|
import os |
|
|
|
import filelock |
|
from diffusers import FluxPipeline |
|
import torch |
|
|
|
from src.utils import makedirs |
|
from src.vision.sdxl_turbo import get_device |
|
|
|
|
|
def get_pipe_make_image(gpu_id): |
|
device = get_device(gpu_id) |
|
|
|
pipe = FluxPipeline.from_pretrained( |
|
"black-forest-labs/FLUX.1-dev", |
|
torch_dtype=torch.bfloat16, |
|
).to(device) |
|
|
|
return pipe |
|
|
|
|
|
def get_pipe_make_image_2(gpu_id): |
|
device = get_device(gpu_id) |
|
|
|
pipe = FluxPipeline.from_pretrained( |
|
"black-forest-labs/FLUX.1-schnell", |
|
torch_dtype=torch.bfloat16, |
|
).to(device) |
|
|
|
return pipe |
|
|
|
|
|
def make_image(prompt, filename=None, gpu_id='auto', pipe=None, |
|
image_guidance_scale=3.0, |
|
image_size="1024x1024", |
|
image_quality='standard', |
|
image_num_inference_steps=50, |
|
max_sequence_length=512): |
|
if pipe is None: |
|
pipe = get_pipe_make_image(gpu_id=gpu_id) |
|
|
|
if image_quality == 'manual': |
|
|
|
pass |
|
else: |
|
if image_quality == 'quick': |
|
image_num_inference_steps = 10 |
|
image_size = "512x512" |
|
elif image_quality == 'standard': |
|
image_num_inference_steps = 20 |
|
elif image_quality == 'hd': |
|
image_num_inference_steps = 50 |
|
|
|
lock_type = 'image' |
|
base_path = os.path.join('locks', 'image_locks') |
|
base_path = makedirs(base_path, exist_ok=True, tmp_ok=True, use_base=True) |
|
lock_file = os.path.join(base_path, "%s.lock" % lock_type) |
|
makedirs(os.path.dirname(lock_file)) |
|
with filelock.FileLock(lock_file): |
|
image = pipe(prompt=prompt, |
|
height=int(image_size.lower().split('x')[0]), |
|
width=int(image_size.lower().split('x')[1]), |
|
num_inference_steps=image_num_inference_steps, |
|
max_sequence_length=max_sequence_length, |
|
guidance_scale=image_guidance_scale).images[0] |
|
if filename: |
|
image.save(filename) |
|
return filename |
|
return image |
|
|