|
import ast |
|
import asyncio |
|
import base64 |
|
import functools |
|
import io |
|
import json |
|
import os |
|
import platform |
|
import re |
|
import sys |
|
import threading |
|
import time |
|
import traceback |
|
import uuid |
|
from collections import deque |
|
|
|
import filelock |
|
import numpy as np |
|
|
|
from log import logger |
|
from openai_server.backend_utils import convert_messages_to_structure, convert_gen_kwargs |
|
|
|
|
|
def start_faulthandler(): |
|
|
|
|
|
import faulthandler |
|
|
|
|
|
faulthandler.enable() |
|
if hasattr(faulthandler, 'register'): |
|
|
|
import signal |
|
faulthandler.register(signal.SIGUSR1) |
|
|
|
|
|
start_faulthandler() |
|
|
|
|
|
def decode(x, encoding_name="cl100k_base"): |
|
try: |
|
import tiktoken |
|
encoding = tiktoken.get_encoding(encoding_name) |
|
return encoding.decode(x) |
|
except ImportError: |
|
return '' |
|
|
|
|
|
def encode(x, encoding_name="cl100k_base"): |
|
try: |
|
import tiktoken |
|
encoding = tiktoken.get_encoding(encoding_name) |
|
return encoding.encode(x, disallowed_special=()) |
|
except ImportError: |
|
return [] |
|
|
|
|
|
def count_tokens(x, encoding_name="cl100k_base"): |
|
try: |
|
import tiktoken |
|
encoding = tiktoken.get_encoding(encoding_name) |
|
return len(encoding.encode(x, disallowed_special=())) |
|
except ImportError: |
|
return 0 |
|
|
|
|
|
def get_gradio_auth(user=None, verbose=False): |
|
if verbose: |
|
print("GRADIO_SERVER_PORT:", os.getenv('GRADIO_SERVER_PORT'), file=sys.stderr) |
|
print("GRADIO_GUEST_NAME:", os.getenv('GRADIO_GUEST_NAME'), file=sys.stderr) |
|
print("GRADIO_AUTH:", os.getenv('GRADIO_AUTH'), file=sys.stderr) |
|
print("GRADIO_AUTH_ACCESS:", os.getenv('GRADIO_AUTH_ACCESS'), file=sys.stderr) |
|
|
|
gradio_prefix = os.getenv('GRADIO_PREFIX', 'http') |
|
if platform.system() in ['Darwin', 'Windows']: |
|
gradio_host = os.getenv('GRADIO_SERVER_HOST', '127.0.0.1') |
|
else: |
|
gradio_host = os.getenv('GRADIO_SERVER_HOST', '0.0.0.0') |
|
gradio_port = int(os.getenv('GRADIO_SERVER_PORT', '7860')) |
|
gradio_url = f'{gradio_prefix}://{gradio_host}:{gradio_port}' |
|
|
|
auth = os.environ.get('GRADIO_AUTH', 'None') |
|
auth_access = os.environ.get('GRADIO_AUTH_ACCESS', 'open') |
|
guest_name = os.environ.get('GRADIO_GUEST_NAME', '') |
|
is_guest = False |
|
if auth != 'None': |
|
if user: |
|
user_split = user.split(':') |
|
assert len(user_split) >= 2, "username cannot contain : character and must be in form username:password" |
|
username = user_split[0] |
|
if username == guest_name: |
|
is_guest = True |
|
auth_kwargs = dict(auth=(username, ':'.join(user_split[1:]))) |
|
elif guest_name: |
|
if auth_access == 'closed': |
|
if os.getenv('H2OGPT_OPENAI_USER'): |
|
user = os.getenv('H2OGPT_OPENAI_USER') |
|
user_split = user.split(':') |
|
assert len( |
|
user_split) >= 2, "username cannot contain : character and must be in form username:password" |
|
auth_kwargs = dict(auth=(user_split[0], ':'.join(user_split[1:]))) |
|
is_guest = True |
|
else: |
|
raise ValueError( |
|
"If closed access, must set ENV H2OGPT_OPENAI_USER (e.g. as 'user:pass' combination) to login from OpenAI->Gradio with some specific user.") |
|
else: |
|
auth_kwargs = dict(auth=(guest_name, guest_name)) |
|
is_guest = True |
|
elif auth_access == 'open': |
|
auth_kwargs = dict(auth=(str(uuid.uuid4()), str(uuid.uuid4()))) |
|
is_guest = True |
|
else: |
|
auth_kwargs = None |
|
else: |
|
auth_kwargs = dict() |
|
return auth_kwargs, gradio_url, is_guest |
|
|
|
|
|
def get_gradio_client(user=None, verbose=False): |
|
auth_kwargs, gradio_url, is_guest = get_gradio_auth(user=user, verbose=verbose) |
|
print("OpenAI user: %s" % auth_kwargs, flush=True) |
|
|
|
try: |
|
from gradio_utils.grclient import GradioClient as Client |
|
except ImportError: |
|
print("Using slower gradio API, for speed ensure gradio_utils/grclient.py exists.") |
|
from gradio_client import Client |
|
|
|
if auth_kwargs: |
|
print("Getting gradio client at %s with auth" % gradio_url, flush=True) |
|
client = Client(gradio_url, **auth_kwargs) |
|
if hasattr(client, 'setup'): |
|
with client_lock: |
|
client.setup() |
|
else: |
|
print("BEGIN: Getting non-user gradio client at %s" % gradio_url, flush=True) |
|
client = Client(gradio_url) |
|
if hasattr(client, 'setup'): |
|
with client_lock: |
|
client.setup() |
|
print("END: getting non-user gradio client at %s" % gradio_url, flush=True) |
|
return client |
|
|
|
|
|
|
|
client_lock = threading.Lock() |
|
|
|
print("global gradio_client", file=sys.stderr) |
|
gradio_client_list = {} |
|
|
|
|
|
def sanitize(name): |
|
bad_chars = ['[', ']', ',', '/', '\\', '\\w', '\\s', '-', '+', '\"', '\'', '>', '<', ' ', '=', ')', '(', ':', '^'] |
|
for char in bad_chars: |
|
name = name.replace(char, "_") |
|
return name |
|
|
|
|
|
def get_client(user=None): |
|
os.makedirs('locks', exist_ok=True) |
|
user_lock_file = os.path.join('locks', 'user_%s.lock' % sanitize(str(user))) |
|
user_lock = filelock.FileLock(user_lock_file) |
|
|
|
with user_lock: |
|
print(list(gradio_client_list.keys())) |
|
gradio_client = gradio_client_list.get(user) |
|
|
|
if gradio_client is None: |
|
print("Getting fresh client: %s" % str(user), file=sys.stderr) |
|
|
|
gradio_client = get_gradio_client(user=user, verbose=True) |
|
with user_lock: |
|
gradio_client_list[user] = gradio_client |
|
got_fresh_client = True |
|
else: |
|
print("re-used gradio_client for user: %s" % user, file=sys.stderr) |
|
got_fresh_client = False |
|
|
|
if hasattr(gradio_client, 'clone'): |
|
print("cloning for gradio_client.auth=%s" % str(gradio_client.auth), file=sys.stderr) |
|
gradio_client0 = gradio_client |
|
gradio_client = gradio_client0.clone() |
|
print("client.auth=%s" % str(gradio_client.auth), file=sys.stderr) |
|
try: |
|
new_hash = gradio_client.get_server_hash() |
|
assert new_hash |
|
except Exception as e: |
|
ex = traceback.format_exc() |
|
print(f"re-getting fresh client due to exception: {ex}", file=sys.stderr) |
|
|
|
print(f"re-getting fresh client due to exception: {str(e)}", file=sys.stderr) |
|
gradio_client_list[user] = get_gradio_client(user=user, verbose=True) |
|
if not hasattr(gradio_client, 'clone') and not got_fresh_client: |
|
print( |
|
"re-get to ensure concurrency ok, slower if API is large, for speed ensure gradio_utils/grclient.py exists.", |
|
file=sys.stderr) |
|
gradio_client = get_gradio_client(user=user) |
|
gradio_client_list[user] = gradio_client |
|
|
|
|
|
auth_kwargs, gradio_url, is_guest = get_gradio_auth(user=user) |
|
if user and not is_guest and auth_kwargs and 'auth' in auth_kwargs: |
|
username = auth_kwargs['auth'][0] |
|
password = auth_kwargs['auth'][1] |
|
print("start login num lock", flush=True) |
|
num_model_lock = int(gradio_client.predict(api_name='/num_model_lock')) |
|
print("finish login num lock", flush=True) |
|
chatbots = [None] * (2 + num_model_lock) |
|
h2ogpt_key = '' |
|
visible_models = [] |
|
side_bar_text = '' |
|
doc_count_text = '' |
|
submit_buttons_text = '' |
|
visible_models_text = '' |
|
chat_tab_text = '' |
|
doc_selection_tab_text = '' |
|
doc_view_tab_text = '' |
|
chat_history_tab_text = '' |
|
expert_tab_text = '' |
|
models_tab_text = '' |
|
system_tab_text = '' |
|
tos_tab_text = '' |
|
login_tab_text = '' |
|
hosts_tab_text = '' |
|
print("start login", flush=True) |
|
t0_login = time.time() |
|
gradio_client.predict(None, |
|
h2ogpt_key, visible_models, |
|
|
|
side_bar_text, doc_count_text, submit_buttons_text, visible_models_text, |
|
chat_tab_text, doc_selection_tab_text, doc_view_tab_text, chat_history_tab_text, |
|
expert_tab_text, models_tab_text, system_tab_text, tos_tab_text, |
|
login_tab_text, hosts_tab_text, |
|
|
|
username, password, |
|
*tuple(chatbots), api_name='/login') |
|
print("finish login: %s" % (time.time() - t0_login), flush=True) |
|
|
|
return gradio_client |
|
|
|
|
|
def get_chunk(outputs_list, job_outputs_num, last_response, num, verbose=False): |
|
res_str = outputs_list[job_outputs_num + num] |
|
res_dict = ast.literal_eval(res_str) |
|
if verbose: |
|
logger.info('Stream %d: %s\n\n %s\n\n' % (num, res_dict['response'], res_dict)) |
|
logger.info('Stream %d' % (job_outputs_num + num)) |
|
if 'error' in res_dict and res_dict['error']: |
|
raise RuntimeError(res_dict['error']) |
|
elif 'error_ex' in res_dict and res_dict['error_ex']: |
|
raise RuntimeError(res_dict['error_ex']) |
|
elif 'response' not in res_dict: |
|
raise RuntimeError("No response in res: %s" % res_dict) |
|
else: |
|
response = res_dict['response'] |
|
chunk = response[len(last_response):] |
|
return chunk, response, res_dict |
|
|
|
|
|
async def get_response(chunk_response=True, **kwargs): |
|
assert kwargs['query'] is not None, "query must not be None" |
|
import ast |
|
|
|
stream_output = kwargs.get('stream_output', True) |
|
stream_output_orig = stream_output |
|
|
|
stream_output = True |
|
verbose = kwargs.get('verbose', False) |
|
|
|
kwargs = convert_gen_kwargs(kwargs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
client = get_client(user=kwargs.get('user')) |
|
|
|
res_dict = {} |
|
|
|
if stream_output: |
|
job = client.submit(str(dict(kwargs)), api_name='/submit_nochat_api') |
|
job_outputs_num = 0 |
|
last_response = '' |
|
while not job.done(): |
|
outputs_list = job.outputs().copy() |
|
job_outputs_num_new = len(outputs_list[job_outputs_num:]) |
|
for num in range(job_outputs_num_new): |
|
chunk, response, res_dict = get_chunk(outputs_list, job_outputs_num, last_response, num, |
|
verbose=verbose) |
|
if stream_output_orig: |
|
if chunk_response: |
|
if chunk: |
|
yield chunk |
|
else: |
|
yield response |
|
last_response = response |
|
await asyncio.sleep(0.005) |
|
await asyncio.sleep(0.005) |
|
job_outputs_num += job_outputs_num_new |
|
|
|
outputs_list = job.outputs().copy() |
|
job_outputs_num_new = len(outputs_list[job_outputs_num:]) |
|
for num in range(job_outputs_num_new): |
|
chunk, response, res_dict = get_chunk(outputs_list, job_outputs_num, last_response, num, verbose=verbose) |
|
if stream_output_orig: |
|
if chunk_response: |
|
if chunk: |
|
yield chunk |
|
else: |
|
yield response |
|
last_response = response |
|
await asyncio.sleep(0.005) |
|
job_outputs_num += job_outputs_num_new |
|
if not stream_output_orig: |
|
|
|
yield res_dict['response'] |
|
if verbose: |
|
logger.info("total job_outputs_num=%d" % job_outputs_num) |
|
else: |
|
res_str = client.predict(str(dict(kwargs)), api_name='/submit_nochat_api') |
|
res_dict = ast.literal_eval(res_str) |
|
yield res_dict['response'] |
|
|
|
|
|
res_dict.pop('audio', None) |
|
yield res_dict |
|
|
|
|
|
def split_concatenated_dicts(concatenated_dicts: str): |
|
|
|
pattern = r'{(?:[^{}]|{(?:[^{}]|{[^{}]*})*})*}' |
|
|
|
try: |
|
matches = re.findall(pattern, concatenated_dicts) |
|
except re.error as e: |
|
print(f"Regular expression error: {e}") |
|
return [] |
|
except MemoryError: |
|
print("Memory error: Input might be too large") |
|
return [] |
|
|
|
result = [] |
|
for match in matches: |
|
try: |
|
result.append(ast.literal_eval(match)) |
|
except (ValueError, SyntaxError): |
|
|
|
result.append(match) |
|
|
|
return result |
|
|
|
|
|
def get_generator(instruction, gen_kwargs, use_agent=False, stream_output=False, verbose=False): |
|
gen_kwargs['stream_output'] = stream_output |
|
gen_kwargs['query'] = instruction |
|
if gen_kwargs.get('verbose') is None: |
|
|
|
gen_kwargs['verbose'] = verbose |
|
|
|
if use_agent: |
|
agent_type = gen_kwargs.get('agent_type', 'auto') |
|
from openai_server.agent_utils import set_dummy_term, run_agent |
|
set_dummy_term() |
|
|
|
if agent_type == 'auto': |
|
agent_type = 'autogen_2agent' |
|
|
|
if agent_type in ['autogen_2agent']: |
|
from openai_server.autogen_2agent_backend import run_autogen_2agent |
|
func = functools.partial(run_agent, run_agent_func=run_autogen_2agent) |
|
from openai_server.autogen_utils import get_autogen_response |
|
generator = get_autogen_response(func=func, **gen_kwargs) |
|
elif agent_type in ['autogen_multi_agent']: |
|
from openai_server.autogen_multi_agent_backend import run_autogen_multi_agent |
|
func = functools.partial(run_agent, run_agent_func=run_autogen_multi_agent) |
|
from openai_server.autogen_utils import get_autogen_response |
|
generator = get_autogen_response(func=func, **gen_kwargs) |
|
else: |
|
raise ValueError("No such agent_type %s" % agent_type) |
|
else: |
|
generator = get_response(**gen_kwargs) |
|
|
|
return generator |
|
|
|
|
|
async def achat_completion_action(body: dict, stream_output=False): |
|
messages = body.get('messages', []) |
|
object_type = 'chat.completions' if not stream_output else 'chat.completions.chunk' |
|
created_time = int(time.time()) |
|
req_id = "chat_cmpl_id-%s" % str(uuid.uuid4()) |
|
resp_list = 'choices' |
|
|
|
gen_kwargs = body |
|
|
|
|
|
|
|
agent_type = gen_kwargs.get('agent_type', 'auto') |
|
if agent_type == "autogen_multi_agent": |
|
concat_assistant = concat_user = True |
|
else: |
|
concat_assistant = concat_user = False |
|
|
|
instruction, system_message, history, image_files = convert_messages_to_structure( |
|
messages=messages, |
|
concat_tool=True, |
|
concat_assistant=concat_assistant, |
|
concat_user=concat_user, |
|
) |
|
|
|
image_file = image_files if image_files else gen_kwargs.get('image_file', []) |
|
history = history if history else gen_kwargs.get('chat_conversation', []) |
|
gen_kwargs.update({ |
|
'system_prompt': system_message, |
|
'chat_conversation': history, |
|
'stream_output': stream_output, |
|
'image_file': image_file, |
|
}) |
|
|
|
use_agent = gen_kwargs.get('use_agent', False) |
|
if use_agent and os.environ.get('is_agent_server', '0') == '0': |
|
raise ValueError("Agent is not enabled on this server.") |
|
|
|
model = gen_kwargs.get('model', '') |
|
|
|
def chat_streaming_chunk(content): |
|
|
|
msg1 = {'role': 'assistant', 'content': content} |
|
if gen_kwargs.get('guided_json', {}): |
|
contents = split_concatenated_dicts(msg1['content']) |
|
msg1['tool_calls'] = [ |
|
dict(function=dict(name=gen_kwargs['tool_choice'], arguments=json.dumps(x)), id=str(uuid.uuid4())) for x |
|
in |
|
contents] |
|
chunk = { |
|
"id": req_id, |
|
"object": object_type, |
|
"created": created_time, |
|
"model": model, |
|
resp_list: [{ |
|
"index": 0, |
|
"finish_reason": None, |
|
"message": msg1, |
|
"delta": msg1, |
|
}], |
|
} |
|
return chunk |
|
|
|
if stream_output: |
|
yield chat_streaming_chunk('') |
|
|
|
if instruction is None and gen_kwargs.get('langchain_action', '') == 'Query': |
|
instruction = "Continue your response. If your prior response was cut short, then continue exactly at end of your last response without any ellipses, else continue your response by starting with new line and proceeding with an additional useful and related response." |
|
if instruction is None: |
|
instruction = '' |
|
|
|
generator = get_generator(instruction, gen_kwargs, use_agent=use_agent, stream_output=stream_output) |
|
|
|
answer = '' |
|
usage = {} |
|
async for chunk in generator: |
|
if stream_output: |
|
if isinstance(chunk, dict): |
|
usage.update(chunk) |
|
else: |
|
chat_chunk = chat_streaming_chunk(chunk) |
|
answer += chunk |
|
yield chat_chunk |
|
else: |
|
if isinstance(chunk, dict): |
|
usage.update(chunk) |
|
if 'response' in chunk: |
|
|
|
answer = chunk['response'] |
|
else: |
|
answer = '' |
|
else: |
|
|
|
answer = chunk |
|
await asyncio.sleep(0.005) |
|
|
|
stop_reason = "stop" |
|
|
|
real_prompt_tokens = usage.get('save_dict', {}).get('extra_dict', {}).get('num_prompt_tokens') |
|
if real_prompt_tokens is not None: |
|
token_count = real_prompt_tokens |
|
else: |
|
token_count = count_tokens(instruction) |
|
real_completion_tokens = usage.get('save_dict', {}).get('extra_dict', {}).get('ntokens') |
|
if real_completion_tokens is not None: |
|
completion_token_count = real_completion_tokens |
|
else: |
|
completion_token_count = count_tokens(answer) |
|
|
|
usage.update({ |
|
"prompt_tokens": token_count, |
|
"completion_tokens": completion_token_count, |
|
"total_tokens": token_count + completion_token_count, |
|
}) |
|
|
|
if stream_output: |
|
chunk = chat_streaming_chunk('') |
|
chunk[resp_list][0]['finish_reason'] = stop_reason |
|
chunk['usage'] = usage |
|
|
|
yield chunk |
|
else: |
|
msg1 = {"role": "assistant", "content": answer} |
|
if gen_kwargs.get('guided_json', {}): |
|
contents = split_concatenated_dicts(msg1['content']) |
|
msg1['tool_calls'] = [ |
|
dict(function=dict(name=gen_kwargs['tool_choice'], arguments=json.dumps(x)), id=str(uuid.uuid4())) for x |
|
in contents] |
|
resp = { |
|
"id": req_id, |
|
"object": object_type, |
|
"created": created_time, |
|
"model": model, |
|
resp_list: [{ |
|
"index": 0, |
|
"finish_reason": stop_reason, |
|
"message": msg1, |
|
}], |
|
"usage": usage |
|
} |
|
|
|
yield resp |
|
|
|
|
|
async def acompletions_action(body: dict, stream_output=False): |
|
object_type = 'text_completion.chunk' if stream_output else 'text_completion' |
|
created_time = int(time.time()) |
|
res_id = "res_id-%s" % str(uuid.uuid4()) |
|
resp_list = 'choices' |
|
prompt_str = 'prompt' |
|
assert prompt_str in body, "Missing prompt" |
|
|
|
gen_kwargs = body |
|
gen_kwargs['stream_output'] = stream_output |
|
|
|
use_agent = gen_kwargs.get('use_agent', False) |
|
if use_agent and os.environ.get('is_agent_server', '0') == '0': |
|
raise ValueError("Agents not enabled on this server.") |
|
|
|
usage = {} |
|
|
|
if not stream_output: |
|
prompt_arg = body[prompt_str] |
|
if isinstance(prompt_arg, str) or (isinstance(prompt_arg, list) and isinstance(prompt_arg[0], int)): |
|
prompt_arg = [prompt_arg] |
|
|
|
resp_list_data = [] |
|
total_completion_token_count = 0 |
|
total_prompt_token_count = 0 |
|
|
|
for idx, prompt in enumerate(prompt_arg, start=0): |
|
token_count = count_tokens(prompt) |
|
total_prompt_token_count += token_count |
|
|
|
generator = get_generator(prompt, gen_kwargs, use_agent=use_agent, stream_output=stream_output) |
|
ret = {} |
|
response = "" |
|
try: |
|
async for last_value in generator: |
|
if isinstance(last_value, dict): |
|
ret = last_value |
|
else: |
|
response = last_value |
|
except StopIteration: |
|
pass |
|
|
|
if isinstance(ret, dict): |
|
usage.update(ret) |
|
|
|
if isinstance(response, str): |
|
completion_token_count = count_tokens(response) |
|
total_completion_token_count += completion_token_count |
|
else: |
|
|
|
total_completion_token_count = 1500 |
|
stop_reason = "stop" |
|
|
|
res_idx = { |
|
"index": idx, |
|
"finish_reason": stop_reason, |
|
"text": response, |
|
"logprobs": None, |
|
} |
|
|
|
resp_list_data.extend([res_idx]) |
|
|
|
usage.update({ |
|
"prompt_tokens": total_prompt_token_count, |
|
"completion_tokens": total_completion_token_count, |
|
"total_tokens": total_prompt_token_count + total_completion_token_count, |
|
}) |
|
res_dict = { |
|
"id": res_id, |
|
"object": object_type, |
|
"created": created_time, |
|
"model": '', |
|
resp_list: resp_list_data, |
|
"usage": usage |
|
} |
|
|
|
yield res_dict |
|
else: |
|
prompt = body[prompt_str] |
|
token_count = count_tokens(prompt) |
|
|
|
def text_streaming_chunk(content): |
|
|
|
chunk = { |
|
"id": res_id, |
|
"object": object_type, |
|
"created": created_time, |
|
"model": '', |
|
resp_list: [{ |
|
"index": 0, |
|
"finish_reason": None, |
|
"text": content, |
|
"logprobs": None, |
|
}], |
|
} |
|
|
|
return chunk |
|
|
|
generator = get_generator(prompt, gen_kwargs, use_agent=use_agent, stream_output=stream_output) |
|
|
|
response = '' |
|
usage = {} |
|
async for chunk in generator: |
|
if isinstance(chunk, dict): |
|
usage.update(chunk) |
|
else: |
|
response += chunk |
|
yield_chunk = text_streaming_chunk(chunk) |
|
yield yield_chunk |
|
await asyncio.sleep(0.005) |
|
|
|
completion_token_count = count_tokens(response) |
|
stop_reason = "stop" |
|
chunk = text_streaming_chunk('') |
|
chunk[resp_list][0]["finish_reason"] = stop_reason |
|
usage.update({ |
|
"prompt_tokens": token_count, |
|
"completion_tokens": completion_token_count, |
|
"total_tokens": token_count + completion_token_count, |
|
}) |
|
chunk["usage"] = usage |
|
yield chunk |
|
|
|
|
|
async def astream_chat_completions(body: dict, stream_output=True): |
|
async for resp in achat_completion_action(body, stream_output=stream_output): |
|
yield resp |
|
|
|
|
|
async def astream_completions(body: dict, stream_output=True): |
|
async for resp in acompletions_action(body, stream_output=stream_output): |
|
yield resp |
|
|
|
|
|
def get_model_info(): |
|
|
|
client = get_client() |
|
model_dict = ast.literal_eval(client.predict(api_name='/model_names')) |
|
return dict(model_names=model_dict) |
|
|
|
|
|
def get_model_list(): |
|
|
|
client = get_client() |
|
model_dict = ast.literal_eval(client.predict(api_name='/model_names')) |
|
base_models = [x['base_model'] for x in model_dict] |
|
return dict(model_names=base_models) |
|
|
|
|
|
def split_audio_on_silence(audio_bytes): |
|
from pydub import AudioSegment |
|
from pydub.silence import split_on_silence |
|
|
|
audio = AudioSegment.from_file(io.BytesIO(audio_bytes), format="wav") |
|
chunks = split_on_silence(audio, min_silence_len=500, silence_thresh=-40, keep_silence=200) |
|
|
|
chunk_bytes = [] |
|
for chunk in chunks: |
|
chunk_buffer = io.BytesIO() |
|
chunk.export(chunk_buffer, format="wav") |
|
chunk_bytes.append(chunk_buffer.getvalue()) |
|
|
|
return chunk_bytes |
|
|
|
|
|
def split_audio_fixed_intervals(audio_bytes, interval_ms=10000): |
|
from pydub import AudioSegment |
|
|
|
audio = AudioSegment.from_file(io.BytesIO(audio_bytes), format="wav") |
|
chunks = [audio[i:i + interval_ms] for i in range(0, len(audio), interval_ms)] |
|
|
|
chunk_bytes = [] |
|
for chunk in chunks: |
|
chunk_buffer = io.BytesIO() |
|
chunk.export(chunk_buffer, format="wav") |
|
chunk_bytes.append(chunk_buffer.getvalue()) |
|
|
|
return chunk_bytes |
|
|
|
|
|
async def audio_to_text(model, audio_file, stream, response_format, chunk, **kwargs): |
|
if chunk != 'none': |
|
|
|
if chunk == 'silence': |
|
audio_files = split_audio_on_silence(audio_file) |
|
else: |
|
audio_files = split_audio_fixed_intervals(audio_file, interval_ms=chunk) |
|
|
|
for audio_file1 in audio_files: |
|
async for text in _audio_to_text(model, audio_file1, stream, response_format, chunk, **kwargs): |
|
yield text |
|
else: |
|
async for text in _audio_to_text(model, audio_file, stream, response_format, chunk, **kwargs): |
|
yield text |
|
|
|
|
|
async def _audio_to_text(model, audio_file, stream, response_format, chunk, **kwargs): |
|
|
|
if os.getenv('GRADIO_H2OGPT_H2OGPT_KEY') and not kwargs.get('h2ogpt_key'): |
|
kwargs.update(dict(h2ogpt_key=os.getenv('GRADIO_H2OGPT_H2OGPT_KEY'))) |
|
|
|
client = get_client(kwargs.get('user')) |
|
h2ogpt_key = kwargs.get('h2ogpt_key', '') |
|
|
|
|
|
if not isinstance(audio_file, str): |
|
audio_file = base64.b64encode(audio_file).decode('utf-8') |
|
|
|
inputs = dict(audio_file=audio_file, stream_output=stream, h2ogpt_key=h2ogpt_key) |
|
if stream: |
|
job = client.submit(*tuple(list(inputs.values())), api_name='/transcribe_audio_api') |
|
|
|
|
|
import concurrent.futures |
|
try: |
|
e = job.exception(timeout=0.2) |
|
if e is not None: |
|
raise RuntimeError(e) |
|
except concurrent.futures.TimeoutError: |
|
pass |
|
|
|
n = 0 |
|
for text in job: |
|
yield dict(text=text.strip()) |
|
n += 1 |
|
|
|
|
|
outputs = job.outputs().copy() |
|
for text in outputs[n:]: |
|
yield dict(text=text.strip()) |
|
n += 1 |
|
else: |
|
text = client.predict(*tuple(list(inputs.values())), api_name='/transcribe_audio_api') |
|
yield dict(text=text.strip()) |
|
|
|
|
|
async def text_to_audio(model, voice, input, stream, response_format, **kwargs): |
|
|
|
|
|
|
|
|
|
if os.getenv('GRADIO_H2OGPT_H2OGPT_KEY') and not kwargs.get('h2ogpt_key'): |
|
kwargs.update(dict(h2ogpt_key=os.getenv('GRADIO_H2OGPT_H2OGPT_KEY'))) |
|
|
|
client = get_client(user=kwargs.get('user')) |
|
h2ogpt_key = kwargs.get('h2ogpt_key') |
|
|
|
if not voice or voice in ['alloy', 'echo', 'fable', 'onyx', 'nova', 'shimmer']: |
|
|
|
speaker = "SLT (female)" |
|
chatbot_role = "Female AI Assistant" |
|
else: |
|
|
|
speaker = voice |
|
chatbot_role = voice |
|
|
|
|
|
inputs = dict(chatbot_role=chatbot_role, speaker=speaker, tts_language='autodetect', tts_speed=1.0, |
|
prompt=input, stream_output=stream, |
|
h2ogpt_key=h2ogpt_key) |
|
if stream: |
|
job = client.submit(*tuple(list(inputs.values())), api_name='/speak_text_api') |
|
|
|
|
|
import concurrent.futures |
|
try: |
|
e = job.exception(timeout=0.2) |
|
if e is not None: |
|
raise RuntimeError(e) |
|
except concurrent.futures.TimeoutError: |
|
pass |
|
|
|
n = 0 |
|
for audio_str in job: |
|
yield audio_str_to_bytes(audio_str, response_format=response_format) |
|
await asyncio.sleep(0.005) |
|
n += 1 |
|
|
|
|
|
outputs = job.outputs().copy() |
|
for audio_str in outputs[n:]: |
|
yield audio_str_to_bytes(audio_str, response_format=response_format) |
|
await asyncio.sleep(0.005) |
|
n += 1 |
|
else: |
|
audio_str = client.predict(*tuple(list(inputs.values())), api_name='/speak_text_api') |
|
yield audio_str_to_bytes(audio_str, response_format=response_format) |
|
|
|
|
|
def audio_str_to_bytes(audio_str1, response_format='wav'): |
|
if audio_str1 is None: |
|
return b'' |
|
|
|
audio_dict = ast.literal_eval(audio_str1) |
|
|
|
|
|
audio = audio_dict['audio'] |
|
|
|
|
|
s = io.BytesIO(audio) |
|
|
|
|
|
sr = audio_dict['sr'] |
|
channels = 1 |
|
sample_width = 2 |
|
|
|
|
|
from pydub import AudioSegment |
|
audio_segment = AudioSegment.from_raw( |
|
s, |
|
sample_width=sample_width, |
|
frame_rate=sr, |
|
channels=channels |
|
) |
|
|
|
|
|
output_stream = io.BytesIO() |
|
audio_segment.export(output_stream, format=response_format) |
|
output_bytes = output_stream.getvalue() |
|
|
|
return output_bytes |
|
|
|
|
|
def list_to_bytes(lst: list) -> str: |
|
float_array = np.array(lst, dtype="float32") |
|
bytes_array = float_array.tobytes() |
|
encoded_bytes = base64.b64encode(bytes_array) |
|
ascii_string = encoded_bytes.decode('ascii') |
|
return ascii_string |
|
|
|
|
|
def text_to_embedding(model, text, encoding_format, **kwargs): |
|
|
|
if os.getenv('GRADIO_H2OGPT_H2OGPT_KEY') and not kwargs.get('h2ogpt_key'): |
|
kwargs.update(dict(h2ogpt_key=os.getenv('GRADIO_H2OGPT_H2OGPT_KEY'))) |
|
|
|
client = get_client(kwargs.get('user')) |
|
h2ogpt_key = kwargs.get('h2ogpt_key', '') |
|
|
|
inputs = dict(text=text, h2ogpt_key=h2ogpt_key, is_list=str(isinstance(text, list))) |
|
embeddings = client.predict(*tuple(list(inputs.values())), api_name='/embed_api') |
|
embeddings = ast.literal_eval(embeddings) |
|
|
|
if encoding_format == "base64": |
|
data = [{"object": "embedding", "embedding": list_to_bytes(emb), "index": n} for n, emb in |
|
enumerate(embeddings)] |
|
elif encoding_format == "float": |
|
data = [{"object": "embedding", "embedding": emb, "index": n} for n, emb in enumerate(embeddings)] |
|
else: |
|
data = [{"object": "embedding", "embedding": emb.tolist(), "index": n} for n, emb in enumerate(embeddings)] |
|
|
|
response = { |
|
"object": "list", |
|
"data": data, |
|
"model": model, |
|
"usage": { |
|
"prompt_tokens": 0, |
|
"total_tokens": 0, |
|
} |
|
} |
|
return response |
|
|