aiben / src /gradio_funcs.py
abugaber's picture
Upload folder using huggingface_hub
3943768 verified
raw
history blame
76.2 kB
import ast
import copy
import functools
import json
import os
import tempfile
import time
import traceback
import uuid
import filelock
from enums import LangChainMode, LangChainAction, no_model_str, LangChainTypes, langchain_modes_intrinsic, \
DocumentSubset, unknown_prompt_type, my_db_state0, selection_docs_state0, requests_state0, roles_state0, noneset, \
images_num_max_dict, image_batch_image_prompt0, image_batch_final_prompt0, images_limit_max_new_tokens, \
images_limit_max_new_tokens_list
from model_utils import model_lock_to_state
from tts_utils import combine_audios
from utils import _save_generate_tokens, clear_torch_cache, remove, save_generate_output, str_to_list, \
get_accordion_named, check_input_type, download_image, deepcopy_by_pickle_object
from db_utils import length_db1
from evaluate_params import input_args_list, eval_func_param_names, key_overrides, in_model_state_and_evaluate
from vision.utils_vision import process_file_list
def evaluate_nochat(*args1, default_kwargs1=None, str_api=False, plain_api=False, verifier=False, kwargs={},
my_db_state1=None,
selection_docs_state1=None,
requests_state1=None,
roles_state1=None,
model_states=[],
**kwargs1):
is_public = kwargs1.get('is_public', False)
verbose = kwargs1.get('verbose', False)
if my_db_state1 is None:
if 'my_db_state0' in kwargs1 and kwargs1['my_db_state0'] is not None:
my_db_state1 = kwargs1['my_db_state0']
else:
my_db_state1 = copy.deepcopy(my_db_state0)
if selection_docs_state1 is None:
if 'selection_docs_state0' in kwargs1 and kwargs1['selection_docs_state0'] is not None:
selection_docs_state1 = kwargs1['selection_docs_state0']
else:
selection_docs_state1 = copy.deepcopy(selection_docs_state0)
if requests_state1 is None:
if 'requests_state0' in kwargs1 and kwargs1['requests_state0'] is not None:
requests_state1 = kwargs1['requests_state0']
else:
requests_state1 = copy.deepcopy(requests_state0)
if roles_state1 is None:
if 'roles_state0' in kwargs1 and kwargs1['roles_state0'] is not None:
roles_state1 = kwargs1['roles_state0']
else:
roles_state1 = copy.deepcopy(roles_state0)
kwargs_eval_pop_keys = ['selection_docs_state0', 'requests_state0', 'roles_state0']
for k in kwargs_eval_pop_keys:
if k in kwargs1:
kwargs1.pop(k)
###########################################
# fill args_list with states
args_list = list(args1)
if str_api:
if plain_api:
if not verifier:
# i.e. not fresh model, tells evaluate to use model_state0
args_list.insert(0, kwargs['model_state_none'].copy())
else:
args_list.insert(0, kwargs['verifier_model_state0'].copy())
args_list.insert(1, my_db_state1.copy())
args_list.insert(2, selection_docs_state1.copy())
args_list.insert(3, requests_state1.copy())
args_list.insert(4, roles_state1.copy())
user_kwargs = args_list[len(input_args_list)]
assert isinstance(user_kwargs, str)
user_kwargs = ast.literal_eval(user_kwargs)
else:
assert not plain_api
user_kwargs = {k: v for k, v in zip(eval_func_param_names, args_list[len(input_args_list):])}
###########################################
# control kwargs1 for evaluate
if 'answer_with_sources' not in user_kwargs:
kwargs1['answer_with_sources'] = -1 # just text chunk, not URL etc.
if 'sources_show_text_in_accordion' not in user_kwargs:
kwargs1['sources_show_text_in_accordion'] = False
if 'append_sources_to_chat' not in user_kwargs:
kwargs1['append_sources_to_chat'] = False
if 'append_sources_to_answer' not in user_kwargs:
kwargs1['append_sources_to_answer'] = False
if 'show_link_in_sources' not in user_kwargs:
kwargs1['show_link_in_sources'] = False
# kwargs1['top_k_docs_max_show'] = 30
###########################################
# modify some user_kwargs
# only used for submit_nochat_api
user_kwargs['chat'] = False
if 'stream_output' not in user_kwargs:
user_kwargs['stream_output'] = False
if plain_api:
user_kwargs['stream_output'] = False
if 'langchain_mode' not in user_kwargs:
# if user doesn't specify, then assume disabled, not use default
if LangChainMode.LLM.value in kwargs['langchain_modes']:
user_kwargs['langchain_mode'] = LangChainMode.LLM.value
elif len(kwargs['langchain_modes']) >= 1:
user_kwargs['langchain_mode'] = kwargs['langchain_modes'][0]
else:
# disabled should always be allowed
user_kwargs['langchain_mode'] = LangChainMode.DISABLED.value
if 'langchain_action' not in user_kwargs:
user_kwargs['langchain_action'] = LangChainAction.QUERY.value
if 'langchain_agents' not in user_kwargs:
user_kwargs['langchain_agents'] = []
# be flexible
if 'instruction' in user_kwargs and 'instruction_nochat' not in user_kwargs:
user_kwargs['instruction_nochat'] = user_kwargs['instruction']
if 'iinput' in user_kwargs and 'iinput_nochat' not in user_kwargs:
user_kwargs['iinput_nochat'] = user_kwargs['iinput']
if 'visible_models' not in user_kwargs:
if kwargs['visible_models']:
if isinstance(kwargs['visible_models'], int):
user_kwargs['visible_models'] = [kwargs['visible_models']]
elif isinstance(kwargs['visible_models'], list):
# only take first one
user_kwargs['visible_models'] = [kwargs['visible_models'][0]]
else:
user_kwargs['visible_models'] = [0]
else:
# if no user version or default version, then just take first
user_kwargs['visible_models'] = [0]
if 'visible_vision_models' not in user_kwargs or user_kwargs['visible_vision_models'] is None:
# don't assume None, which will trigger default_kwargs
# the None case is never really directly useful
user_kwargs['visible_vision_models'] = 'auto'
if 'h2ogpt_key' not in user_kwargs:
user_kwargs['h2ogpt_key'] = None
if 'system_prompt' in user_kwargs and user_kwargs['system_prompt'] is None:
# avoid worrying about below default_kwargs -> args_list that checks if None
user_kwargs['system_prompt'] = 'None'
# by default don't do TTS unless specifically requested
if 'chatbot_role' not in user_kwargs:
user_kwargs['chatbot_role'] = 'None'
if 'speaker' not in user_kwargs:
user_kwargs['speaker'] = 'None'
set1 = set(list(default_kwargs1.keys()))
set2 = set(eval_func_param_names)
assert set1 == set2, "Set diff: %s %s: %s" % (set1, set2, set1.symmetric_difference(set2))
###########################################
# correct ordering. Note some things may not be in default_kwargs, so can't be default of user_kwargs.get()
model_state1 = args_list[0]
my_db_state1 = args_list[1]
selection_docs_state1 = args_list[2]
requests_state1 = args_list[3]
roles_state1 = args_list[4]
args_list = [user_kwargs[k] if k in user_kwargs and user_kwargs[k] is not None else default_kwargs1[k] for k
in eval_func_param_names]
assert len(args_list) == len(eval_func_param_names)
###########################################
# select model
model_lock_client = args_list[eval_func_param_names.index('model_lock')]
if model_lock_client:
# because cache, if has local model state, then stays in memory
# kwargs should be fixed and unchanging, and user should be careful if mutating model_lock_client
model_state1 = model_lock_to_state(model_lock_client, cache_model_state=True, **kwargs)
elif len(model_states) >= 1:
visible_models1 = args_list[eval_func_param_names.index('visible_models')]
model_active_choice1 = visible_models_to_model_choice(visible_models1, model_states, api=True)
model_state1 = model_states[model_active_choice1 % len(model_states)]
for key in key_overrides:
if user_kwargs.get(key) is None and model_state1.get(key) is not None:
args_list[eval_func_param_names.index(key)] = model_state1[key]
if isinstance(model_state1, dict) and \
'tokenizer' in model_state1 and \
hasattr(model_state1['tokenizer'], 'model_max_length'):
# ensure listen to limit, with some buffer
# buffer = 50
buffer = 0
args_list[eval_func_param_names.index('max_new_tokens')] = min(
args_list[eval_func_param_names.index('max_new_tokens')],
model_state1['tokenizer'].model_max_length - buffer)
###########################################
# override overall visible_models and h2ogpt_key if have model_specific one
# NOTE: only applicable if len(model_states) > 1 at moment
# else controlled by evaluate()
if 'visible_models' in model_state1 and model_state1['visible_models'] is not None:
assert isinstance(model_state1['visible_models'], (int, str, list, tuple))
which_model = visible_models_to_model_choice(model_state1['visible_models'], model_states)
args_list[eval_func_param_names.index('visible_models')] = which_model
if 'visible_vision_models' in model_state1 and model_state1['visible_vision_models'] is not None:
assert isinstance(model_state1['visible_vision_models'], (int, str, list, tuple))
which_model = visible_models_to_model_choice(model_state1['visible_vision_models'], model_states)
args_list[eval_func_param_names.index('visible_vision_models')] = which_model
if 'h2ogpt_key' in model_state1 and model_state1['h2ogpt_key'] is not None:
# remote server key if present
# i.e. may be '' and used to override overall local key
assert isinstance(model_state1['h2ogpt_key'], str)
args_list[eval_func_param_names.index('h2ogpt_key')] = model_state1['h2ogpt_key']
###########################################
# final full bot() like input for prep_bot etc.
instruction_nochat1 = args_list[eval_func_param_names.index('instruction_nochat')] or \
args_list[eval_func_param_names.index('instruction')]
args_list[eval_func_param_names.index('instruction_nochat')] = \
args_list[eval_func_param_names.index('instruction')] = \
instruction_nochat1
history = [[instruction_nochat1, None]]
# NOTE: Set requests_state1 to None, so don't allow UI-like access, in case modify state via API
requests_state1_bot = None
args_list_bot = args_list + [model_state1, my_db_state1, selection_docs_state1, requests_state1_bot,
roles_state1] + [history]
# at this point like bot() as input
history, fun1, langchain_mode1, db1, requests_state1, \
valid_key, h2ogpt_key1, \
max_time1, stream_output1, \
chatbot_role1, speaker1, tts_language1, roles_state1, tts_speed1, langchain_action1, \
image_files_to_delete = \
prep_bot(*args_list_bot, kwargs_eval=kwargs1, plain_api=plain_api, kwargs=kwargs, verbose=verbose)
save_dict = dict()
ret = {'error': "No response", 'sources': [], 'sources_str': '', 'prompt_raw': instruction_nochat1,
'llm_answers': []}
ret_old = ''
history_str_old = ''
error_old = ''
audios = [] # in case not streaming, since audio is always streaming, need to accumulate for when yield
last_yield = None
res_dict = {}
try:
tgen0 = time.time()
for res in get_response(fun1, history, chatbot_role1, speaker1, tts_language1, roles_state1,
tts_speed1,
langchain_action1,
langchain_mode1,
kwargs=kwargs,
api=True,
verbose=verbose):
history, error, sources, sources_str, prompt_raw, llm_answers, save_dict, audio1 = res
res_dict = {}
res_dict['response'] = history[-1][1] or ''
res_dict['error'] = error
res_dict['sources'] = sources
res_dict['sources_str'] = sources_str
res_dict['prompt_raw'] = prompt_raw
res_dict['llm_answers'] = llm_answers
res_dict['save_dict'] = save_dict
res_dict['audio'] = audio1
error = res_dict.get('error', '')
sources = res_dict.get('sources', [])
save_dict = res_dict.get('save_dict', {})
# update save_dict
save_dict['error'] = error
save_dict['sources'] = sources
save_dict['valid_key'] = valid_key
save_dict['h2ogpt_key'] = h2ogpt_key1
# below works for both list and string for any reasonable string of image that's been byte encoded with b' to start or as file name
image_file_check = args_list[eval_func_param_names.index('image_file')]
save_dict['image_file_present'] = len(image_file_check) if \
isinstance(image_file_check, (str, list, tuple)) else 0
text_context_list_check = args_list[eval_func_param_names.index('text_context_list')]
save_dict['text_context_list_present'] = len(text_context_list_check) if \
isinstance(text_context_list_check, (list, tuple)) else 0
if str_api and plain_api:
save_dict['which_api'] = 'str_plain_api'
elif str_api:
save_dict['which_api'] = 'str_api'
elif plain_api:
save_dict['which_api'] = 'plain_api'
else:
save_dict['which_api'] = 'nochat_api'
if 'extra_dict' not in save_dict:
save_dict['extra_dict'] = {}
if requests_state1:
save_dict['extra_dict'].update(requests_state1)
else:
save_dict['extra_dict'].update(dict(username='NO_REQUEST'))
if is_public:
# don't want to share actual endpoints
if 'save_dict' in res_dict and isinstance(res_dict['save_dict'], dict):
res_dict['save_dict'].pop('inference_server', None)
if 'extra_dict' in res_dict['save_dict'] and isinstance(res_dict['save_dict']['extra_dict'],
dict):
res_dict['save_dict']['extra_dict'].pop('inference_server', None)
# get response
if str_api:
# full return of dict, except constant items that can be read-off at end
res_dict_yield = res_dict.copy()
# do not stream: ['save_dict', 'prompt_raw', 'sources', 'sources_str', 'response_no_refs']
only_stream = ['response', 'llm_answers', 'audio']
for key in res_dict:
if key not in only_stream:
if isinstance(res_dict[key], str):
res_dict_yield[key] = ''
elif isinstance(res_dict[key], list):
res_dict_yield[key] = []
elif isinstance(res_dict[key], dict):
res_dict_yield[key] = {}
else:
print("Unhandled pop: %s" % key)
res_dict_yield.pop(key)
ret = res_dict_yield
elif kwargs['langchain_mode'] == 'Disabled':
ret = fix_text_for_gradio(res_dict['response'], fix_latex_dollars=False,
fix_angle_brackets=False)
else:
ret = '<br>' + fix_text_for_gradio(res_dict['response'], fix_latex_dollars=False,
fix_angle_brackets=False)
do_yield = False
could_yield = ret != ret_old
if kwargs['gradio_api_use_same_stream_limits']:
history_str = str(ret['response'] if isinstance(ret, dict) else str(ret))
delta_history = abs(len(history_str) - len(str(history_str_old)))
# even if enough data, don't yield if has been less than min_seconds
enough_data = delta_history > kwargs['gradio_ui_stream_chunk_size'] or (error != error_old)
beyond_min_time = last_yield is None or \
last_yield is not None and \
(time.time() - last_yield) > kwargs['gradio_ui_stream_chunk_min_seconds']
do_yield |= enough_data and beyond_min_time
# yield even if new data not enough if been long enough and have at least something to yield
enough_time = last_yield is None or \
last_yield is not None and \
(time.time() - last_yield) > kwargs['gradio_ui_stream_chunk_seconds']
do_yield |= enough_time and could_yield
# DEBUG: print("do_yield: %s : %s %s %s" % (do_yield, enough_data, beyond_min_time, enough_time), flush=True)
else:
do_yield = could_yield
if stream_output1 and do_yield:
last_yield = time.time()
# yield as it goes, else need to wait since predict only returns first yield
if isinstance(ret, dict):
ret_old = ret.copy() # copy normal one first
from tts_utils import combine_audios
ret['audio'] = combine_audios(audios, audio=audio1, sr=24000 if chatbot_role1 else 16000,
expect_bytes=kwargs['return_as_byte'], verbose=verbose)
audios = [] # reset accumulation
yield ret
else:
ret_old = ret
yield ret
# just last response, not actually full history like bot() and all_bot() but that's all that changes
# we can ignore other dict entries as consequence of changes to main stream in 100% of current cases
# even if sources added last after full response done, final yield still yields left over
history_str_old = str(ret_old['response'] if isinstance(ret_old, dict) else str(ret_old))
else:
# collect unstreamed audios
audios.append(res_dict['audio'])
if time.time() - tgen0 > max_time1 + 10: # don't use actual, so inner has chance to complete
msg = "Took too long evaluate_nochat: %s" % (time.time() - tgen0)
if str_api:
res_dict['save_dict']['extra_dict']['timeout'] = time.time() - tgen0
res_dict['save_dict']['error'] = msg
if verbose:
print(msg, flush=True)
break
# yield if anything left over as can happen
# return back last ret
if str_api:
res_dict['save_dict']['extra_dict'] = _save_generate_tokens(res_dict.get('response', ''),
res_dict.get('save_dict', {}).get(
'extra_dict', {}))
ret = res_dict.copy()
if isinstance(ret, dict):
from tts_utils import combine_audios
ret['audio'] = combine_audios(audios, audio=None,
expect_bytes=kwargs['return_as_byte'])
yield ret
except Exception as e:
ex = traceback.format_exc()
if verbose:
print("Error in evaluate_nochat: %s" % ex, flush=True)
if str_api:
ret = {'error': str(e), 'error_ex': str(ex), 'sources': [], 'sources_str': '', 'prompt_raw': '',
'llm_answers': []}
yield ret
raise
finally:
clear_torch_cache(allow_skip=True)
db1s = my_db_state1
clear_embeddings(user_kwargs['langchain_mode'], kwargs['db_type'], db1s, kwargs['dbs'])
for image_file1 in image_files_to_delete:
if image_file1 and os.path.isfile(image_file1):
remove(image_file1)
save_dict['save_dir'] = kwargs['save_dir']
save_generate_output(**save_dict)
def visible_models_to_model_choice(visible_models1, model_states1, api=False):
if isinstance(visible_models1, list):
assert len(
visible_models1) >= 1, "Invalid visible_models1=%s, can only be single entry" % visible_models1
# just take first
model_active_choice1 = visible_models1[0]
elif isinstance(visible_models1, (str, int)):
model_active_choice1 = visible_models1
else:
assert isinstance(visible_models1, type(None)), "Invalid visible_models1=%s" % visible_models1
model_active_choice1 = visible_models1
if model_active_choice1 is not None:
if isinstance(model_active_choice1, str):
display_model_list = [x['display_name'] for x in model_states1]
if model_active_choice1 in display_model_list:
model_active_choice1 = display_model_list.index(model_active_choice1)
else:
# NOTE: Could raise, but sometimes raising in certain places fails too hard and requires UI restart
if api:
raise ValueError(
"Invalid model %s, valid models are: %s" % (model_active_choice1, display_model_list))
model_active_choice1 = 0
else:
model_active_choice1 = 0
return model_active_choice1
def clear_embeddings(langchain_mode1, db_type, db1s, dbs=None):
# clear any use of embedding that sits on GPU, else keeps accumulating GPU usage even if clear torch cache
if db_type in ['chroma', 'chroma_old'] and langchain_mode1 not in ['LLM', 'Disabled', None, '']:
from gpt_langchain import clear_embedding, length_db1
if dbs is not None:
db = dbs.get(langchain_mode1)
if db is not None and not isinstance(db, str):
clear_embedding(db)
if db1s is not None and langchain_mode1 in db1s:
db1 = db1s[langchain_mode1]
if len(db1) == length_db1():
clear_embedding(db1[0])
def fix_text_for_gradio(text, fix_new_lines=False, fix_latex_dollars=True, fix_angle_brackets=True):
if isinstance(text, tuple):
# images, audio, etc.
return text
if not isinstance(text, str):
# e.g. list for extraction
text = str(text)
if fix_latex_dollars:
ts = text.split('```')
for parti, part in enumerate(ts):
inside = parti % 2 == 1
if not inside:
ts[parti] = ts[parti].replace('$', '﹩')
text = '```'.join(ts)
if fix_new_lines:
# let Gradio handle code, since got improved recently
## FIXME: below conflicts with Gradio, but need to see if can handle multiple \n\n\n etc. properly as is.
# ensure good visually, else markdown ignores multiple \n
# handle code blocks
ts = text.split('```')
for parti, part in enumerate(ts):
inside = parti % 2 == 1
if not inside:
ts[parti] = ts[parti].replace('\n', '<br>')
text = '```'.join(ts)
if fix_angle_brackets:
# handle code blocks
ts = text.split('```')
for parti, part in enumerate(ts):
inside = parti % 2 == 1
if not inside:
if '<a href' not in ts[parti] and \
'<img src=' not in ts[parti] and \
'<div ' not in ts[parti] and \
'</div>' not in ts[parti] and \
'<details><summary>' not in ts[parti]:
# try to avoid html best one can
ts[parti] = ts[parti].replace('<', '\<').replace('>', '\>')
text = '```'.join(ts)
return text
def get_images_num_max(model_choice, fun_args, visible_vision_models, do_batching, cli_images_num_max):
images_num_max1 = None
if cli_images_num_max is not None:
images_num_max1 = cli_images_num_max
if model_choice['images_num_max'] is not None:
images_num_max1 = model_choice['images_num_max']
images_num_max_api = fun_args[len(input_args_list) + eval_func_param_names.index('images_num_max')]
if images_num_max_api is not None:
images_num_max1 = images_num_max_api
if isinstance(images_num_max1, float):
images_num_max1 = int(images_num_max1)
if model_choice['images_num_max'] is not None:
images_num_max1 = model_choice['images_num_max']
if images_num_max1 is None:
images_num_max1 = images_num_max_dict.get(visible_vision_models)
if images_num_max1 == -1:
# treat as if didn't set, but we will just change behavior
do_batching = True
images_num_max1 = None
elif images_num_max1 is not None and images_num_max1 < -1:
# super expert control over auto-batching
do_batching = True
images_num_max1 = -images_num_max1 - 1
# may be None now, set from model-specific model_lock or dict as final choice
if images_num_max1 is None or images_num_max1 <= -1:
images_num_max1 = model_choice.get('images_num_max', images_num_max1)
if images_num_max1 is None or images_num_max1 <= -1:
# in case not coming from api
if model_choice.get('is_actually_vision_model'):
images_num_max1 = images_num_max_dict.get(visible_vision_models, 1)
if images_num_max1 == -1:
# mean never set actual value, revert to 1
images_num_max1 = 1
else:
images_num_max1 = images_num_max_dict.get(visible_vision_models, 0)
if images_num_max1 == -1:
# mean never set actual value, revert to 0
images_num_max1 = 0
if images_num_max1 < -1:
images_num_max1 = -images_num_max1 - 1
do_batching = True
assert images_num_max1 != -1, "Should not be -1 here"
if images_num_max1 is None:
# no target, so just default of no vision
images_num_max1 = 0
return images_num_max1, do_batching
def get_response(fun1, history, chatbot_role1, speaker1, tts_language1, roles_state1, tts_speed1,
langchain_action1, langchain_mode1, kwargs={}, api=False, verbose=False):
if fun1 is None:
yield from _get_response(fun1, history, chatbot_role1, speaker1, tts_language1, roles_state1, tts_speed1,
langchain_action1, kwargs=kwargs, api=api, verbose=verbose)
return
image_files = fun1.args[len(input_args_list) + eval_func_param_names.index('image_file')]
if image_files is None:
image_files = []
else:
image_files = image_files.copy()
import pyexiv2
meta_data_images = []
for image_files1 in image_files:
try:
with pyexiv2.Image(image_files1) as img:
metadata = img.read_exif()
except RuntimeError as e:
if 'unknown image type' in str(e):
metadata = {}
else:
raise
if metadata is None:
metadata = {}
meta_data_images.append(metadata)
fun1_args_list = list(fun1.args)
chosen_model_state = fun1.args[input_args_list.index('model_state')]
base_model = chosen_model_state.get('base_model')
display_name = chosen_model_state.get('display_name')
visible_vision_models = ''
if kwargs['visible_vision_models']:
# if in UI, 'auto' is default, but CLI has another default, so use that if set
visible_vision_models = kwargs['visible_vision_models']
if chosen_model_state['is_actually_vision_model']:
visible_vision_models = chosen_model_state['display_name']
# by here these are just single names, not integers or list
# args_list is not just from API, but also uses default_kwargs from CLI if not None but user_args is None or ''
visible_vision_models1 = fun1_args_list[len(input_args_list) + eval_func_param_names.index('visible_vision_models')]
if visible_vision_models1:
if isinstance(visible_vision_models1, list):
visible_vision_models1 = visible_vision_models1[0]
if visible_vision_models1 != 'auto' and visible_vision_models1 in kwargs['all_possible_vision_display_names']:
# e.g. CLI might have had InternVL but model lock only Haiku, filter that out here
visible_vision_models = visible_vision_models1
if not visible_vision_models:
visible_vision_models = ''
if isinstance(visible_vision_models, list):
visible_vision_models = visible_vision_models[0]
force_batching = False
images_num_max, force_batching = get_images_num_max(chosen_model_state, fun1.args, visible_vision_models,
force_batching, kwargs['images_num_max'])
do_batching = force_batching or len(image_files) > images_num_max or \
visible_vision_models != display_name and \
display_name not in kwargs['all_possible_vision_display_names']
do_batching &= visible_vision_models != ''
do_batching &= len(image_files) > 0
# choose batching model
if do_batching and visible_vision_models:
model_states1 = kwargs['model_states']
model_batch_choice1 = visible_models_to_model_choice(visible_vision_models, model_states1, api=api)
model_batch_choice = model_states1[model_batch_choice1 % len(model_states1)]
images_num_max_batch, do_batching = get_images_num_max(model_batch_choice, fun1.args, visible_vision_models,
do_batching, kwargs['images_num_max'])
else:
model_batch_choice = None
images_num_max_batch = images_num_max
batch_display_name = model_batch_choice.get('display_name') if model_batch_choice is not None else display_name
do_batching &= images_num_max_batch not in [0, None] # not 0 or None, maybe some unknown model, don't do batching
if not do_batching:
yield from _get_response(fun1, history, chatbot_role1, speaker1, tts_language1, roles_state1, tts_speed1,
langchain_action1, kwargs=kwargs, api=api, verbose=verbose)
return
else:
instruction = fun1_args_list[len(input_args_list) + eval_func_param_names.index('instruction')]
instruction_nochat = fun1_args_list[len(input_args_list) + eval_func_param_names.index('instruction_nochat')]
instruction = instruction or instruction_nochat or ""
prompt_summary = fun1_args_list[len(input_args_list) + eval_func_param_names.index('prompt_summary')]
if prompt_summary is None:
prompt_summary = kwargs['prompt_summary'] or ''
image_batch_image_prompt = fun1_args_list[len(input_args_list) + eval_func_param_names.index(
'image_batch_image_prompt')] or kwargs['image_batch_image_prompt'] or image_batch_image_prompt0
image_batch_final_prompt = fun1_args_list[len(input_args_list) + eval_func_param_names.index(
'image_batch_final_prompt')] or kwargs['image_batch_final_prompt'] or image_batch_final_prompt0
# inject system prompt late, since if early then might not listen to it and generally high priority instructions
system_prompt = fun1_args_list[len(input_args_list) + eval_func_param_names.index('system_prompt')]
if system_prompt not in [None, 'None', 'auto']:
system_prompt_xml = f"""\n<system_prompt>\n{system_prompt}\n</system_prompt>\n""" if system_prompt else ''
else:
system_prompt_xml = ''
if langchain_action1 == LangChainAction.QUERY.value:
instruction_batch = image_batch_image_prompt + system_prompt_xml + instruction
instruction_final = image_batch_final_prompt + system_prompt_xml + instruction
prompt_summary_batch = prompt_summary
prompt_summary_final = prompt_summary
elif langchain_action1 == LangChainAction.SUMMARIZE_MAP.value:
instruction_batch = instruction
instruction_final = instruction
prompt_summary_batch = image_batch_image_prompt + system_prompt_xml + prompt_summary
prompt_summary_final = image_batch_final_prompt + system_prompt_xml + prompt_summary
else:
instruction_batch = instruction
instruction_final = instruction
prompt_summary_batch = prompt_summary
prompt_summary_final = prompt_summary
batch_output_tokens = 0
batch_time = 0
batch_input_tokens = 0
batch_tokenspersec = 0
batch_results = []
text_context_list = fun1_args_list[len(input_args_list) + eval_func_param_names.index('text_context_list')]
text_context_list = str_to_list(text_context_list)
text_context_list_copy = copy.deepcopy(text_context_list)
# copy before mutating it
fun1_args_list_copy = fun1_args_list.copy()
# sync all args with model
for k, v in model_batch_choice.items():
if k in eval_func_param_names and k in in_model_state_and_evaluate and v is not None:
fun1_args_list_copy[len(input_args_list) + eval_func_param_names.index(k)] = v
for batch in range(0, len(image_files), images_num_max_batch):
fun1_args_list2 = fun1_args_list_copy.copy()
# then handle images in batches
images_batch = image_files[batch:batch + images_num_max_batch]
fun1_args_list2[len(input_args_list) + eval_func_param_names.index('image_file')] = images_batch
# disable batching if gradio to gradio, back to auto based upon batch size we sent
# Can't pass None, default_kwargs will override, so pass actual value instead
fun1_args_list2[len(input_args_list) + eval_func_param_names.index('images_num_max')] = len(images_batch)
batch_size = len(fun1_args_list2[len(input_args_list) + eval_func_param_names.index('image_file')])
fun1_args_list2[len(input_args_list) + eval_func_param_names.index('instruction')] = instruction_batch
fun1_args_list2[len(input_args_list) + eval_func_param_names.index('prompt_summary')] = prompt_summary_batch
# unlikely extended image description possible or required
if batch_display_name in images_limit_max_new_tokens_list:
max_new_tokens = fun1_args_list2[len(input_args_list) + eval_func_param_names.index('max_new_tokens')]
fun1_args_list2[len(input_args_list) + eval_func_param_names.index('max_new_tokens')] = min(
images_limit_max_new_tokens, max_new_tokens)
# don't include context list, just do image only
fun1_args_list2[len(input_args_list) + eval_func_param_names.index('text_context_list')] = []
# intermediate vision results for batching nominally should be normal, let final model do json or others
fun1_args_list2[len(input_args_list) + eval_func_param_names.index('response_format')] = 'text'
fun1_args_list2[len(input_args_list) + eval_func_param_names.index('guided_json')] = None
fun1_args_list2[len(input_args_list) + eval_func_param_names.index('guided_regex')] = None
fun1_args_list2[len(input_args_list) + eval_func_param_names.index('guided_grammar')] = None
fun1_args_list2[len(input_args_list) + eval_func_param_names.index('guided_choice')] = None
# no docs from DB, just image. Don't switch langchain_mode.
fun1_args_list2[
len(input_args_list) + eval_func_param_names.index('document_subset')] = []
fun1_args_list2[len(input_args_list) + eval_func_param_names.index('text_context_list')] = []
# don't cause batching inside
fun1_args_list2[
len(input_args_list) + eval_func_param_names.index('visible_vision_models')] = visible_vision_models
if model_batch_choice:
# override for batch model
fun1_args_list2[0] = model_batch_choice
fun1_args_list2[
len(input_args_list) + eval_func_param_names.index('visible_models')] = visible_vision_models
history1 = deepcopy_by_pickle_object(history) # FIXME: is this ok? What if byte images?
if not history1:
history1 = [['', '']]
history1[-1][0] = instruction_batch
fun1_args_list2[len(input_args_list) + eval_func_param_names.index('chat_conversation')] = history1
# but don't change what user sees for instruction
history1 = deepcopy_by_pickle_object(history)
history2 = deepcopy_by_pickle_object(history)
fun2 = functools.partial(fun1.func, *tuple(fun1_args_list2), **fun1.keywords)
text = ''
prompt_raw_saved = ''
save_dict1_saved = {}
error_saved = ''
history_saved = []
sources_saved = []
sources_str_saved = ''
llm_answers_saved = {}
image_batch_stream = fun1_args_list2[
len(input_args_list) + eval_func_param_names.index('image_batch_stream')]
if image_batch_stream is None:
image_batch_stream = kwargs['image_batch_stream']
if not image_batch_stream and not api:
if not history2:
history2 = [['', '']]
if len(image_files) > images_num_max_batch:
history2[-1][1] = '<b>%s querying image %s/%s<b>' % (
visible_vision_models, 1 + batch, 1 + len(image_files))
else:
history2[-1][1] = '<b>%s querying image(s)<b>' % visible_vision_models
audio3 = b'' # don't yield audio if not streaming batches
yield history2, '', [], '', '', [], {}, audio3
t0_batch = time.time()
for response in _get_response(fun2, history1, chatbot_role1, speaker1, tts_language1, roles_state1,
tts_speed1,
langchain_action1,
kwargs=kwargs, api=api, verbose=verbose):
if image_batch_stream:
yield response
history1, error1, sources1, sources_str1, prompt_raw1, llm_answers1, save_dict1, audio2 = response
prompt_raw_saved = prompt_raw1
save_dict1_saved = save_dict1
error_saved = error1
history_saved = history1
sources_saved = sources1
sources_str_saved = sources_str1
llm_answers_saved = llm_answers1
text = history1[-1][1] or '' if history1 else ''
batch_input_tokens += save_dict1_saved['extra_dict'].get('num_prompt_tokens', 0)
save_dict1_saved['extra_dict'] = _save_generate_tokens(text, save_dict1_saved['extra_dict'])
ntokens1 = save_dict1_saved['extra_dict'].get('ntokens', 0)
batch_output_tokens += ntokens1
batch_time += (time.time() - t0_batch)
tokens_per_sec1 = save_dict1_saved['extra_dict'].get('tokens_persecond', 0)
batch_tokenspersec += tokens_per_sec1
meta_data = ''
for meta_data_image in meta_data_images[batch:batch + images_num_max_batch]:
if not meta_data_image:
continue
meta_data += '\n'.join(
[f"""<{key}><{value}</{key}>\n""" for key, value in meta_data_image.items()]).strip() + '\n'
response_final = f'<images>\n<batch_name>\nImage {batch}\n</batch_name>\n{meta_data}\n\n{text}\n\n</images>'
batch_results.append(dict(image_ids=list(range(batch, batch + images_num_max_batch)),
response=text,
response_final=response_final,
prompt_raw=prompt_raw_saved,
save_dict=save_dict1_saved,
error=error_saved,
history=history_saved,
sources=sources_saved,
sources_str=sources_str_saved,
llm_answers=llm_answers_saved,
))
# last response with no images
responses = [x['response_final'] for x in batch_results]
batch_tokens_persecond = batch_output_tokens / batch_time if batch_time > 0 else 0
history1 = deepcopy_by_pickle_object(history) # FIXME: is this ok? What if byte images?
fun1_args_list2 = fun1_args_list.copy()
# sync all args with model
for k, v in chosen_model_state.items():
if k in eval_func_param_names and k in in_model_state_and_evaluate and v is not None:
fun1_args_list2[len(input_args_list) + eval_func_param_names.index(k)] = v
fun1_args_list2[len(input_args_list) + eval_func_param_names.index('image_file')] = []
if not history1:
history1 = [['', '']]
history1[-1][0] = fun1_args_list2[
len(input_args_list) + eval_func_param_names.index('instruction')] = instruction_final
fun1_args_list2[len(input_args_list) + eval_func_param_names.index('chat_conversation')] = history1
# but don't change what user sees for instruction
history1 = deepcopy_by_pickle_object(history)
fun1_args_list2[len(input_args_list) + eval_func_param_names.index('prompt_summary')] = prompt_summary_final
if langchain_action1 == LangChainAction.QUERY.value:
instruction = fun1_args_list2[len(input_args_list) + eval_func_param_names.index('instruction')]
if langchain_mode1 == LangChainMode.LLM.value and instruction:
# pre-append to context directly
fun1_args_list2[
len(input_args_list) + eval_func_param_names.index('instruction')] = '\n\n'.join(
responses) + instruction
else:
# pre-append to ensure images used, since first is highest priority for text_context_list
fun1_args_list2[len(input_args_list) + eval_func_param_names.index(
'text_context_list')] = responses + text_context_list_copy
else:
# for summary/extract, put at end, so if part of single call similar to Query in order for best_near_prompt
fun1_args_list2[len(input_args_list) + eval_func_param_names.index(
'text_context_list')] = text_context_list_copy + responses
fun2 = functools.partial(fun1.func, *tuple(fun1_args_list2), **fun1.keywords)
for response in _get_response(fun2, history1, chatbot_role1, speaker1, tts_language1, roles_state1,
tts_speed1, langchain_action1, kwargs=kwargs, api=api, verbose=verbose):
response_list = list(response)
save_dict1 = response_list[6]
if 'extra_dict' in save_dict1:
if 'num_prompt_tokens' in save_dict1['extra_dict']:
save_dict1['extra_dict']['batch_vision_visible_model'] = batch_display_name
save_dict1['extra_dict']['batch_num_prompt_tokens'] = batch_input_tokens
save_dict1['extra_dict']['batch_ntokens'] = batch_output_tokens
save_dict1['extra_dict']['batch_tokens_persecond'] = batch_tokens_persecond
if batch_display_name == display_name:
save_dict1['extra_dict']['num_prompt_tokens'] += batch_input_tokens
# get ntokens so can add to it
history1new = response_list[0]
if history1new and len(history1new) > 0 and len(history1new[0]) == 2 and history1new[-1][1]:
save_dict1['extra_dict'] = _save_generate_tokens(history1new[-1][1],
save_dict1['extra_dict'])
save_dict1['extra_dict']['ntokens'] += batch_output_tokens
save_dict1['extra_dict']['batch_results'] = batch_results
response_list[6] = save_dict1
yield tuple(response_list)
return
def _get_response(fun1, history, chatbot_role1, speaker1, tts_language1, roles_state1, tts_speed1,
langchain_action1, kwargs={}, api=False, verbose=False):
"""
bot that consumes history for user input
instruction (from input_list) itself is not consumed by bot
:return:
"""
error = ''
sources = []
save_dict = dict()
output_no_refs = ''
sources_str = ''
prompt_raw = ''
llm_answers = {}
audio0, audio1, no_audio, generate_speech_func_func = \
prepare_audio(chatbot_role1, speaker1, tts_language1, roles_state1, tts_speed1, langchain_action1,
kwargs=kwargs, verbose=verbose)
if not fun1:
yield history, error, sources, sources_str, prompt_raw, llm_answers, save_dict, audio1
return
try:
for output_fun in fun1():
output = output_fun['response']
output_no_refs = output_fun['response_no_refs']
sources = output_fun['sources'] # FIXME: can show sources in separate text box etc.
sources_iter = [] # don't yield full prompt_raw every iteration, just at end
sources_str = output_fun['sources_str']
sources_str_iter = '' # don't yield full prompt_raw every iteration, just at end
prompt_raw = output_fun['prompt_raw']
prompt_raw_iter = '' # don't yield full prompt_raw every iteration, just at end
llm_answers = output_fun['llm_answers']
save_dict = output_fun.get('save_dict', {})
save_dict_iter = {}
# ensure good visually, else markdown ignores multiple \n
bot_message = fix_text_for_gradio(output, fix_latex_dollars=not api, fix_angle_brackets=not api)
history[-1][1] = bot_message
if generate_speech_func_func is not None:
while True:
audio1, sentence, sentence_state = generate_speech_func_func(output_no_refs, is_final=False)
if audio0 is not None:
yield history, error, sources_iter, sources_str_iter, prompt_raw_iter, llm_answers, save_dict_iter, audio0
audio0 = None
yield history, error, sources_iter, sources_str_iter, prompt_raw_iter, llm_answers, save_dict_iter, audio1
if not sentence:
# while True to handle case when streaming is fast enough that see multiple sentences in single go
break
else:
yield history, error, sources_iter, sources_str_iter, prompt_raw_iter, llm_answers, save_dict_iter, audio0
if generate_speech_func_func:
# print("final %s %s" % (history[-1][1] is None, audio1 is None), flush=True)
audio1, sentence, sentence_state = generate_speech_func_func(output_no_refs, is_final=True)
if audio0 is not None:
yield history, error, sources, sources_str, prompt_raw, llm_answers, save_dict, audio0
else:
audio1 = None
# print("final2 %s %s" % (history[-1][1] is None, audio1 is None), flush=True)
yield history, error, sources, sources_str, prompt_raw, llm_answers, save_dict, audio1
except StopIteration:
# print("STOP ITERATION", flush=True)
yield history, error, sources, sources_str, prompt_raw, llm_answers, save_dict, no_audio
raise
except RuntimeError as e:
if "generator raised StopIteration" in str(e):
# assume last entry was bad, undo
history.pop()
yield history, error, sources, sources_str, prompt_raw, llm_answers, save_dict, no_audio
else:
if history and len(history) > 0 and len(history[0]) > 1 and history[-1][1] is None:
history[-1][1] = ''
yield history, str(e), sources, sources_str, prompt_raw, llm_answers, save_dict, no_audio
raise
except Exception as e:
# put error into user input
ex = "Exception: %s" % str(e)
if history and len(history) > 0 and len(history[0]) > 1 and history[-1][1] is None:
history[-1][1] = ''
yield history, ex, sources, sources_str, prompt_raw, llm_answers, save_dict, no_audio
raise
finally:
# clear_torch_cache()
# don't clear torch cache here, too early and stalls generation if used for all_bot()
pass
return
def prepare_audio(chatbot_role1, speaker1, tts_language1, roles_state1, tts_speed1, langchain_action1, kwargs={},
verbose=False):
assert kwargs
from tts_sentence_parsing import init_sentence_state
sentence_state = init_sentence_state()
if langchain_action1 in [LangChainAction.EXTRACT.value]:
# don't do audio for extraction in any case
generate_speech_func_func = None
audio0 = None
audio1 = None
no_audio = None
elif kwargs['tts_model'].startswith('microsoft') and speaker1 not in [None, "None"]:
audio1 = None
from tts import get_speaker_embedding
speaker_embedding = get_speaker_embedding(speaker1, kwargs['model_tts'].device)
# audio0 = 16000, np.array([]).astype(np.int16)
from tts_utils import prepare_speech, get_no_audio
sr = 16000
audio0 = prepare_speech(sr=sr)
no_audio = get_no_audio(sr=sr)
generate_speech_func_func = functools.partial(kwargs['generate_speech_func'],
speaker=speaker1,
speaker_embedding=speaker_embedding,
sentence_state=sentence_state,
return_as_byte=kwargs['return_as_byte'],
sr=sr,
tts_speed=tts_speed1,
verbose=verbose)
elif kwargs['tts_model'].startswith('tts_models/') and chatbot_role1 not in [None, "None"]:
audio1 = None
from tts_utils import prepare_speech, get_no_audio
from tts_coqui import get_latent
sr = 24000
audio0 = prepare_speech(sr=sr)
no_audio = get_no_audio(sr=sr)
latent = get_latent(roles_state1[chatbot_role1], model=kwargs['model_xtt'])
generate_speech_func_func = functools.partial(kwargs['generate_speech_func'],
latent=latent,
language=tts_language1,
sentence_state=sentence_state,
return_as_byte=kwargs['return_as_byte'],
sr=sr,
tts_speed=tts_speed1,
verbose=verbose)
else:
generate_speech_func_func = None
audio0 = None
audio1 = None
no_audio = None
return audio0, audio1, no_audio, generate_speech_func_func
def prep_bot(*args, retry=False, which_model=0, kwargs_eval={}, plain_api=False, kwargs={}, verbose=False):
"""
:param args:
:param retry:
:param which_model: identifies which model if doing model_lock
API only called for which_model=0, default for inputs_list, but rest should ignore inputs_list
:return: last element is True if should run bot, False if should just yield history
"""
assert kwargs
isize = len(input_args_list) + 1 # states + chat history
# don't deepcopy, can contain model itself
# NOTE: Update plain_api in evaluate_nochat too
args_list = list(args).copy()
model_state1 = args_list[-isize]
my_db_state1 = args_list[-isize + 1]
selection_docs_state1 = args_list[-isize + 2]
requests_state1 = args_list[-isize + 3]
roles_state1 = args_list[-isize + 4]
history = args_list[-1]
if not history:
history = []
# NOTE: For these, could check if None, then automatically use CLI values, but too complex behavior
prompt_type1 = args_list[eval_func_param_names.index('prompt_type')]
if prompt_type1 == no_model_str:
# deal with gradio dropdown
prompt_type1 = args_list[eval_func_param_names.index('prompt_type')] = None
prompt_dict1 = args_list[eval_func_param_names.index('prompt_dict')]
max_time1 = args_list[eval_func_param_names.index('max_time')]
stream_output1 = args_list[eval_func_param_names.index('stream_output')]
langchain_mode1 = args_list[eval_func_param_names.index('langchain_mode')]
langchain_action1 = args_list[eval_func_param_names.index('langchain_action')]
document_subset1 = args_list[eval_func_param_names.index('document_subset')]
h2ogpt_key1 = args_list[eval_func_param_names.index('h2ogpt_key')]
chat_conversation1 = args_list[eval_func_param_names.index('chat_conversation')]
valid_key = is_valid_key(kwargs['enforce_h2ogpt_api_key'],
kwargs['enforce_h2ogpt_ui_key'],
kwargs['h2ogpt_api_keys'], h2ogpt_key1,
requests_state1=requests_state1)
chatbot_role1 = args_list[eval_func_param_names.index('chatbot_role')]
speaker1 = args_list[eval_func_param_names.index('speaker')]
tts_language1 = args_list[eval_func_param_names.index('tts_language')]
tts_speed1 = args_list[eval_func_param_names.index('tts_speed')]
dummy_return = history, None, langchain_mode1, my_db_state1, requests_state1, \
valid_key, h2ogpt_key1, \
max_time1, stream_output1, chatbot_role1, speaker1, tts_language1, roles_state1, tts_speed1, \
langchain_action1, []
if not plain_api and (model_state1['model'] is None or model_state1['model'] == no_model_str):
# plain_api has no state, let evaluate() handle switch
return dummy_return
args_list = args_list[:-isize] # only keep rest needed for evaluate()
if not history:
if verbose:
print("No history", flush=True)
return dummy_return
instruction1 = history[-1][0]
if retry and history:
# if retry, pop history and move onto bot stuff
history = get_llm_history(history)
instruction1 = history[-1][0] if history and history[-1] and len(history[-1]) == 2 else None
if history and history[-1]:
history[-1][1] = None
if not instruction1:
return dummy_return
elif not instruction1:
if not allow_empty_instruction(langchain_mode1, document_subset1, langchain_action1):
# if not retrying, then reject empty query
return dummy_return
elif len(history) > 0 and history[-1][1] not in [None, '']:
# reject submit button if already filled and not retrying
# None when not filling with '' to keep client happy
return dummy_return
from gen import evaluate, evaluate_fake
evaluate_local = evaluate if valid_key else functools.partial(evaluate_fake, langchain_action=langchain_action1)
# shouldn't have to specify in API prompt_type if CLI launched model, so prefer global CLI one if have it
prompt_type1, prompt_dict1 = update_prompt(prompt_type1, prompt_dict1, model_state1,
which_model=which_model, **kwargs)
# apply back to args_list for evaluate()
args_list[eval_func_param_names.index('prompt_type')] = prompt_type1
args_list[eval_func_param_names.index('prompt_dict')] = prompt_dict1
context1 = args_list[eval_func_param_names.index('context')]
chat_conversation1 = merge_chat_conversation_history(chat_conversation1, history)
args_list[eval_func_param_names.index('chat_conversation')] = chat_conversation1
if 'visible_models' in model_state1 and model_state1['visible_models'] is not None:
assert isinstance(model_state1['visible_models'], (int, str))
args_list[eval_func_param_names.index('visible_models')] = model_state1['visible_models']
if 'visible_vision_models' in model_state1 and model_state1['visible_vision_models'] is not None:
assert isinstance(model_state1['visible_vision_models'], (int, str))
args_list[eval_func_param_names.index('visible_vision_models')] = model_state1['visible_vision_models']
if 'h2ogpt_key' in model_state1 and model_state1['h2ogpt_key'] is not None:
# i.e. may be '' and used to override overall local key
assert isinstance(model_state1['h2ogpt_key'], str)
args_list[eval_func_param_names.index('h2ogpt_key')] = model_state1['h2ogpt_key']
elif not args_list[eval_func_param_names.index('h2ogpt_key')]:
# now that checked if key was valid or not, now can inject default key in case gradio inference server
# only do if key not already set by user
args_list[eval_func_param_names.index('h2ogpt_key')] = kwargs['h2ogpt_key']
###########################################
# deal with image files
image_files = args_list[eval_func_param_names.index('image_file')]
if isinstance(image_files, str):
image_files = [image_files]
if image_files is None:
image_files = []
video_files = args_list[eval_func_param_names.index('video_file')]
if isinstance(video_files, str):
video_files = [video_files]
if video_files is None:
video_files = []
# NOTE: Once done with gradio, image_file and video_file are all in same list
image_files.extend(video_files)
image_files_to_delete = []
b2imgs = []
for img_file_one in image_files:
str_type = check_input_type(img_file_one)
if str_type == 'unknown':
continue
img_file_path = os.path.join(tempfile.gettempdir(), 'image_file_%s' % str(uuid.uuid4()))
if str_type == 'url':
img_file_one = download_image(img_file_one, img_file_path)
# only delete if was made by us
image_files_to_delete.append(img_file_one)
elif str_type == 'base64':
from vision.utils_vision import base64_to_img
img_file_one = base64_to_img(img_file_one, img_file_path)
# only delete if was made by us
image_files_to_delete.append(img_file_one)
else:
# str_type='file' or 'youtube' or video (can be cached)
pass
if img_file_one is not None:
b2imgs.append(img_file_one)
# always just make list
args_list[eval_func_param_names.index('image_file')] = b2imgs
###########################################
# deal with videos in image list
images_file_path = os.path.join(tempfile.gettempdir(), 'image_path_%s' % str(uuid.uuid4()))
# don't try to convert resolution here, do later as images
image_files = args_list[eval_func_param_names.index('image_file')]
image_resolution = args_list[eval_func_param_names.index('image_resolution')]
image_format = args_list[eval_func_param_names.index('image_format')]
video_frame_period = args_list[eval_func_param_names.index('video_frame_period')]
if video_frame_period is not None:
video_frame_period = int(video_frame_period)
extract_frames = args_list[eval_func_param_names.index('extract_frames')] or kwargs.get('extract_frames', 20)
rotate_align_resize_image = args_list[eval_func_param_names.index('rotate_align_resize_image')] or kwargs.get(
'rotate_align_resize_image', True)
process_args = (image_files, images_file_path)
process_kwargs = dict(resolution=image_resolution,
image_format=image_format,
rotate_align_resize_image=rotate_align_resize_image,
video_frame_period=video_frame_period,
extract_frames=extract_frames,
verbose=verbose)
if image_files and kwargs['function_server']:
from function_client import call_function_server
image_files = call_function_server('0.0.0.0', kwargs['function_server_port'], 'process_file_list',
process_args, process_kwargs,
use_disk=True, use_pickle=True,
function_api_key=kwargs['function_api_key'],
verbose=verbose)
else:
image_files = process_file_list(*process_args, **process_kwargs)
args_list[eval_func_param_names.index('image_file')] = image_files
###########################################
# override original instruction with history from user
args_list[0] = instruction1
args_list[2] = context1
###########################################
# allow override of expert/user input for other parameters
for k in eval_func_param_names:
if k in in_model_state_and_evaluate:
# already handled
continue
if k in model_state1 and model_state1[k] is not None:
args_list[eval_func_param_names.index(k)] = model_state1[k]
eval_args = (model_state1, my_db_state1, selection_docs_state1, requests_state1, roles_state1)
assert len(eval_args) == len(input_args_list)
fun1 = functools.partial(evaluate_local, *eval_args, *tuple(args_list), **kwargs_eval)
return history, fun1, langchain_mode1, my_db_state1, requests_state1, \
valid_key, h2ogpt_key1, \
max_time1, stream_output1, \
chatbot_role1, speaker1, tts_language1, roles_state1, tts_speed1, \
langchain_action1, image_files_to_delete
def choose_exc(x, is_public=True):
# don't expose ports etc. to exceptions window
if is_public:
return x #"Endpoint unavailable or failed"
else:
return x
def bot(*args, retry=False, kwargs_evaluate={}, kwargs={}, db_type=None, dbs=None, verbose=False):
history, fun1, langchain_mode1, db1, requests_state1, \
valid_key, h2ogpt_key1, \
max_time1, stream_output1, \
chatbot_role1, speaker1, tts_language1, roles_state1, tts_speed1, \
image_files_to_delete, \
langchain_action1 = prep_bot(*args, retry=retry, kwargs_eval=kwargs_evaluate, kwargs=kwargs, verbose=verbose)
save_dict = dict()
error = ''
error_with_str = ''
sources = []
history_str_old = ''
error_old = ''
sources_str = None
from tts_utils import get_no_audio
no_audio = get_no_audio()
audios = [] # in case not streaming, since audio is always streaming, need to accumulate for when yield
last_yield = None
try:
tgen0 = time.time()
for res in get_response(fun1, history, chatbot_role1, speaker1, tts_language1, roles_state1,
tts_speed1,
langchain_action1,
langchain_mode1,
kwargs=kwargs,
api=False,
verbose=verbose,
):
do_yield = False
history, error, sources, sources_str, prompt_raw, llm_answers, save_dict, audio1 = res
error_with_str = get_accordion_named(choose_exc(error), "Generate Error",
font_size=2) if error not in ['', None, 'None'] else ''
# pass back to gradio only these, rest are consumed in this function
history_str = str(history)
could_yield = (
history_str != history_str_old or
error != error_old and
(error not in noneset or
error_old not in noneset))
if kwargs['gradio_ui_stream_chunk_size'] <= 0:
do_yield |= could_yield
else:
delta_history = abs(len(history_str) - len(history_str_old))
# even if enough data, don't yield if has been less than min_seconds
enough_data = delta_history > kwargs['gradio_ui_stream_chunk_size'] or (error != error_old)
beyond_min_time = last_yield is None or \
last_yield is not None and \
(time.time() - last_yield) > kwargs['gradio_ui_stream_chunk_min_seconds']
do_yield |= enough_data and beyond_min_time
# yield even if new data not enough if been long enough and have at least something to yield
enough_time = last_yield is None or \
last_yield is not None and \
(time.time() - last_yield) > kwargs['gradio_ui_stream_chunk_seconds']
do_yield |= enough_time and could_yield
# DEBUG: print("do_yield: %s : %s %s %s %s" % (do_yield, delta_history, enough_data, beyond_min_time, enough_time), flush=True)
if stream_output1 and do_yield:
audio1 = combine_audios(audios, audio=audio1, sr=24000 if chatbot_role1 else 16000,
expect_bytes=kwargs['return_as_byte'], verbose=verbose)
audios = [] # reset accumulation
yield history, error, audio1
history_str_old = history_str
error_old = error
last_yield = time.time()
else:
audios.append(audio1)
if time.time() - tgen0 > max_time1 + 10: # don't use actual, so inner has chance to complete
if verbose:
print("Took too long bot: %s" % (time.time() - tgen0), flush=True)
break
# yield if anything left over
final_audio = combine_audios(audios, audio=no_audio,
expect_bytes=kwargs['return_as_byte'], verbose=verbose)
if error_with_str:
if history and history[-1] and len(history[-1]) == 2 and error_with_str:
if not history[-1][1]:
history[-1][1] = error_with_str
else:
# separate bot if already text present
history.append((None, error_with_str))
if kwargs['append_sources_to_chat'] and sources_str:
history.append((None, sources_str))
yield history, error, final_audio
except BaseException as e:
print("evaluate_nochat exception: %s: %s" % (str(e), str(args)), flush=True)
raise
finally:
clear_torch_cache(allow_skip=True)
clear_embeddings(langchain_mode1, db_type, db1, dbs)
for image_file1 in image_files_to_delete:
if os.path.isfile(image_file1):
remove(image_file1)
# save
if 'extra_dict' not in save_dict:
save_dict['extra_dict'] = {}
save_dict['valid_key'] = valid_key
save_dict['h2ogpt_key'] = h2ogpt_key1
if requests_state1:
save_dict['extra_dict'].update(requests_state1)
else:
save_dict['extra_dict'].update(dict(username='NO_REQUEST'))
save_dict['error'] = error
save_dict['sources'] = sources
save_dict['which_api'] = 'bot'
save_dict['save_dir'] = kwargs['save_dir']
save_generate_output(**save_dict)
def is_from_ui(requests_state1):
return isinstance(requests_state1, dict) and 'username' in requests_state1 and requests_state1['username']
def is_valid_key(enforce_h2ogpt_api_key, enforce_h2ogpt_ui_key, h2ogpt_api_keys, h2ogpt_key1, requests_state1=None):
from_ui = is_from_ui(requests_state1)
if from_ui and not enforce_h2ogpt_ui_key:
# no token barrier
return 'not enforced'
elif not from_ui and not enforce_h2ogpt_api_key:
# no token barrier
return 'not enforced'
else:
valid_key = False
if isinstance(h2ogpt_api_keys, list) and h2ogpt_key1 in h2ogpt_api_keys:
# passed token barrier
valid_key = True
elif isinstance(h2ogpt_api_keys, str) and os.path.isfile(h2ogpt_api_keys):
with filelock.FileLock(h2ogpt_api_keys + '.lock'):
with open(h2ogpt_api_keys, 'rt') as f:
h2ogpt_api_keys = json.load(f)
if h2ogpt_key1 in h2ogpt_api_keys:
valid_key = True
return valid_key
def get_one_key(h2ogpt_api_keys, enforce_h2ogpt_api_key):
if not enforce_h2ogpt_api_key:
# return None so OpenAI server has no keyed access if not enforcing API key on h2oGPT regardless if keys passed
return None
if isinstance(h2ogpt_api_keys, list) and h2ogpt_api_keys:
return h2ogpt_api_keys[0]
elif isinstance(h2ogpt_api_keys, str) and os.path.isfile(h2ogpt_api_keys):
with filelock.FileLock(h2ogpt_api_keys + '.lock'):
with open(h2ogpt_api_keys, 'rt') as f:
h2ogpt_api_keys = json.load(f)
if h2ogpt_api_keys:
return h2ogpt_api_keys[0]
def get_model_max_length(model_state1, model_state0):
if model_state1 and not isinstance(model_state1["tokenizer"], str):
tokenizer = model_state1["tokenizer"]
elif model_state0 and not isinstance(model_state0["tokenizer"], str):
tokenizer = model_state0["tokenizer"]
else:
tokenizer = None
if tokenizer is not None:
return int(tokenizer.model_max_length)
else:
return 2000
def get_llm_history(history):
# avoid None users used for sources, errors, etc.
if history is None:
history = []
for ii in range(len(history) - 1, -1, -1):
if history[ii] and history[ii][0] is not None:
last_user_ii = ii
history = history[:last_user_ii + 1]
break
return history
def gen1_fake(fun1, history):
error = ''
sources = []
sources_str = ''
prompt_raw = ''
llm_answers = {}
save_dict = dict()
audio1 = None
yield history, error, sources, sources_str, prompt_raw, llm_answers, save_dict, audio1
return
def merge_chat_conversation_history(chat_conversation1, history):
# chat_conversation and history ordered so largest index of list is most recent
if chat_conversation1:
chat_conversation1 = str_to_list(chat_conversation1)
for conv1 in chat_conversation1:
assert isinstance(conv1, (list, tuple))
assert len(conv1) == 2
if isinstance(history, list):
# make copy so only local change
if chat_conversation1:
# so priority will be newest that comes from actual chat history from UI, then chat_conversation
history = chat_conversation1 + history.copy()
elif chat_conversation1:
history = chat_conversation1
else:
history = []
return history
def update_langchain_mode_paths(selection_docs_state1):
dup = selection_docs_state1['langchain_mode_paths'].copy()
for k, v in dup.items():
if k not in selection_docs_state1['langchain_modes']:
selection_docs_state1['langchain_mode_paths'].pop(k)
for k in selection_docs_state1['langchain_modes']:
if k not in selection_docs_state1['langchain_mode_types']:
# if didn't specify shared, then assume scratch if didn't login or personal if logged in
selection_docs_state1['langchain_mode_types'][k] = LangChainTypes.PERSONAL.value
return selection_docs_state1
# Setup some gradio states for per-user dynamic state
def my_db_state_done(state):
if isinstance(state, dict):
for langchain_mode_db, db_state in state.items():
scratch_data = state[langchain_mode_db]
if langchain_mode_db in langchain_modes_intrinsic:
if len(scratch_data) == length_db1() and hasattr(scratch_data[0], 'delete_collection') and \
scratch_data[1] == scratch_data[2]:
# scratch if not logged in
scratch_data[0].delete_collection()
# try to free from memory
scratch_data[0] = None
del scratch_data[0]
def process_audio(file1, t1=0, t2=30):
# use no more than 30 seconds
from pydub import AudioSegment
# in milliseconds
t1 = t1 * 1000
t2 = t2 * 1000
newAudio = AudioSegment.from_wav(file1)[t1:t2]
new_file = file1 + '.new.wav'
newAudio.export(new_file, format="wav")
return new_file
def allow_empty_instruction(langchain_mode1, document_subset1, langchain_action1):
allow = False
allow |= langchain_action1 not in [LangChainAction.QUERY.value,
LangChainAction.IMAGE_QUERY.value,
LangChainAction.IMAGE_CHANGE.value,
LangChainAction.IMAGE_GENERATE.value,
LangChainAction.IMAGE_STYLE.value,
]
allow |= document_subset1 in [DocumentSubset.TopKSources.name]
if langchain_mode1 in [LangChainMode.LLM.value]:
allow = False
return allow
def update_prompt(prompt_type1, prompt_dict1, model_state1, which_model=0, global_scope=False, **kwargs):
assert kwargs
if not prompt_type1 or which_model != 0:
# keep prompt_type and prompt_dict in sync if possible
prompt_type1 = kwargs.get('prompt_type', prompt_type1)
prompt_dict1 = kwargs.get('prompt_dict', prompt_dict1)
# prefer model specific prompt type instead of global one
if not global_scope:
if not prompt_type1 or which_model != 0:
prompt_type1 = model_state1.get('prompt_type', prompt_type1)
prompt_dict1 = model_state1.get('prompt_dict', prompt_dict1)
if not prompt_dict1 or which_model != 0:
# if still not defined, try to get
prompt_dict1 = kwargs.get('prompt_dict', prompt_dict1)
if not global_scope:
if not prompt_dict1 or which_model != 0:
prompt_dict1 = model_state1.get('prompt_dict', prompt_dict1)
if not global_scope and not prompt_type1:
# if still not defined, use unknown
prompt_type1 = unknown_prompt_type
return prompt_type1, prompt_dict1
def get_fun_with_dict_str_plain(default_kwargs, kwargs, **kwargs_evaluate_nochat):
fun_with_dict_str_plain = functools.partial(evaluate_nochat,
default_kwargs1=default_kwargs,
str_api=True,
plain_api=True,
kwargs=kwargs,
**kwargs_evaluate_nochat,
)
return fun_with_dict_str_plain