aiben / src /llm_exllama.py
abugaber's picture
Upload folder using huggingface_hub
3943768 verified
from functools import partial
from langchain.llms.base import LLM
from langchain.callbacks.manager import CallbackManagerForLLMRun
from typing import Any, Dict, List, Optional
from exllama.model import ExLlama, ExLlamaCache, ExLlamaConfig
from exllama.tokenizer import ExLlamaTokenizer
from exllama.generator import ExLlamaGenerator
from exllama.lora import ExLlamaLora
import os, glob
from pydantic.v1 import root_validator
BROKEN_UNICODE = b'\\ufffd'.decode('unicode_escape')
class H2OExLlamaTokenizer(ExLlamaTokenizer):
def __call__(self, text, *args, **kwargs):
return dict(input_ids=self.encode(text))
class H2OExLlamaGenerator(ExLlamaGenerator):
def is_exlama(self):
return True
class Exllama(LLM):
client: Any #: :meta private:
model_path: str = None
model: Any = None
sanitize_bot_response: bool = False
prompter: Any = None
context: Any = ''
iinput: Any = ''
chat_conversation: Any = []
user_prompt_for_fake_system_prompt: Any = None
"""The path to the GPTQ model folder."""
exllama_cache: ExLlamaCache = None #: :meta private:
config: ExLlamaConfig = None #: :meta private:
generator: ExLlamaGenerator = None #: :meta private:
tokenizer: ExLlamaTokenizer = None #: :meta private:
##Langchain parameters
logfunc = print
stop_sequences: Optional[List[str]] = "" # , description="Sequences that immediately will stop the generator.")
streaming: Optional[bool] = True # , description="Whether to stream the results, token by token.")
##Generator parameters
disallowed_tokens: Optional[List[int]] = None # description="List of tokens to disallow during generation.")
temperature: Optional[float] = None # description="Temperature for sampling diversity.")
top_k: Optional[int] = None # description="Consider the most probable top_k samples, 0 to disable top_k sampling.")
top_p: Optional[
float] = None # description="Consider tokens up to a cumulative probabiltiy of top_p, 0.0 to disable top_p sampling.")
min_p: Optional[float] = None # description="Do not consider tokens with probability less than this.")
typical: Optional[
float] = None # description="Locally typical sampling threshold, 0.0 to disable typical sampling.")
token_repetition_penalty_max: Optional[float] = None # description="Repetition penalty for most recent tokens.")
token_repetition_penalty_sustain: Optional[
int] = None # description="No. most recent tokens to repeat penalty for, -1 to apply to whole context.")
token_repetition_penalty_decay: Optional[
int] = None # description="Gradually decrease penalty over this many tokens.")
beams: Optional[int] = None # description="Number of beams for beam search.")
beam_length: Optional[int] = None # description="Length of beams for beam search.")
##Config overrides
max_seq_len: Optional[
int] = 2048 # decription="Reduce to save memory. Can also be increased, ideally while also using compress_pos_emn and a compatible model/LoRA")
compress_pos_emb: Optional[
float] = 1.0 # description="Amount of compression to apply to the positional embedding.")
set_auto_map: Optional[
str] = None # description="Comma-separated list of VRAM (in GB) to use per GPU device for model layers, e.g. 20,7,7")
gpu_peer_fix: Optional[bool] = None # description="Prevent direct copies of data between GPUs")
alpha_value: Optional[float] = 1.0 # , description="Rope context extension alpha")
##Tuning
matmul_recons_thd: Optional[int] = None
fused_mlp_thd: Optional[int] = None
sdp_thd: Optional[int] = None
fused_attn: Optional[bool] = None
matmul_fused_remap: Optional[bool] = None
rmsnorm_no_half2: Optional[bool] = None
rope_no_half2: Optional[bool] = None
matmul_no_half2: Optional[bool] = None
silu_no_half2: Optional[bool] = None
concurrent_streams: Optional[bool] = None
##Lora Parameters
lora_path: Optional[str] = None # description="Path to your lora.")
@staticmethod
def get_model_path_at(path):
patterns = ["*.safetensors", "*.bin", "*.pt"]
model_paths = []
for pattern in patterns:
full_pattern = os.path.join(path, pattern)
model_paths = glob.glob(full_pattern)
if model_paths: # If there are any files matching the current pattern
break # Exit the loop as soon as we find a matching file
if model_paths: # If there are any files matching any of the patterns
return model_paths[0]
else:
return None # Return None if no matching files were found
@staticmethod
def configure_object(params, values, logfunc):
obj_params = {k: values.get(k) for k in params}
def apply_to(obj):
for key, value in obj_params.items():
if value:
if hasattr(obj, key):
setattr(obj, key, value)
logfunc(f"{key} {value}")
else:
raise AttributeError(f"{key} does not exist in {obj}")
return apply_to
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
model_param_names = [
"temperature",
"top_k",
"top_p",
"min_p",
"typical",
"token_repetition_penalty_max",
"token_repetition_penalty_sustain",
"token_repetition_penalty_decay",
"beams",
"beam_length",
]
config_param_names = [
"max_seq_len",
"compress_pos_emb",
"gpu_peer_fix",
"alpha_value"
]
tuning_parameters = [
"matmul_recons_thd",
"fused_mlp_thd",
"sdp_thd",
"matmul_fused_remap",
"rmsnorm_no_half2",
"rope_no_half2",
"matmul_no_half2",
"silu_no_half2",
"concurrent_streams",
"fused_attn",
]
##Set logging function if verbose or set to empty lambda
verbose = values['verbose']
if not verbose:
values['logfunc'] = lambda *args, **kwargs: None
logfunc = values['logfunc']
if values['model'] is None:
model_path = values["model_path"]
lora_path = values["lora_path"]
tokenizer_path = os.path.join(model_path, "tokenizer.model")
model_config_path = os.path.join(model_path, "config.json")
model_path = Exllama.get_model_path_at(model_path)
config = ExLlamaConfig(model_config_path)
tokenizer = ExLlamaTokenizer(tokenizer_path)
config.model_path = model_path
configure_config = Exllama.configure_object(config_param_names, values, logfunc)
configure_config(config)
configure_tuning = Exllama.configure_object(tuning_parameters, values, logfunc)
configure_tuning(config)
##Special parameter, set auto map, it's a function
if values['set_auto_map']:
config.set_auto_map(values['set_auto_map'])
logfunc(f"set_auto_map {values['set_auto_map']}")
model = ExLlama(config)
exllama_cache = ExLlamaCache(model)
generator = ExLlamaGenerator(model, tokenizer, exllama_cache)
##Load and apply lora to generator
if lora_path is not None:
lora_config_path = os.path.join(lora_path, "adapter_config.json")
lora_path = Exllama.get_model_path_at(lora_path)
lora = ExLlamaLora(model, lora_config_path, lora_path)
generator.lora = lora
logfunc(f"Loaded LORA @ {lora_path}")
else:
generator = values['model']
exllama_cache = generator.cache
model = generator.model
config = model.config
tokenizer = generator.tokenizer
# Set if model existed before or not since generation-time parameters
configure_model = Exllama.configure_object(model_param_names, values, logfunc)
values["stop_sequences"] = [x.strip().lower() for x in values["stop_sequences"]]
configure_model(generator.settings)
setattr(generator.settings, "stop_sequences", values["stop_sequences"])
logfunc(f"stop_sequences {values['stop_sequences']}")
disallowed = values.get("disallowed_tokens")
if disallowed:
generator.disallow_tokens(disallowed)
print(f"Disallowed Tokens: {generator.disallowed_tokens}")
values["client"] = model
values["generator"] = generator
values["config"] = config
values["tokenizer"] = tokenizer
values["exllama_cache"] = exllama_cache
return values
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "Exllama"
def get_num_tokens(self, text: str) -> int:
"""Get the number of tokens present in the text."""
return self.generator.tokenizer.num_tokens(text)
def get_token_ids(self, text: str) -> List[int]:
return self.generator.tokenizer.encode(text)
# avoid base method that is not aware of how to properly tokenize (uses GPT2)
# return _get_token_ids_default_method(text)
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
assert self.tokenizer is not None
from h2oai_pipeline import H2OTextGenerationPipeline
prompt, num_prompt_tokens = H2OTextGenerationPipeline.limit_prompt(prompt, self.tokenizer)
# NOTE: exllama does not add prompting, so must do here
data_point = dict(context=self.context, instruction=prompt, input=self.iinput)
prompt = self.prompter.generate_prompt(data_point,
chat_conversation=self.chat_conversation,
user_prompt_for_fake_system_prompt=self.user_prompt_for_fake_system_prompt,
)
text = ''
for text1 in self.stream(prompt=prompt, stop=stop, run_manager=run_manager):
text = text1
return text
from enum import Enum
class MatchStatus(Enum):
EXACT_MATCH = 1
PARTIAL_MATCH = 0
NO_MATCH = 2
def match_status(self, sequence: str, banned_sequences: List[str]):
sequence = sequence.strip().lower()
for banned_seq in banned_sequences:
if banned_seq == sequence:
return self.MatchStatus.EXACT_MATCH
elif banned_seq.startswith(sequence):
return self.MatchStatus.PARTIAL_MATCH
return self.MatchStatus.NO_MATCH
def stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> str:
config = self.config
generator = self.generator
beam_search = (self.beams and self.beams >= 1 and self.beam_length and self.beam_length >= 1)
ids = generator.tokenizer.encode(prompt)
generator.gen_begin_reuse(ids)
if beam_search:
generator.begin_beam_search()
token_getter = generator.beam_search
else:
generator.end_beam_search()
token_getter = generator.gen_single_token
last_newline_pos = 0
seq_length = len(generator.tokenizer.decode(generator.sequence_actual[0]))
response_start = seq_length
cursor_head = response_start
text_callback = None
if run_manager:
text_callback = partial(
run_manager.on_llm_new_token, verbose=self.verbose
)
# No longer assume below, assume always just new text so various langchain things work
##### parent handler of streamer expects to see prompt first else output="" and lose if prompt=None in prompter
#### text_callback:
#### text_callback(prompt)
text = ""
while (generator.gen_num_tokens() <= (
self.max_seq_len - 4)): # Slight extra padding space as we seem to occassionally get a few more than 1-2 tokens
# Fetch a token
token = token_getter()
# If it's the ending token replace it and end the generation.
if token.item() == generator.tokenizer.eos_token_id:
generator.replace_last_token(generator.tokenizer.newline_token_id)
if beam_search:
generator.end_beam_search()
return
# Tokenize the string from the last new line, we can't just decode the last token due to how sentencepiece decodes.
stuff = generator.tokenizer.decode(generator.sequence_actual[0][last_newline_pos:])
cursor_tail = len(stuff)
has_unicode_combined = cursor_tail < cursor_head
text_chunk = stuff[cursor_head:cursor_tail]
if has_unicode_combined:
# replace the broken unicode character with combined one
text = text[:-2]
text_chunk = stuff[cursor_tail - 1:cursor_tail]
cursor_head = cursor_tail
# Append the generated chunk to our stream buffer
text += text_chunk
text = self.prompter.get_response(prompt + text, prompt=prompt,
sanitize_bot_response=self.sanitize_bot_response)
if token.item() == generator.tokenizer.newline_token_id:
last_newline_pos = len(generator.sequence_actual[0])
cursor_head = 0
cursor_tail = 0
# Check if the stream buffer is one of the stop sequences
status = self.match_status(text, self.stop_sequences)
if status == self.MatchStatus.EXACT_MATCH:
# Encountered a stop, rewind our generator to before we hit the match and end generation.
rewind_length = generator.tokenizer.encode(text).shape[-1]
generator.gen_rewind(rewind_length)
# gen = generator.tokenizer.decode(generator.sequence_actual[0][response_start:])
if beam_search:
generator.end_beam_search()
return
elif status == self.MatchStatus.PARTIAL_MATCH:
# Partially matched a stop, continue buffering but don't yield.
continue
elif status == self.MatchStatus.NO_MATCH:
if text_callback and not (text_chunk == BROKEN_UNICODE):
text_callback(text_chunk)
yield text # Not a stop, yield the match buffer.
return