aiben / openai_server /test_openai_server.py
abugaber's picture
Upload folder using huggingface_hub
3943768 verified
import json
import shutil
import sys
import tempfile
import time
import uuid
import pytest
import os
import ast
# to avoid copy-paste, only other external reference besides main() (for local_server=True)
from tests.utils import wrap_test_forked
def launch_openai_server():
from openai_server.server_start import run
from openai_server.server import app as openai_app
run(is_openai_server=True, workers=1, app=openai_app)
def test_openai_server():
# for manual separate OpenAI server on existing h2oGPT, run (choose vllm:ip:port and/or base_model):
# Shell 1: CUDA_VISIBLE_DEVICES=0 python generate.py --verbose=True --score_model=None --pre_load_embedding_model=False --gradio_offline_level=2 --base_model=h2oai/h2o-danube2-1.8b-chat --inference_server=vllm:ip:port --max_seq_len=4096 --save_dir=duder1 --verbose --concurrency_count=64 --openai_server=False --add_disk_models_to_ui=False
# Shell 2: pytest -s -v openai_server/test_openai_server.py::test_openai_server # once client done, hit CTRL-C, should pass
# Shell 3: pytest -s -v openai_server/test_openai_server.py::test_openai_client_test2 # should pass
# for rest of tests:
# Shell 1: pytest -s -v openai_server/test_openai_server.py -k 'serverless or needs_server or has_server or serverless'
launch_openai_server()
# repeat0 = 100 # e.g. to test concurrency
repeat0 = 1
@pytest.mark.needs_server
@pytest.mark.parametrize("stream_output", [False, True])
@pytest.mark.parametrize("chat", [False, True])
@pytest.mark.parametrize("local_server", [False])
@wrap_test_forked
def test_openai_client_test2(stream_output, chat, local_server):
prompt = "Who are you?"
api_key = 'EMPTY'
enforce_h2ogpt_api_key = False
repeat = 1
openai_workers = 1
run_openai_client(stream_output, chat, local_server, openai_workers, prompt, api_key, enforce_h2ogpt_api_key,
repeat)
@pytest.mark.has_server
@pytest.mark.parametrize("stream_output", [False, True])
@pytest.mark.parametrize("chat", [False, True])
@pytest.mark.parametrize("local_server", [True]) # choose False if start local server
@pytest.mark.parametrize("openai_workers", [1, 0]) # choose 0 to test multi-worker case
@pytest.mark.parametrize("prompt", ["Who are you?", "Tell a very long kid's story about birds."])
@pytest.mark.parametrize("api_key", [None, "EMPTY", os.environ.get('H2OGPT_H2OGPT_KEY', 'EMPTY')])
@pytest.mark.parametrize("enforce_h2ogpt_api_key", [False, True])
@pytest.mark.parametrize("repeat", list(range(0, repeat0)))
@wrap_test_forked
def test_openai_client(stream_output, chat, local_server, openai_workers, prompt, api_key, enforce_h2ogpt_api_key,
repeat):
run_openai_client(stream_output, chat, local_server, openai_workers, prompt, api_key, enforce_h2ogpt_api_key,
repeat)
def run_openai_client(stream_output, chat, local_server, openai_workers, prompt, api_key, enforce_h2ogpt_api_key,
repeat):
base_model = 'h2oai/h2o-danube2-1.8b-chat'
# base_model = 'gemini-pro'
# base_model = 'claude-3-5-sonnet-20240620'
if local_server:
from src.gen import main
main(base_model=base_model,
# inference_server='anthropic',
chat=False,
stream_output=stream_output, gradio=True,
num_beams=1, block_gradio_exit=False,
add_disk_models_to_ui=False,
enable_tts=False,
enable_stt=False,
enforce_h2ogpt_api_key=enforce_h2ogpt_api_key,
# or use file with h2ogpt_api_keys=h2ogpt_api_keys.json
h2ogpt_api_keys=[api_key] if api_key else None,
openai_workers=openai_workers,
)
time.sleep(10)
else:
# RUN something
# e.g. CUDA_VISIBLE_DEVICES=0 python generate.py --verbose=True --score_model=None --gradio_offline_level=2 --base_model=h2oai/h2o-danube2-1.8b-chat --inference_server=vllm:IP:port --max_seq_len=4096 --save_dir=duder1 --verbose --openai_server=True --concurency_count=64
pass
# api_key = "EMPTY" # if gradio/openai server not keyed. Can't pass '' itself, leads to httpcore.LocalProtocolError: Illegal header value b'Bearer '
# Setting H2OGPT_H2OGPT_KEY does not key h2oGPT, just passes along key to gradio inference server, so empty key is valid test regardless of the H2OGPT_H2OGPT_KEY value
# api_key = os.environ.get('H2OGPT_H2OGPT_KEY', 'EMPTY') # if keyed and have this in env with same key
print('api_key: %s' % api_key)
# below should be consistent with server prefix, host, and port
base_url = 'http://localhost:5000/v1'
verbose = True
system_prompt = "You are a helpful assistant."
chat_conversation = []
add_chat_history_to_context = True
client_kwargs = dict(model=base_model,
max_tokens=200,
stream=stream_output)
from openai import OpenAI, AsyncOpenAI
client_args = dict(base_url=base_url, api_key=api_key)
openai_client = OpenAI(**client_args)
async_client = AsyncOpenAI(**client_args)
try:
run_test_chat(chat, openai_client, async_client, system_prompt, chat_conversation, add_chat_history_to_context,
prompt, client_kwargs, stream_output, verbose, base_model)
except AssertionError as e:
if enforce_h2ogpt_api_key and api_key is None:
print("Expected to fail since no key but enforcing.")
else:
raise AssertionError(str(e))
except Exception as e:
raise RuntimeError(str(e))
# MODELS
model_info = openai_client.models.retrieve(base_model)
assert model_info.id == base_model
model_list = openai_client.models.list()
assert base_model in [x.id for x in model_list.data]
os.system('pkill -f server_start.py --signal 9')
os.system('pkill -f "h2ogpt/bin/python -c from multiprocessing" --signal 9')
def run_test_chat(chat, openai_client, async_client, system_prompt, chat_conversation, add_chat_history_to_context,
prompt, client_kwargs, stream_output, verbose, base_model):
# COMPLETION
if chat:
client = openai_client.chat.completions
async_client = async_client.chat.completions
messages0 = []
if system_prompt:
messages0.append({"role": "system", "content": system_prompt})
if chat_conversation and add_chat_history_to_context:
for message1 in chat_conversation:
if len(message1) == 2:
messages0.append(
{'role': 'user', 'content': message1[0] if message1[0] is not None else ''})
messages0.append(
{'role': 'assistant', 'content': message1[1] if message1[1] is not None else ''})
messages0.append({'role': 'user', 'content': prompt if prompt is not None else ''})
client_kwargs.update(dict(messages=messages0))
else:
client = openai_client.completions
async_client = async_client.completions
client_kwargs.update(dict(prompt=prompt))
responses = client.create(**client_kwargs)
if not stream_output:
if chat:
text = responses.choices[0].message.content
else:
text = responses.choices[0].text
print(text)
else:
collected_events = []
text = ''
for event in responses:
collected_events.append(event) # save the event response
if chat:
delta = event.choices[0].delta.content
else:
delta = event.choices[0].text # extract the text
text += delta # append the text
if verbose:
print('delta: %s' % delta)
print(text)
if base_model == 'gemini-pro':
if "Who" in prompt:
assert 'Google' in text or 'model' in text
else:
assert 'birds' in text
else:
if "Who" in prompt:
assert 'OpenAI' in text or 'chatbot' in text or 'model' in text or 'AI' in text
else:
assert 'birds' in text
def show_plot_from_ids(usage, client):
if not hasattr(usage, 'file_ids') or not usage.file_ids:
return None
file_ids = usage.file_ids
list_response = client.files.list().data
assert isinstance(list_response, list)
response_dict = {item.id: {key: value for key, value in dict(item).items() if key != 'id'} for item in
list_response}
test_dir = 'openai_files_testing_%s' % str(uuid.uuid4())
if os.path.exists(test_dir):
shutil.rmtree(test_dir)
os.makedirs(test_dir, exist_ok=True)
files = []
for file_id in file_ids:
test_filename = os.path.join(test_dir, os.path.basename(response_dict[file_id]['filename']))
content = client.files.content(file_id).content
with open(test_filename, 'wb') as f:
f.write(content)
files.append(test_filename)
images = [x for x in files if x.endswith('.png') or x.endswith('.jpeg')]
print(files)
print(images, file=sys.stderr)
from PIL import Image
im = Image.open(images[0])
print("START SHOW IMAGE: %s" % images[0], file=sys.stderr)
im.show()
print("FINISH SHOW IMAGE", file=sys.stderr)
return images
# NOTE: Should test with --force_streaming_on_to_handle_timeouts=False and --force_streaming_on_to_handle_timeouts=True
@pytest.mark.needs_server
def test_autogen():
if os.path.exists('./openai_files'):
shutil.rmtree('./openai_files')
from openai import OpenAI
client = OpenAI(base_url='http://0.0.0.0:5004/v1')
# prompt = "2+2="
import datetime
today = datetime.datetime.now().strftime("%Y-%m-%d")
prompt = f"Today is {today}. Write Python code to plot TSLA's and META's stock price gains YTD vs. time per week, and save the plot to a file named 'stock_gains.png'."
print("chat non-streaming", file=sys.stderr)
messages = [
{
"role": "user",
"content": prompt,
}
]
# model = "mistralai/Mistral-7B-Instruct-v0.3"
model = "gpt-4o"
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=0.0,
max_tokens=2048,
extra_body=dict(use_agent=True),
)
text = response.choices[0].message.content
print(text, file=sys.stderr)
assert show_plot_from_ids(response.usage, client) is not None
print("chat streaming", file=sys.stderr)
responses = client.chat.completions.create(
model=model,
messages=messages,
stream=True,
max_tokens=4096,
extra_body=dict(use_agent=True),
)
text = ''
usages = []
for chunk in responses:
delta = chunk.choices[0].delta.content
if chunk.usage is not None:
usages.append(chunk.usage)
if delta:
text += delta
print(delta, end='')
print(text)
assert len(usages) == 1
assert show_plot_from_ids(usages[0], client) is not None
####
print("text non-streaming", file=sys.stderr)
responses = client.completions.create(
model=model,
# response_format=dict(type=response_format), Text Completions API can't handle
prompt=prompt,
stream=False,
max_tokens=4096,
extra_body=dict(use_agent=True),
)
text = responses.choices[0].text
print(text)
assert show_plot_from_ids(responses.usage, client) is not None
print("text streaming", file=sys.stderr)
responses = client.completions.create(
model=model,
# response_format=dict(type=response_format), Text Completions API can't handle
prompt=prompt,
stream=True,
max_tokens=4096,
extra_body=dict(use_agent=True),
)
collected_events = []
usages = []
for event in responses:
collected_events.append(event) # save the event response
if event.usage is not None:
usages.append(event.usage)
delta = event.choices[0].text # extract the text
text += delta # append the text
if delta:
print(delta, end='')
print(text)
assert len(usages) == 1
assert show_plot_from_ids(usages[0], client) is not None
@pytest.fixture(scope="module")
def text_file():
base_path = os.getenv('H2OGPT_OPENAI_BASE_FILE_PATH', './openai_files/')
if base_path and base_path != './' and base_path != '.' and base_path != '/':
shutil.rmtree(base_path)
# Create a sample file for testing
file_content = b"Sample file content"
filename = "test_file.txt"
with open(filename, "wb") as f:
f.write(file_content)
yield filename
os.remove(filename)
@pytest.fixture(scope="module")
def pdf_file():
base_path = os.getenv('H2OGPT_OPENAI_BASE_FILE_PATH', './openai_files/')
if base_path and base_path != './' and base_path != '.' and base_path != '/':
shutil.rmtree(base_path)
# Create a sample file for testing
filename = "test_file.pdf"
shutil.copy('tests/2403.09629.pdf', filename)
yield filename
os.remove(filename)
@pytest.fixture(scope="module")
def image_file():
base_path = os.getenv('H2OGPT_OPENAI_BASE_FILE_PATH', './openai_files/')
if base_path and base_path != './' and base_path != '.' and base_path != '/':
shutil.rmtree(base_path)
# Create a sample file for testing
filename = "test_file.png"
shutil.copy('tests/dental.png', filename)
yield filename
os.remove(filename)
@pytest.fixture(scope="module")
def python_file():
base_path = os.getenv('H2OGPT_OPENAI_BASE_FILE_PATH', './openai_files/')
if base_path and base_path != './' and base_path != '.' and base_path != '/':
shutil.rmtree(base_path)
filename = "test_file.py"
shutil.copy('src/gen.py', filename)
yield filename
os.remove(filename)
@pytest.fixture(scope="module")
def video_file():
base_path = os.getenv('H2OGPT_OPENAI_BASE_FILE_PATH', './openai_files/')
if base_path and base_path != './' and base_path != '.' and base_path != '/':
shutil.rmtree(base_path)
filename = "test_file.mp4"
shutil.copy('tests/videotest.mp4', filename)
yield filename
os.remove(filename)
@pytest.mark.needs_server
@pytest.mark.parametrize("test_file", ["text_file", "pdf_file", "image_file", "python_file", "video_file"])
def test_file_operations(request, test_file):
test_file_type = test_file
test_file = request.getfixturevalue(test_file)
if test_file_type == "text_file":
ext = '.txt'
elif test_file_type == "pdf_file":
ext = '.pdf'
elif test_file_type == "image_file":
ext = '.png'
elif test_file_type == "python_file":
ext = '.py'
elif test_file_type == "video_file":
ext = '.mp4'
else:
raise ValueError("no such file %s" % test_file_type)
api_key = "EMPTY"
base_url = "http://0.0.0.0:5000/v1"
from openai import OpenAI
client = OpenAI(base_url=base_url, api_key=api_key)
# Test file upload
with open(test_file, "rb") as f:
upload_response = client.files.create(file=f, purpose="assistants")
print(upload_response)
assert upload_response.id
assert upload_response.object == "file"
assert upload_response.purpose == "assistants"
assert upload_response.created_at
assert upload_response.bytes > 5
assert upload_response.filename == "test_file%s" % ext
file_id = upload_response.id
# Test list files
list_response = client.files.list().data
assert isinstance(list_response, list)
assert list_response[0].id == file_id
assert list_response[0].object == "file"
assert list_response[0].purpose == "assistants"
assert list_response[0].created_at
assert list_response[0].bytes > 5
assert list_response[0].filename == "test_file%s" % ext
# Test retrieve file
retrieve_response = client.files.retrieve(file_id)
assert retrieve_response.id == file_id
assert retrieve_response.object == "file"
# Test retrieve file content
content = client.files.content(file_id).content
check_content(content, test_file_type, test_file)
content = client.files.content(file_id, extra_body=dict(stream=True)).content
check_content(content, test_file_type, test_file)
# Test delete file
delete_response = client.files.delete(file_id)
assert delete_response.id == file_id
assert delete_response.object == "file"
assert delete_response.deleted is True
def check_content(content, test_file_type, test_file):
if test_file_type in ["text_file", "python_file"]:
# old
with open(test_file, 'rb') as f:
old_content = f.read()
# new
assert content.decode('utf-8') == old_content.decode('utf-8')
elif test_file_type == 'pdf_file':
import fitz
# old
assert fitz.open(test_file).is_pdf
# new
with tempfile.NamedTemporaryFile() as tmp_file:
new_file = tmp_file.name
with open(new_file, 'wb') as f:
f.write(content)
assert fitz.open(new_file).is_pdf
elif test_file_type == 'image_file':
from PIL import Image
# old
assert Image.open(test_file).format == 'PNG'
# new
with tempfile.NamedTemporaryFile() as tmp_file:
new_file = tmp_file.name
with open(new_file, 'wb') as f:
f.write(content)
assert Image.open(new_file).format == 'PNG'
elif test_file_type == 'video_file':
import cv2
# old
cap = cv2.VideoCapture(test_file)
if not cap.isOpened():
return False
# Check if we can read the first frame
ret, frame = cap.read()
if not ret:
return False
cap.release()
# new
with tempfile.NamedTemporaryFile() as tmp_file:
new_file = tmp_file.name
with open(new_file, 'wb') as f:
f.write(content)
cap = cv2.VideoCapture(new_file)
if not cap.isOpened():
return False
# Check if we can read the first frame
ret, frame = cap.read()
if not ret:
return False
cap.release()
@pytest.mark.serverless
def test_return_generator():
import typing
def generator_function() -> typing.Generator[str, None, str]:
yield "Intermediate result 1"
yield "Intermediate result 2"
return "Final Result"
# Example usage
gen = generator_function()
# Consume the generator
ret_dict = None
try:
while True:
value = next(gen)
print(value)
except StopIteration as e:
ret_dict = e.value
# Get the final return value
assert ret_dict == "Final Result"
@pytest.mark.needs_server
def test_tool_use():
from openai import OpenAI
import json
model1 = 'gpt-4o'
client = OpenAI(base_url='http://localhost:5000/v1', api_key='EMPTY')
# client = OpenAI()
# Example dummy function hard coded to return the same weather
# In production, this could be your backend API or an external API
def get_current_weather(location, unit="fahrenheit"):
"""Get the current weather in a given location"""
if "tokyo" in location.lower():
return json.dumps({"location": "Tokyo", "temperature": "10", "unit": unit})
elif "san francisco" in location.lower():
return json.dumps(
{"location": "San Francisco", "temperature": "72" if unit == "fahrenheit" else "25", "unit": unit})
elif "paris" in location.lower():
return json.dumps({"location": "Paris", "temperature": "22", "unit": unit})
else:
return json.dumps({"location": location, "temperature": "unknown"})
def run_conversation(model):
# Step 1: send the conversation and available functions to the model
messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}]
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location", "unit"],
},
},
}
]
model_info = client.models.retrieve(model)
assert model_info.id == model
model_list = client.models.list()
assert model in [x.id for x in model_list.data]
response = client.chat.completions.create(
model=model,
messages=messages,
tools=tools,
tool_choice="auto", # auto is default, but we'll be explicit
)
response_message = response.choices[0].message
tool_calls = response_message.tool_calls
# Step 2: check if the model wanted to call a function
if tool_calls:
# Step 3: call the function
# Note: the JSON response may not always be valid; be sure to handle errors
available_functions = {
"get_current_weather": get_current_weather,
} # only one function in this example, but you can have multiple
messages.append(response_message) # extend conversation with assistant's reply
# Step 4: send the info for each function call and function response to the model
for tool_call in tool_calls:
function_name = tool_call.function.name
function_to_call = available_functions[function_name]
function_args = json.loads(tool_call.function.arguments)
function_response = function_to_call(
location=function_args.get("location"),
unit=function_args.get("unit"),
)
messages.append(
{
"tool_call_id": tool_call.id,
"role": "tool",
"name": function_name,
"content": function_response,
}
) # extend conversation with function response
second_response = client.chat.completions.create(
model=model,
messages=messages,
) # get a new response from the model where it can see the function response
print(second_response)
return second_response.choices[0].message.content
print(run_conversation(model1))
@pytest.mark.needs_server
def test_tool_use2():
from openai import OpenAI
import json
model = 'gpt-4o'
client = OpenAI(base_url='http://localhost:5000/v1', api_key='EMPTY')
# client = OpenAI()
prompt = """"# Tool Name
get_current_weather
# Tool Description:
Get the current weather in a given location
# Prompt
What's the weather like in San Francisco, Tokyo, and Paris?
Choose the single tool that best solves the task inferred from the prompt. Never choose more than one tool, i.e. act like parallel_tool_calls=False. If no tool is a good fit, then only choose the noop tool.
"""
messages = [{"role": "user", "content": prompt}]
tools = [{'type': 'function',
'function': {'name': 'get_current_weather', 'description': 'Get the current weather in a given location',
'parameters': {'type': 'object', 'properties': {'location': {'type': 'string',
'description': 'The city and state, e.g. San Francisco, CA'},
'unit': {'type': 'string',
'enum': ['celsius', 'fahrenheit']}},
'required': ['location']}}}]
response = client.chat.completions.create(
model=model,
messages=messages,
tools=tools,
# parallel_tool_calls=False,
tool_choice="auto", # auto is default, but we'll be explicit
)
response_message = response.choices[0].message
tool_calls = response_message.tool_calls
assert tool_calls
if __name__ == '__main__':
launch_openai_server()