path.basename(agent_tool).replace('.py', '') |
|
if agent_tool not in self.agent_tools_usage: |
|
any_update = True |
|
self.agent_tools_usage[agent_tool] = 1 |
|
else: |
|
any_update = True |
|
self.agent_tools_usage[agent_tool] += 1 |
|
if any_update: |
|
print(f"Step {self.turns} has agent tool usage: {self.agent_tools_usage}") |
|
|
|
@staticmethod |
|
def executed_code_note(ret: CommandLineCodeResult, |
|
multiple_executable_code_detected: bool = False) -> CommandLineCodeResult: |
|
if ret.exit_code == 0: |
|
if multiple_executable_code_detected: |
|
executable_code_limitation_warning = """ |
|
* Code execution is limited to running one code block at a time, that's why only the first code block was executed. |
|
* You must have only one executable code block at a time in your message. |
|
""" |
|
else: |
|
executable_code_limitation_warning = "" |
|
if executable_code_limitation_warning: |
|
ret.output += f""" |
|
<code_executed_notes> |
|
{executable_code_limitation_warning} |
|
</code_executed_notes> |
|
""" |
|
return ret |
|
|
|
def agent_tool_usage_note(self, ret) -> CommandLineCodeResult: |
|
for k, v in self.agent_tools_usage.items(): |
|
|
|
if k in self.agent_tools_usage_hard_limits and self.agent_tools_usage_hard_limits[k] < v: |
|
ret.output += f"""\n<agent_tool_usage_note> |
|
Error: You have used the agent tool "{k}" more than {v} times in this conversation. You MUST stop using it. |
|
</agent_tool_usage_note> |
|
""" |
|
elif k in self.agent_tools_usage_soft_limits and self.agent_tools_usage_soft_limits[k] < v: |
|
ret.output += f"""\n<agent_tool_usage_note> |
|
Warning: You have used the agent tool "{k}" more than {v} times in this conversation. Please use it judiciously. |
|
</agent_tool_usage_note> |
|
""" |
|
return ret |
|
|
|
@staticmethod |
|
def output_guardrail(ret: CommandLineCodeResult) -> CommandLineCodeResult: |
|
ret.output = H2OLocalCommandLineCodeExecutor.text_guardrail(ret.output) |
|
return ret |
|
|
|
@staticmethod |
|
def text_guardrail(text, any_fail=False, max_bad_lines=3, just_filter_out=True): |
|
|
|
api_key_names = ['OPENAI_AZURE_KEY', 'OPENAI_AZURE_API_BASE', |
|
'TWILIO_AUTH_TOKEN', 'NEWS_API_KEY', 'OPENAI_API_KEY_JON', |
|
'H2OGPT_H2OGPT_KEY', 'TWITTER_API_KEY', 'FACEBOOK_ACCESS_TOKEN', 'API_KEY', 'LINKEDIN_API_KEY', |
|
'STRIPE_API_KEY', 'ADMIN_PASS', 'S2_API_KEY', 'ANTHROPIC_API_KEY', 'AUTH_TOKEN', |
|
'AWS_SERVER_PUBLIC_KEY', 'OPENAI_API_KEY', 'HUGGING_FACE_HUB_TOKEN', 'AWS_ACCESS_KEY_ID', |
|
'SERPAPI_API_KEY', 'WOLFRAM_ALPHA_APPID', 'AWS_SECRET_ACCESS_KEY', 'ACCESS_TOKEN', |
|
'SLACK_API_TOKEN', 'MISTRAL_API_KEY', 'TOGETHERAI_API_TOKEN', 'GITHUB_TOKEN', 'SECRET_KEY', |
|
'GOOGLE_API_KEY', 'REPLICATE_API_TOKEN', 'GOOGLE_CLIENT_SECRET', 'GROQ_API_KEY', |
|
'AWS_SERVER_SECRET_KEY', 'H2OGPT_OPENAI_BASE_URL', 'H2OGPT_OPENAI_API_KEY', |
|
'GRADIO_H2OGPT_H2OGPT_KEY', 'IMAGEGEN_OPENAI_BASE_URL', |
|
'IMAGEGEN_OPENAI_API_KEY', |
|
'STT_OPENAI_BASE_URL', 'STT_OPENAI_API_KEY', |
|
'H2OGPT_MODEL_LOCK', 'PINECONE_API_KEY', 'TEST_SERVER', 'INVOCATION_ID', 'ELEVENLABS_API_KEY', |
|
'HUGGINGFACE_API_TOKEN', 'PINECONE_ENV', 'PINECONE_API_SECRET', |
|
'GROQ_SECRET_ACCESS_KEY', 'BING_API_KEY', |
|
] |
|
|
|
|
|
set_api_key_names = set(api_key_names) |
|
api_key_dict = {key: os.getenv(key, '') for key in set_api_key_names if os.getenv(key, '')} |
|
set_api_key_values = set(list(api_key_dict.values())) |
|
|
|
|
|
set_allowed = { |
|
'', 'EMPTY', 'DUMMY', 'null', 'NULL', 'Null', |
|
'YOUR_API_KEY', 'YOUR-API-KEY', 'your-api-key', 'your_api_key', |
|
'ENTER_YOUR_API_KEY_HERE', 'INSERT_API_KEY_HERE', |
|
'API_KEY_GOES_HERE', 'REPLACE_WITH_YOUR_API_KEY', |
|
'PLACEHOLDER', 'EXAMPLE_KEY', 'TEST_KEY', 'SAMPLE_KEY', |
|
'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx', |
|
'0000000000000000000000000000000000000000', |
|
'1111111111111111111111111111111111111111', |
|
'abcdefghijklmnopqrstuvwxyz123456', |
|
'123456789abcdefghijklmnopqrstuvwxyz', |
|
'sk_test_', 'pk_test_', |
|
'MY_SECRET_KEY', 'MY_API_KEY', 'MY_AUTH_TOKEN', |
|
'CHANGE_ME', 'REPLACE_ME', 'YOUR_TOKEN_HERE', |
|
'N/A', 'NA', 'None', 'not_set', 'NOT_SET', 'NOT-SET', |
|
'undefined', 'UNDEFINED', 'foo', 'bar', |
|
'https://api.openai.com', 'https://api.openai.com/v1', |
|
'https://api.gpt.h2o.ai/v1', 'http://0.0.0.0:5000/v1', |
|
'https://h2ogpt.openai.azure.com/', |
|
|
|
} |
|
set_allowed = {x.lower() for x in set_allowed} |
|
|
|
|
|
api_key_values = [value.lower() for value in set_api_key_values if value and value.lower() not in set_allowed] |
|
|
|
if text: |
|
api_key_values = sorted(filter(bool, api_key_values), key=len, reverse=True) |
|
|
|
|
|
pattern = '|'.join(map(re.escape, api_key_values)) |
|
regex = re.compile(pattern) |
|
|
|
bad_lines = 0 |
|
bad_lines_text = [] |
|
|
|
lines = [] |
|
for line in text.split('\n'): |
|
if any(api_key_value in line.lower() for api_key_value in api_key_values): |
|
bad_lines += 1 |
|
bad_lines_text.append(line) |
|
if just_filter_out: |
|
print(f"Sensitive information found in output, so removed text: {line}") |
|
|
|
|
|
line = regex.sub('', line) |
|
|
|
|
|
lines.append(line) |
|
else: |
|
print(f"Sensitive information found in output, so removed line: {line}") |
|
|
|
continue |
|
else: |
|
lines.append(line) |
|
text = '\n'.join(lines) |
|
|
|
bad_msg = f"{bad_output_mark}. Attempt to access sensitive information has been detected and reported as a violation." |
|
if bad_lines >= max_bad_lines or bad_lines > 0 and any_fail: |
|
print("\nBad Output:\n", text) |
|
print("\nbad_lines_text:\n", bad_lines_text) |
|
raise ValueError(bad_msg) |
|
|
|
|
|
violated_keys = [] |
|
violated_values = [] |
|
api_key_dict_reversed = {v: k for k, v in api_key_dict.items()} |
|
for api_key_value in api_key_values: |
|
if api_key_value in text.lower(): |
|
|
|
violated_key = api_key_dict_reversed[api_key_value] |
|
violated_keys.append(violated_key) |
|
violated_values.append(api_key_value) |
|
|
|
|
|
if violated_keys: |
|
error_message = f"Output contains sensitive information. Violated keys: {', '.join(violated_keys)}" |
|
print(error_message) |
|
print("\nBad Output:\n", text) |
|
print( |
|
f"Output contains sensitive information. Violated keys: {', '.join(violated_keys)}\n Violated values: {', '.join(violated_values)}") |
|
raise ValueError(bad_msg) |
|
|
|
return text |
|
|
|
@staticmethod |
|
def truncate_output(ret: CommandLineCodeResult) -> CommandLineCodeResult: |
|
if ret.exit_code == 1: |
|
|
|
max_output_length = 2048 |
|
else: |
|
max_output_length = 10000 |
|
|
|
|
|
head_length = max_output_length // 2 |
|
|
|
if len(ret.output) > max_output_length: |
|
trunc_message = f"\n\n...\n\n" |
|
tail_length = max_output_length - head_length - len(trunc_message) |
|
head_part = ret.output[:head_length] |
|
headless_part = ret.output[head_length:] |
|
tail_part = headless_part[-tail_length:] |
|
truncated_output = ( |
|
head_part + |
|
trunc_message + |
|
tail_part |
|
) |
|
ret.output = truncated_output |
|
|
|
return ret |
|
|
|
|
|
error_patterns = [ |
|
r"Rate limit reached", |
|
r"Connection timeout", |
|
r"Server unavailable", |
|
r"Internal server error", |
|
r"incomplete chunked read", |
|
] |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger("backoff") |
|
|
|
|
|
def backoff_handler(details): |
|
logger.info( |
|
f"Backing off {details['wait']:0.1f} seconds after {details['tries']} tries. Exception: {details['exception']}") |
|
|
|
|
|
class H2OConversableAgent(ConversableAgent): |
|
@backoff.on_exception(backoff.expo, |
|
Exception, |
|
max_tries=5, |
|
giveup=lambda e: not any(re.search(pattern, str(e)) for pattern in error_patterns), |
|
on_backoff=backoff_handler) |
|
|
|
def __init__( |
|
self, |
|
name: str, |
|
system_message: Optional[Union[str, List]] = "You are a helpful AI Assistant.", |
|
is_termination_msg: Optional[Callable[[Dict], bool]] = None, |
|
max_consecutive_auto_reply: Optional[int] = None, |
|
human_input_mode: typing.Literal["ALWAYS", "NEVER", "TERMINATE"] = "TERMINATE", |
|
function_map: Optional[Dict[str, Callable]] = None, |
|
code_execution_config: Union[Dict, typing.Literal[False]] = False, |
|
llm_config: Optional[Union[Dict, typing.Literal[False]]] = None, |
|
default_auto_reply: Union[str, Dict] = "", |
|
description: Optional[str] = None, |
|
chat_messages: Optional[Dict[Agent, List[Dict]]] = None, |
|
|
|
max_turns: Optional[int] = None, |
|
initial_confidence_level: Optional[int] = 0, |
|
): |
|
self.max_turns = max_turns |
|
self.turns = 0 |
|
self._confidence_level = initial_confidence_level |
|
|
|
code_execution_config = ( |
|
code_execution_config.copy() if hasattr(code_execution_config, "copy") else code_execution_config |
|
) |
|
|
|
self._name = name |
|
|
|
if chat_messages is None: |
|
self._oai_messages = defaultdict(list) |
|
else: |
|
self._oai_messages = chat_messages |
|
|
|
self._oai_system_message = [{"content": system_message, "role": "system"}] |
|
self._description = description if description is not None else system_message |
|
self._is_termination_msg = ( |
|
is_termination_msg |
|
if is_termination_msg is not None |
|
else (lambda x: content_str(x.get("content")) == "TERMINATE") |
|
) |
|
|
|
if isinstance(llm_config, dict): |
|
try: |
|
llm_config = copy.deepcopy(llm_config) |
|
except TypeError as e: |
|
raise TypeError( |
|
"Please implement __deepcopy__ method for each value class in llm_config to support deepcopy." |
|
" Refer to the docs for more details: https://microsoft.github.io/autogen/docs/topics/llm_configuration#adding-http-client-in-llm_config-for-proxy" |
|
) from e |
|
|
|
self._validate_llm_config(llm_config) |
|
|
|
if logging_enabled(): |
|
log_new_agent(self, locals()) |
|
|
|
|
|
self.client_cache = None |
|
|
|
self.human_input_mode = human_input_mode |
|
self._max_consecutive_auto_reply = ( |
|
max_consecutive_auto_reply if max_consecutive_auto_reply is not None else self.MAX_CONSECUTIVE_AUTO_REPLY |
|
) |
|
self._consecutive_auto_reply_counter = defaultdict(int) |
|
self._max_consecutive_auto_reply_dict = defaultdict(self.max_consecutive_auto_reply) |
|
self._function_map = ( |
|
{} |
|
if function_map is None |
|
else {name: callable for name, callable in function_map.items() if self._assert_valid_name(name)} |
|
) |
|
self._default_auto_reply = default_auto_reply |
|
self._reply_func_list = [] |
|
self._human_input = [] |
|
self.reply_at_receive = defaultdict(bool) |
|
self.register_reply([Agent, None], H2OConversableAgent.generate_oai_reply) |
|
self.register_reply([Agent, None], H2OConversableAgent.a_generate_oai_reply, ignore_async_in_sync_chat=True) |
|
|
|
|
|
|
|
if code_execution_config is not False: |
|
|
|
if code_execution_config is None: |
|
warnings.warn( |
|
"Using None to signal a default code_execution_config is deprecated. " |
|
"Use {} to use default or False to disable code execution.", |
|
stacklevel=2, |
|
) |
|
code_execution_config = {} |
|
if not isinstance(code_execution_config, dict): |
|
raise ValueError("code_execution_config must be a dict or False.") |
|
|
|
|
|
self._code_execution_config = code_execution_config |
|
|
|
if self._code_execution_config.get("executor") is not None: |
|
if "use_docker" in self._code_execution_config: |
|
raise ValueError( |
|
"'use_docker' in code_execution_config is not valid when 'executor' is set. Use the appropriate arg in the chosen executor instead." |
|
) |
|
|
|
if "work_dir" in self._code_execution_config: |
|
raise ValueError( |
|
"'work_dir' in code_execution_config is not valid when 'executor' is set. Use the appropriate arg in the chosen executor instead." |
|
) |
|
|
|
if "timeout" in self._code_execution_config: |
|
raise ValueError( |
|
"'timeout' in code_execution_config is not valid when 'executor' is set. Use the appropriate arg in the chosen executor instead." |
|
) |
|
|
|
|
|
self._code_executor = CodeExecutorFactory.create(self._code_execution_config) |
|
self.register_reply([Agent, None], H2OConversableAgent._generate_code_execution_reply_using_executor) |
|
else: |
|
|
|
use_docker = self._code_execution_config.get("use_docker", None) |
|
use_docker = decide_use_docker(use_docker) |
|
check_can_use_docker_or_throw(use_docker) |
|
self._code_execution_config["use_docker"] = use_docker |
|
self.register_reply([Agent, None], H2OConversableAgent.generate_code_execution_reply) |
|
else: |
|
|
|
self._code_execution_config = False |
|
|
|
self.register_reply([Agent, None], H2OConversableAgent.generate_tool_calls_reply) |
|
self.register_reply([Agent, None], H2OConversableAgent.a_generate_tool_calls_reply, |
|
ignore_async_in_sync_chat=True) |
|
self.register_reply([Agent, None], H2OConversableAgent.generate_function_call_reply) |
|
self.register_reply( |
|
[Agent, None], H2OConversableAgent.a_generate_function_call_reply, ignore_async_in_sync_chat=True |
|
) |
|
self.register_reply([Agent, None], H2OConversableAgent.check_termination_and_human_reply) |
|
self.register_reply( |
|
[Agent, None], H2OConversableAgent.a_check_termination_and_human_reply, ignore_async_in_sync_chat=True |
|
) |
|
|
|
|
|
|
|
self.hook_lists: Dict[str, List[Callable]] = { |
|
"process_last_received_message": [], |
|
"process_all_messages_before_reply": [], |
|
"process_message_before_send": [], |
|
} |
|
|
|
def _generate_oai_reply_from_client(self, llm_client, messages, cache) -> typing.Union[str, typing.Dict, None]: |
|
try: |
|
return super()._generate_oai_reply_from_client(llm_client, messages, cache) |
|
except Exception as e: |
|
if any(re.search(pattern, str(e)) for pattern in error_patterns): |
|
logger.info(f"Encountered retryable error: {str(e)}") |
|
raise |
|
else: |
|
logger.error(f"Encountered non-retryable error: {str(e)}") |
|
raise |
|
|
|
def generate_oai_reply( |
|
self, |
|
messages: Optional[List[Dict]] = None, |
|
sender: Optional[Agent] = None, |
|
config: Optional[OpenAIWrapper] = None, |
|
) -> typing.Tuple[bool, Union[str, Dict, None]]: |
|
valid, extracted_response = super().generate_oai_reply(messages, sender, config) |
|
if isinstance(extracted_response, str) and 'ENDOFTURN' not in extracted_response: |
|
delta = '\n\nENDOFTURN\n' |
|
from autogen.io import IOStream |
|
iostream = IOStream.get_default() |
|
iostream.print(delta) |
|
extracted_response += delta |
|
return (False, None) if extracted_response is None else (True, extracted_response) |
|
|
|
def _generate_code_execution_reply_using_executor( |
|
self, |
|
messages: Optional[List[Dict]] = None, |
|
sender: Optional[Agent] = None, |
|
config: Optional[Union[Dict, typing.Literal[False]]] = None, |
|
): |
|
valid, output = self.__generate_code_execution_reply_using_executor(messages, sender, config) |
|
if output and 'ENDOFTURN' not in output: |
|
delta = '\n\nENDOFTURN\n' |
|
from autogen.io import IOStream |
|
iostream = IOStream.get_default() |
|
iostream.print(delta) |
|
output += delta |
|
self.turns += 1 |
|
return valid, output |
|
|
|
def __generate_code_execution_reply_using_executor( |
|
self, |
|
messages: Optional[List[Dict]] = None, |
|
sender: Optional[Agent] = None, |
|
config: Optional[Union[Dict, typing.Literal[False]]] = None, |
|
): |
|
"""Generate a reply using code executor.""" |
|
iostream = IOStream.get_default() |
|
|
|
if config is not None: |
|
raise ValueError("config is not supported for _generate_code_execution_reply_using_executor.") |
|
if self._code_execution_config is False: |
|
return False, None |
|
if messages is None: |
|
messages = self._oai_messages[sender] |
|
last_n_messages = self._code_execution_config.get("last_n_messages", "auto") |
|
|
|
if not (isinstance(last_n_messages, (int, float)) and last_n_messages >= 0) and last_n_messages != "auto": |
|
raise ValueError("last_n_messages must be either a non-negative integer, or the string 'auto'.") |
|
|
|
num_messages_to_scan = last_n_messages |
|
if last_n_messages == "auto": |
|
|
|
num_messages_to_scan = 0 |
|
for message in reversed(messages): |
|
if "role" not in message: |
|
break |
|
elif message["role"] != "user": |
|
break |
|
else: |
|
num_messages_to_scan += 1 |
|
num_messages_to_scan = min(len(messages), num_messages_to_scan) |
|
messages_to_scan = messages[-num_messages_to_scan:] |
|
|
|
assert len(messages_to_scan) == 1, "Only one message should be passed to the code executor." |
|
|
|
|
|
|
|
for message in reversed(messages_to_scan): |
|
if not message["content"]: |
|
continue |
|
code_blocks = self._code_executor.code_extractor.extract_code_blocks(message["content"]) |
|
stop_on_termination = False |
|
if ( |
|
len(code_blocks) == 0 or |
|
(stop_on_termination and "<FINISHED_ALL_TASKS>" in message["content"]) |
|
): |
|
if self._confidence_level == 0: |
|
self._confidence_level = 1 |
|
return True, self.confidence_level_guidelines() |
|
else: |
|
|
|
self._is_termination_msg = lambda x: True |
|
return True, self.final_answer_guidelines() |
|
if self.max_turns is not None and self.turns >= self.max_turns - 1: |
|
|
|
self._is_termination_msg = lambda x: True |
|
return True, self.final_answer_guidelines() |
|
|
|
num_code_blocks = len(code_blocks) |
|
if num_code_blocks == 1: |
|
iostream.print( |
|
colored( |
|
f"\n\n**EXECUTING CODE BLOCK (inferred language is {code_blocks[0].language})**\n\n", |
|
"red", |
|
), |
|
flush=True, |
|
) |
|
else: |
|
iostream.print( |
|
colored( |
|
f"\n\n**EXECUTING {num_code_blocks} CODE BLOCKS (inferred languages are [{', '.join([x.language for x in code_blocks])}])**\n\n", |
|
"red", |
|
), |
|
flush=True, |
|
) |
|
|
|
|
|
code_result = self._code_executor.execute_code_blocks(code_blocks) |
|
exitcode2str = "execution succeeded" if code_result.exit_code == 0 else "execution failed" |
|
return True, f"exitcode: {code_result.exit_code} ({exitcode2str})\nCode output: {code_result.output}" |
|
|
|
return False, None |
|
|
|
@staticmethod |
|
def confidence_level_guidelines() -> str: |
|
return """ |
|
<confidence_guidelines> |
|
|
|
* Give a step-by-step critique your entire response given the user's original query and any formatting constraints for constrained output. |
|
* Consider if you used agent_tools that would have been useful, if python packages could have been used that would be useful, algorithms or code that could have been useful, etc. |
|
* If you have a very high confidence in the response and constrained output, then say so and stop the conversation. |
|
* However, if you do not have a very high confidence in the constrained output but do have high confidence in your response otherwise, fix the constrained output and stop the conversation. |
|
* However, if you do not have a very high confidence in the response to the user's original query, then you must provide an executable code that would help improve your response until you have very high confidence. |
|
* If you end up not being able to verify your response with very high confidence, but you already came up with an unverified response, give the user the unverified response (with any unverified constrained output) and provide insights and recommendations. |
|
* For any constrained output, be sure to follow the original user query for any formatting or content constraints. |
|
* Place a final confidence level brief summary inside <confidence> </confidence> XML tags. |
|
* If you have already given a critique in response to these guidelines in our overall conversation, then you do not need to repeat the critique in your response. |
|
|
|
</confidence_guidelines> |
|
|
|
""" |
|
|
|
@staticmethod |
|
def final_answer_guidelines() -> str: |
|
return """ |
|
You should terminate the chat with your final answer. |
|
|
|
<final_answer_guidelines> |
|
|
|
* Your answer should start by answering the user's first request. |
|
* You should give a well-structured and complete answer, insights gained, and recommendations suggested. |
|
* Don't mention things like 'user's initial query', 'I'm sharing this again', 'final request' or 'Thank you for running the code' etc., because that wouldn't sound like you are directly talking to the user about their query. |
|
* If no good answer was found, discuss the failures, give insights, and provide recommendations. |
|
* If the user was asking you to write codes, make sure to provide the non-executable code block in the final answer. |
|
* If the user was asking for images and images were made, you must add them as inline markdown using ![image](filename.png). |
|
* If possible, use well-structured markdown as table of results or lists to make it more readable and easy to follow. |
|
* If you have given a <constrained_output> response, please repeat that. |
|
* You must give a very brief natural language title near the end of your response about your final answer and put that title inside <turn_title> </turn_title> XML tags. |
|
|
|
</final_answer_guidelines> |
|
|
|
""" |
|
|
|
|
|
class H2OGroupChatManager(GroupChatManager): |
|
@backoff.on_exception(backoff.expo, |
|
Exception, |
|
max_tries=5, |
|
giveup=lambda e: not any(re.search(pattern, str(e)) for pattern in error_patterns), |
|
on_backoff=backoff_handler) |
|
def _generate_oai_reply_from_client(self, llm_client, messages, cache) -> typing.Union[str, typing.Dict, None]: |
|
try: |
|
return super()._generate_oai_reply_from_client(llm_client, messages, cache) |
|
except Exception as e: |
|
if any(re.search(pattern, str(e)) for pattern in error_patterns): |
|
logger.info(f"Encountered retryable error: {str(e)}") |
|
raise |
|
else: |
|
logger.error(f"Encountered non-retryable error: {str(e)}") |
|
raise |
|
|
|
|
|
def terminate_message_func(msg): |
|
|
|
|
|
|
|
has_message = isinstance(msg, dict) and isinstance(msg.get('content', ''), str) |
|
has_execute = has_message and '# execution: true' in msg.get('content', '') |
|
if has_execute: |
|
|
|
|
|
return False |
|
|
|
return False |
|
|
|
|
|
async def get_autogen_response(func=None, use_process=False, **kwargs): |
|
|
|
|
|
gen_kwargs = convert_gen_kwargs(kwargs) |
|
kwargs = gen_kwargs.copy() |
|
assert func is not None, "func must be provided" |
|
gen = iostream_generator(func, use_process=use_process, **kwargs) |
|
|
|
ret_dict = {} |
|
async for res in gen: |
|
if isinstance(res, dict): |
|
ret_dict = res |
|
else: |
|
yield res |
|
await asyncio.sleep(0.005) |
|
yield ret_dict |
|
|
|
|
|
def get_code_executor( |
|
autogen_run_code_in_docker=False, |
|
autogen_timeout=120, |
|
agent_system_site_packages=None, |
|
autogen_code_restrictions_level=0, |
|
agent_work_dir=None, |
|
agent_venv_dir=None, |
|
agent_tools_usage_hard_limits={}, |
|
agent_tools_usage_soft_limits={}, |
|
max_stream_length=4096, |
|
|
|
max_memory_usage=16 * 1024 ** 3, |
|
): |
|
if agent_work_dir is None: |
|
agent_work_dir = tempfile.mkdtemp() |
|
|
|
if autogen_run_code_in_docker: |
|
from autogen.coding import DockerCommandLineCodeExecutor |
|
|
|
executor = DockerCommandLineCodeExecutor( |
|
image="python:3.10-slim-bullseye", |
|
timeout=autogen_timeout, |
|
work_dir=agent_work_dir, |
|
) |
|
else: |
|
set_python_path() |
|
from autogen.code_utils import create_virtual_env |
|
if agent_venv_dir is None: |
|
username = str(uuid.uuid4()) |
|
agent_venv_dir = ".venv_%s" % username |
|
env_args = dict(system_site_packages=agent_system_site_packages, |
|
with_pip=True, |
|
symlinks=True) |
|
if not in_pycharm(): |
|
virtual_env_context = create_virtual_env(agent_venv_dir, **env_args) |
|
else: |
|
print("in PyCharm, can't use virtualenv, so we use the system python", file=sys.stderr) |
|
virtual_env_context = None |
|
|
|
|
|
|
|
|
|
executor = H2OLocalCommandLineCodeExecutor( |
|
timeout=autogen_timeout, |
|
virtual_env_context=virtual_env_context, |
|
work_dir=agent_work_dir, |
|
autogen_code_restrictions_level=autogen_code_restrictions_level, |
|
agent_tools_usage_hard_limits=agent_tools_usage_hard_limits, |
|
agent_tools_usage_soft_limits=agent_tools_usage_soft_limits, |
|
max_stream_length=max_stream_length, |
|
max_memory_usage=max_memory_usage, |
|
) |
|
return executor |
|
|
|
|
|
def merge_group_chat_messages(a, b): |
|
""" |
|
Helps to merge chat messages from two different sources. |
|
Mostly messages from Group Chat Managers. |
|
""" |
|
|
|
merged_list = b.copy() |
|
|
|
|
|
b_contents = {item['content'] for item in b} |
|
|
|
|
|
for i, item_a in enumerate(a): |
|
content_a = item_a['content'] |
|
|
|
|
|
if content_a not in b_contents: |
|
|
|
|
|
if i > 0: |
|
prev_content = a[i - 1]['content'] |
|
|
|
for j, item_b in enumerate(merged_list): |
|
if item_b['content'] == prev_content: |
|
merged_list.insert(j + 1, item_a) |
|
break |
|
else: |
|
|
|
merged_list.insert(0, item_a) |
|
|
|
|
|
b_contents.add(content_a) |
|
|
|
return merged_list |
|
|
|
|
|
def get_all_conversable_agents(group_chat_manager: GroupChatManager) -> List[ConversableAgent]: |
|
""" |
|
Get all conversable agents from a group chat manager and its sub-managers. |
|
""" |
|
all_conversable_agents = [] |
|
for agent in group_chat_manager.groupchat.agents: |
|
if isinstance(agent, GroupChatManager): |
|
all_conversable_agents += get_all_conversable_agents(agent) |
|
else: |
|
all_conversable_agents.append(agent) |
|
return all_conversable_agents |
|
|
|
|
|
def get_autogen_use_planning_prompt(model: str) -> bool: |
|
""" |
|
Based on the model and H2OGPT_DISABLE_PLANNING_STEP environment variable, decide if autogen should use planning prompt/step. |
|
""" |
|
import os |
|
planning_models = ['claude-3-opus', 'claude-3-5-sonnet', 'gpt-4o', 'o1-preview', 'o1-mini'] |
|
|
|
if any(x in model for x in planning_models): |
|
|
|
autogen_use_planning_prompt = False |
|
else: |
|
autogen_use_planning_prompt = True if os.getenv('H2OGPT_DISABLE_PLANNING_STEP') is None else False |
|
return autogen_use_planning_prompt |
|
|