|
import gzip |
|
import io |
|
import json |
|
import os |
|
import shutil |
|
import tempfile |
|
import time |
|
import uuid |
|
|
|
import pytest |
|
|
|
from tests.test_client_calls import texts_helium1, texts_helium2, texts_helium3, texts_helium4, texts_helium5, \ |
|
texts_simple, texts_long |
|
from tests.utils import wrap_test_forked, kill_weaviate, make_user_path_test |
|
from src.enums import DocumentSubset, LangChainAction, LangChainMode, LangChainTypes, DocumentChoice, \ |
|
docs_joiner_default, docs_token_handling_default, db_types, db_types_full |
|
from src.utils import zip_data, download_simple, get_ngpus_vis, get_mem_gpus, have_faiss, remove, get_kwargs, \ |
|
FakeTokenizer, get_token_count, flatten_list, tar_data |
|
from src.gpt_langchain import get_persist_directory, get_db, get_documents, length_db1, _run_qa_db, split_merge_docs, \ |
|
get_hyde_acc |
|
|
|
have_openai_key = os.environ.get('OPENAI_API_KEY') is not None |
|
have_replicate_key = os.environ.get('REPLICATE_API_TOKEN') is not None |
|
|
|
have_gpus = get_ngpus_vis() > 0 |
|
|
|
mem_gpus = get_mem_gpus() |
|
|
|
|
|
os.environ['TOKENIZERS_PARALLELISM'] = 'false' |
|
|
|
|
|
@pytest.mark.skipif(not have_openai_key, reason="requires OpenAI key to run") |
|
@wrap_test_forked |
|
def test_qa_wiki_openai(): |
|
return run_qa_wiki_fork(use_openai_model=True) |
|
|
|
|
|
@pytest.mark.need_gpu |
|
@wrap_test_forked |
|
def test_qa_wiki_stuff_hf(): |
|
|
|
return run_qa_wiki_fork(use_openai_model=False, text_limit=256, chain_type='stuff', prompt_type='human_bot') |
|
|
|
|
|
@pytest.mark.xfail(strict=False, |
|
reason="Too long context, improve prompt for map_reduce. Until then hit: The size of tensor a (2048) must match the size of tensor b (2125) at non-singleton dimension 3") |
|
@wrap_test_forked |
|
def test_qa_wiki_map_reduce_hf(): |
|
return run_qa_wiki_fork(use_openai_model=False, text_limit=None, chain_type='map_reduce', prompt_type='human_bot') |
|
|
|
|
|
def run_qa_wiki_fork(*args, **kwargs): |
|
|
|
|
|
|
|
|
|
|
|
return run_qa_wiki(*args, **kwargs) |
|
|
|
|
|
def run_qa_wiki(use_openai_model=False, first_para=True, text_limit=None, chain_type='stuff', prompt_type=None): |
|
from src.gpt_langchain import get_wiki_sources, get_llm |
|
from langchain.chains.qa_with_sources import load_qa_with_sources_chain |
|
|
|
sources = get_wiki_sources(first_para=first_para, text_limit=text_limit) |
|
llm, model_name, streamer, prompt_type_out, async_output, only_new_text, gradio_server = \ |
|
get_llm(use_openai_model=use_openai_model, prompt_type=prompt_type, llamacpp_dict={}, |
|
exllama_dict={}) |
|
chain = load_qa_with_sources_chain(llm, chain_type=chain_type) |
|
|
|
question = "What are the main differences between Linux and Windows?" |
|
from src.gpt_langchain import get_answer_from_sources |
|
answer = get_answer_from_sources(chain, sources, question) |
|
print(answer) |
|
|
|
|
|
def check_ret(ret): |
|
""" |
|
check generator |
|
:param ret: |
|
:return: |
|
""" |
|
rets = [] |
|
for ret1 in ret: |
|
rets.append(ret1) |
|
print(ret1) |
|
assert rets |
|
return rets |
|
|
|
|
|
@pytest.mark.skipif(not have_openai_key, reason="requires OpenAI key to run") |
|
@wrap_test_forked |
|
def test_qa_wiki_db_openai(): |
|
from src.gpt_langchain import _run_qa_db |
|
query = "What are the main differences between Linux and Windows?" |
|
langchain_mode = 'wiki' |
|
ret = _run_qa_db(query=query, use_openai_model=True, use_openai_embedding=True, text_limit=None, |
|
hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2", |
|
db_type='faiss', |
|
langchain_mode_types=dict(langchain_mode=LangChainTypes.SHARED.value), |
|
langchain_mode=langchain_mode, |
|
langchain_action=LangChainAction.QUERY.value, langchain_agents=[], llamacpp_dict={}) |
|
check_ret(ret) |
|
|
|
|
|
@pytest.mark.need_gpu |
|
@wrap_test_forked |
|
def test_qa_wiki_db_hf(): |
|
from src.gpt_langchain import _run_qa_db |
|
|
|
|
|
|
|
query = "What are the main differences between Linux and Windows?" |
|
langchain_mode = 'wiki' |
|
ret = _run_qa_db(query=query, use_openai_model=False, use_openai_embedding=False, text_limit=256, |
|
hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2", |
|
db_type='faiss', |
|
langchain_mode_types=dict(langchain_mode=LangChainTypes.SHARED.value), |
|
langchain_mode=langchain_mode, |
|
langchain_action=LangChainAction.QUERY.value, |
|
langchain_agents=[], llamacpp_dict={}) |
|
check_ret(ret) |
|
|
|
|
|
@pytest.mark.need_gpu |
|
@wrap_test_forked |
|
def test_qa_wiki_db_chunk_hf(): |
|
from src.gpt_langchain import _run_qa_db |
|
query = "What are the main differences between Linux and Windows?" |
|
langchain_mode = 'wiki' |
|
ret = _run_qa_db(query=query, use_openai_model=False, use_openai_embedding=False, text_limit=256, chunk=True, |
|
chunk_size=256, |
|
hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2", |
|
db_type='faiss', |
|
langchain_mode_types=dict(langchain_mode=LangChainTypes.SHARED.value), |
|
langchain_mode=langchain_mode, |
|
langchain_action=LangChainAction.QUERY.value, |
|
langchain_agents=[], llamacpp_dict={}) |
|
check_ret(ret) |
|
|
|
|
|
@pytest.mark.skipif(not have_openai_key, reason="requires OpenAI key to run") |
|
@wrap_test_forked |
|
def test_qa_wiki_db_chunk_openai(): |
|
from src.gpt_langchain import _run_qa_db |
|
|
|
query = "What are the main differences between Linux and Windows?" |
|
langchain_mode = 'wiki' |
|
ret = _run_qa_db(query=query, use_openai_model=True, use_openai_embedding=True, text_limit=256, chunk=True, |
|
chunk_size=256, |
|
hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2", |
|
db_type='faiss', |
|
langchain_mode_types=dict(langchain_mode=LangChainTypes.SHARED.value), |
|
langchain_mode=langchain_mode, |
|
langchain_action=LangChainAction.QUERY.value, |
|
langchain_agents=[], llamacpp_dict={}) |
|
check_ret(ret) |
|
|
|
|
|
@pytest.mark.skipif(not have_openai_key, reason="requires OpenAI key to run") |
|
@wrap_test_forked |
|
def test_qa_github_db_chunk_openai(): |
|
from src.gpt_langchain import _run_qa_db |
|
|
|
query = "what is a software defined asset" |
|
langchain_mode = 'github h2oGPT' |
|
ret = _run_qa_db(query=query, use_openai_model=True, use_openai_embedding=True, text_limit=256, chunk=True, |
|
chunk_size=256, |
|
hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2", |
|
db_type='faiss', |
|
langchain_mode_types=dict(langchain_mode=LangChainTypes.SHARED.value), |
|
langchain_mode=langchain_mode, |
|
langchain_action=LangChainAction.QUERY.value, |
|
langchain_agents=[], llamacpp_dict={}) |
|
check_ret(ret) |
|
|
|
|
|
@pytest.mark.need_gpu |
|
@wrap_test_forked |
|
def test_qa_daidocs_db_chunk_hf(): |
|
from src.gpt_langchain import _run_qa_db |
|
|
|
query = "Which config.toml enables pytorch for NLP?" |
|
langchain_mode = 'DriverlessAI docs' |
|
ret = _run_qa_db(query=query, use_openai_model=False, use_openai_embedding=False, text_limit=None, chunk=True, |
|
chunk_size=128, |
|
hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2", |
|
db_type='faiss', |
|
langchain_mode_types=dict(langchain_mode=LangChainTypes.SHARED.value), |
|
langchain_mode=langchain_mode, |
|
langchain_action=LangChainAction.QUERY.value, |
|
langchain_agents=[], llamacpp_dict={}) |
|
check_ret(ret) |
|
|
|
|
|
@pytest.mark.skipif(not have_faiss, reason="requires FAISS") |
|
@wrap_test_forked |
|
def test_qa_daidocs_db_chunk_hf_faiss(): |
|
from src.gpt_langchain import _run_qa_db |
|
query = "Which config.toml enables pytorch for NLP?" |
|
|
|
langchain_mode = 'DriverlessAI docs' |
|
ret = _run_qa_db(query=query, use_openai_model=False, use_openai_embedding=False, text_limit=None, chunk=True, |
|
chunk_size=128 * 1, |
|
langchain_mode_types=dict(langchain_mode=LangChainTypes.SHARED.value), |
|
langchain_mode=langchain_mode, |
|
langchain_action=LangChainAction.QUERY.value, |
|
langchain_agents=[], |
|
llamacpp_dict={}, |
|
db_type='faiss', |
|
hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2", |
|
) |
|
check_ret(ret) |
|
|
|
|
|
@pytest.mark.need_gpu |
|
@pytest.mark.parametrize("db_type", db_types) |
|
@pytest.mark.parametrize("top_k_docs", [-1, 3]) |
|
@wrap_test_forked |
|
def test_qa_daidocs_db_chunk_hf_dbs(db_type, top_k_docs): |
|
kill_weaviate(db_type) |
|
langchain_mode = 'DriverlessAI docs' |
|
langchain_action = LangChainAction.QUERY.value |
|
langchain_agents = [] |
|
persist_directory, langchain_type = get_persist_directory(langchain_mode, |
|
langchain_type=LangChainTypes.SHARED.value) |
|
assert langchain_type == LangChainTypes.SHARED.value |
|
remove(persist_directory) |
|
from src.gpt_langchain import _run_qa_db |
|
query = "Which config.toml enables pytorch for NLP?" |
|
|
|
if top_k_docs == -1: |
|
|
|
model_name = 'h2oai/h2ogpt-oig-oasst1-512-6_9b' |
|
else: |
|
model_name = None |
|
ret = _run_qa_db(query=query, use_openai_model=False, use_openai_embedding=False, text_limit=None, chunk=True, |
|
chunk_size=128 * 1, |
|
langchain_mode=langchain_mode, |
|
langchain_action=langchain_action, |
|
langchain_agents=langchain_agents, |
|
hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2", |
|
db_type=db_type, |
|
top_k_docs=top_k_docs, |
|
model_name=model_name, |
|
llamacpp_dict={}, |
|
) |
|
check_ret(ret) |
|
kill_weaviate(db_type) |
|
|
|
|
|
def get_test_model(base_model='h2oai/h2ogpt-oig-oasst1-512-6_9b', |
|
tokenizer_base_model='', |
|
prompt_type='human_bot', |
|
inference_server='', |
|
max_seq_len=None, |
|
regenerate_clients=True): |
|
|
|
from src.gen import get_model |
|
all_kwargs = dict(load_8bit=False, |
|
load_4bit=False, |
|
low_bit_mode=1, |
|
load_half=True, |
|
load_gptq='', |
|
use_autogptq=False, |
|
load_awq='', |
|
load_exllama=False, |
|
use_safetensors=False, |
|
revision=None, |
|
use_gpu_id=True, |
|
base_model=base_model, |
|
tokenizer_base_model=tokenizer_base_model, |
|
inference_server=inference_server, |
|
regenerate_clients=regenerate_clients, |
|
lora_weights='', |
|
gpu_id=0, |
|
n_jobs=1, |
|
n_gpus=None, |
|
|
|
reward_type=False, |
|
local_files_only=False, |
|
resume_download=True, |
|
use_auth_token=False, |
|
trust_remote_code=True, |
|
offload_folder=None, |
|
rope_scaling=None, |
|
max_seq_len=max_seq_len, |
|
compile_model=True, |
|
llamacpp_dict={}, |
|
exllama_dict={}, |
|
gptq_dict={}, |
|
attention_sinks=False, |
|
sink_dict={}, |
|
truncation_generation=False, |
|
hf_model_dict={}, |
|
use_flash_attention_2=False, |
|
llamacpp_path='llamacpp_path', |
|
regenerate_gradio_clients=True, |
|
max_output_seq_len=None, |
|
force_seq2seq_type=False, |
|
force_t5_type=False, |
|
|
|
verbose=False) |
|
from src.gen import get_model_retry |
|
model, tokenizer, device = get_model_retry(reward_type=False, |
|
**get_kwargs(get_model, exclude_names=['reward_type'], **all_kwargs)) |
|
return model, tokenizer, base_model, prompt_type |
|
|
|
|
|
@pytest.mark.need_gpu |
|
@pytest.mark.parametrize("db_type", ['chroma']) |
|
@wrap_test_forked |
|
def test_qa_daidocs_db_chunk_hf_dbs_switch_embedding(db_type): |
|
model, tokenizer, base_model, prompt_type = get_test_model() |
|
|
|
langchain_mode = 'DriverlessAI docs' |
|
langchain_action = LangChainAction.QUERY.value |
|
langchain_agents = [] |
|
persist_directory, langchain_type = get_persist_directory(langchain_mode, |
|
langchain_type=LangChainTypes.SHARED.value) |
|
assert langchain_type == LangChainTypes.SHARED.value |
|
remove(persist_directory) |
|
from src.gpt_langchain import _run_qa_db |
|
query = "Which config.toml enables pytorch for NLP?" |
|
|
|
ret = _run_qa_db(query=query, use_openai_model=False, use_openai_embedding=False, |
|
hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2", |
|
migrate_embedding_model=True, |
|
model=model, |
|
tokenizer=tokenizer, |
|
model_name=base_model, |
|
prompt_type=prompt_type, |
|
text_limit=None, chunk=True, |
|
chunk_size=128 * 1, |
|
langchain_mode=langchain_mode, |
|
langchain_action=langchain_action, |
|
langchain_agents=langchain_agents, |
|
db_type=db_type, |
|
llamacpp_dict={}, |
|
) |
|
check_ret(ret) |
|
|
|
query = "Which config.toml enables pytorch for NLP?" |
|
|
|
ret = _run_qa_db(query=query, use_openai_model=False, use_openai_embedding=False, |
|
hf_embedding_model='BAAI/bge-large-en-v1.5', |
|
migrate_embedding_model=True, |
|
model=model, |
|
tokenizer=tokenizer, |
|
model_name=base_model, |
|
prompt_type=prompt_type, |
|
text_limit=None, chunk=True, |
|
chunk_size=128 * 1, |
|
langchain_mode=langchain_mode, |
|
langchain_action=langchain_action, |
|
langchain_agents=langchain_agents, |
|
db_type=db_type, |
|
llamacpp_dict={}, |
|
) |
|
check_ret(ret) |
|
|
|
|
|
@pytest.mark.parametrize("db_type", db_types) |
|
@wrap_test_forked |
|
def test_qa_wiki_db_chunk_hf_dbs_llama(db_type): |
|
kill_weaviate(db_type) |
|
from src.gpt4all_llm import get_model_tokenizer_gpt4all |
|
model_name = 'llama' |
|
model, tokenizer, device = get_model_tokenizer_gpt4all(model_name, |
|
n_jobs=8, |
|
max_seq_len=512, |
|
llamacpp_dict=dict( |
|
model_path_llama='https://huggingface.co/TheBloke/Llama-2-7b-Chat-GGUF/resolve/main/llama-2-7b-chat.Q6_K.gguf?download=true', |
|
n_gpu_layers=100, |
|
use_mlock=True, |
|
n_batch=1024)) |
|
|
|
from src.gpt_langchain import _run_qa_db |
|
query = "What are the main differences between Linux and Windows?" |
|
|
|
langchain_mode = 'wiki' |
|
ret = _run_qa_db(query=query, use_openai_model=False, use_openai_embedding=False, text_limit=None, chunk=True, |
|
chunk_size=128 * 1, |
|
hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2", |
|
langchain_mode_types=dict(langchain_mode=LangChainTypes.SHARED.value), |
|
langchain_mode=langchain_mode, |
|
langchain_action=LangChainAction.QUERY.value, |
|
langchain_agents=[], |
|
db_type=db_type, |
|
prompt_type='llama2', |
|
langchain_only_model=True, |
|
model_name=model_name, model=model, tokenizer=tokenizer, |
|
llamacpp_dict=dict(n_gpu_layers=100, use_mlock=True, n_batch=1024), |
|
) |
|
check_ret(ret) |
|
kill_weaviate(db_type) |
|
|
|
|
|
@pytest.mark.skipif(not have_openai_key, reason="requires OpenAI key to run") |
|
@wrap_test_forked |
|
def test_qa_daidocs_db_chunk_openai(): |
|
from src.gpt_langchain import _run_qa_db |
|
query = "Which config.toml enables pytorch for NLP?" |
|
langchain_mode = 'DriverlessAI docs' |
|
ret = _run_qa_db(query=query, use_openai_model=True, use_openai_embedding=True, text_limit=256, chunk=True, |
|
db_type='faiss', |
|
hf_embedding_model="", |
|
chunk_size=256, |
|
langchain_mode_types=dict(langchain_mode=LangChainTypes.SHARED.value), |
|
langchain_mode=langchain_mode, |
|
langchain_action=LangChainAction.QUERY.value, |
|
langchain_agents=[], llamacpp_dict={}) |
|
check_ret(ret) |
|
|
|
|
|
@pytest.mark.skipif(not have_openai_key, reason="requires OpenAI key to run") |
|
@wrap_test_forked |
|
def test_qa_daidocs_db_chunk_openaiembedding_hfmodel(): |
|
from src.gpt_langchain import _run_qa_db |
|
query = "Which config.toml enables pytorch for NLP?" |
|
langchain_mode = 'DriverlessAI docs' |
|
ret = _run_qa_db(query=query, use_openai_model=False, use_openai_embedding=True, text_limit=None, chunk=True, |
|
chunk_size=128, |
|
hf_embedding_model="", |
|
db_type='faiss', |
|
langchain_mode_types=dict(langchain_mode=LangChainTypes.SHARED.value), |
|
langchain_mode=langchain_mode, |
|
langchain_action=LangChainAction.QUERY.value, |
|
langchain_agents=[], llamacpp_dict={}) |
|
check_ret(ret) |
|
|
|
|
|
@pytest.mark.need_tokens |
|
@wrap_test_forked |
|
def test_get_dai_pickle(): |
|
from src.gpt_langchain import get_dai_pickle |
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
get_dai_pickle(dest=tmpdirname) |
|
assert os.path.isfile(os.path.join(tmpdirname, 'dai_docs.pickle')) |
|
|
|
|
|
@pytest.mark.need_tokens |
|
@wrap_test_forked |
|
def test_get_dai_db_dir(): |
|
from src.gpt_langchain import get_some_dbs_from_hf |
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
get_some_dbs_from_hf(tmpdirname) |
|
|
|
|
|
|
|
@pytest.mark.parametrize("repeat", [0, 1]) |
|
@pytest.mark.parametrize("db_type", db_types_full) |
|
@wrap_test_forked |
|
def test_make_add_db(repeat, db_type): |
|
kill_weaviate(db_type) |
|
from src.gpt_langchain import get_source_files, get_source_files_given_langchain_mode, get_any_db, update_user_db, \ |
|
get_sources, update_and_get_source_files_given_langchain_mode |
|
from src.make_db import make_db_main |
|
from src.gpt_langchain import path_to_docs |
|
with tempfile.TemporaryDirectory() as tmp_persist_directory: |
|
with tempfile.TemporaryDirectory() as tmp_user_path: |
|
with tempfile.TemporaryDirectory() as tmp_persist_directory_my: |
|
with tempfile.TemporaryDirectory() as tmp_user_path_my: |
|
msg1 = "Hello World" |
|
test_file1 = os.path.join(tmp_user_path, 'test.txt') |
|
with open(test_file1, "wt") as f: |
|
f.write(msg1) |
|
chunk = True |
|
chunk_size = 512 |
|
langchain_mode = 'UserData' |
|
db, collection_name = make_db_main(persist_directory=tmp_persist_directory, |
|
user_path=tmp_user_path, |
|
add_if_exists=False, |
|
collection_name=langchain_mode, |
|
fail_any_exception=True, db_type=db_type) |
|
assert db is not None |
|
docs = db.similarity_search("World") |
|
assert len(docs) >= 1 |
|
assert docs[0].page_content == msg1 |
|
assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) |
|
|
|
test_file1my = os.path.join(tmp_user_path_my, 'test.txt') |
|
with open(test_file1my, "wt") as f: |
|
f.write(msg1) |
|
dbmy, collection_namemy = make_db_main(persist_directory=tmp_persist_directory_my, |
|
user_path=tmp_user_path_my, |
|
add_if_exists=False, |
|
collection_name='MyData', |
|
fail_any_exception=True, db_type=db_type) |
|
db1 = {LangChainMode.MY_DATA.value: [dbmy, 'foouuid', 'foousername']} |
|
assert dbmy is not None |
|
docs1 = dbmy.similarity_search("World") |
|
assert len(docs1) == 1 + (1 if db_type == 'chroma' else 0) |
|
assert docs1[0].page_content == msg1 |
|
assert os.path.normpath(docs1[0].metadata['source']) == os.path.normpath(test_file1my) |
|
|
|
|
|
get_source_files(db=db) |
|
get_source_files(db=dbmy) |
|
selection_docs_state1 = dict(langchain_modes=[langchain_mode], langchain_mode_paths={}, |
|
langchain_mode_types={}) |
|
requests_state1 = dict() |
|
get_source_files_given_langchain_mode(db1, selection_docs_state1, requests_state1, None, |
|
langchain_mode, dbs={langchain_mode: db}) |
|
get_source_files_given_langchain_mode(db1, selection_docs_state1, requests_state1, None, |
|
langchain_mode='MyData', dbs={}) |
|
get_any_db(db1, langchain_mode='UserData', |
|
langchain_mode_paths=selection_docs_state1['langchain_mode_paths'], |
|
langchain_mode_types=selection_docs_state1['langchain_mode_types'], |
|
dbs={langchain_mode: db}) |
|
get_any_db(db1, langchain_mode='MyData', |
|
langchain_mode_paths=selection_docs_state1['langchain_mode_paths'], |
|
langchain_mode_types=selection_docs_state1['langchain_mode_types'], |
|
dbs={}) |
|
|
|
msg1up = "Beefy Chicken" |
|
test_file2 = os.path.join(tmp_user_path, 'test2.txt') |
|
with open(test_file2, "wt") as f: |
|
f.write(msg1up) |
|
test_file2_my = os.path.join(tmp_user_path_my, 'test2my.txt') |
|
with open(test_file2_my, "wt") as f: |
|
f.write(msg1up) |
|
kwargs = dict(use_openai_embedding=False, |
|
hf_embedding_model='BAAI/bge-large-en-v1.5', |
|
migrate_embedding_model=True, |
|
caption_loader=False, |
|
doctr_loader=False, |
|
asr_loader=False, |
|
enable_captions=False, |
|
enable_doctr=False, |
|
enable_pix2struct=False, |
|
enable_llava=False, |
|
enable_transcriptions=False, |
|
captions_model="microsoft/Florence-2-base", |
|
llava_model=None, |
|
llava_prompt=None, |
|
asr_model='openai/whisper-medium', |
|
enable_ocr=False, |
|
enable_pdf_ocr='auto', |
|
enable_pdf_doctr=False, |
|
gradio_upload_to_chatbot_num_max=1, |
|
verbose=False, |
|
is_url=False, is_txt=False, |
|
allow_upload_to_my_data=True, |
|
allow_upload_to_user_data=True, |
|
) |
|
langchain_mode2 = 'MyData' |
|
selection_docs_state2 = dict(langchain_modes=[langchain_mode2], |
|
langchain_mode_paths={}, |
|
langchain_mode_types={}) |
|
requests_state2 = dict() |
|
z1, z2, source_files_added, exceptions, last_file, last_dict = update_user_db(test_file2_my, db1, |
|
selection_docs_state2, |
|
requests_state2, |
|
langchain_mode2, |
|
chunk=chunk, |
|
chunk_size=chunk_size, |
|
dbs={}, |
|
db_type=db_type, |
|
**kwargs) |
|
assert z1 is None |
|
assert 'MyData' == z2 |
|
assert 'test2my' in str(source_files_added) |
|
assert len(exceptions) == 0 |
|
|
|
langchain_mode = 'UserData' |
|
selection_docs_state1 = dict(langchain_modes=[langchain_mode], |
|
langchain_mode_paths={langchain_mode: tmp_user_path}, |
|
langchain_mode_types={langchain_mode: LangChainTypes.SHARED.value}) |
|
z1, z2, source_files_added, exceptions, last_file, last_dict = update_user_db(test_file2, db1, |
|
selection_docs_state1, |
|
requests_state1, |
|
langchain_mode, |
|
chunk=chunk, |
|
chunk_size=chunk_size, |
|
dbs={ |
|
langchain_mode: db}, |
|
db_type=db_type, |
|
**kwargs) |
|
assert 'test2' in str(source_files_added) |
|
assert langchain_mode == z2 |
|
assert z1 is None |
|
docs_state0 = [x.name for x in list(DocumentSubset)] |
|
get_sources(db1, selection_docs_state1, {}, langchain_mode, dbs={langchain_mode: db}, |
|
docs_state0=docs_state0) |
|
get_sources(db1, selection_docs_state1, {}, 'MyData', dbs={}, docs_state0=docs_state0) |
|
selection_docs_state1['langchain_mode_paths'] = {langchain_mode: tmp_user_path} |
|
kwargs2 = dict(first_para=False, |
|
text_limit=None, chunk=chunk, chunk_size=chunk_size, |
|
db_type=db_type, |
|
hf_embedding_model=kwargs['hf_embedding_model'], |
|
migrate_embedding_model=kwargs['migrate_embedding_model'], |
|
load_db_if_exists=True, |
|
n_jobs=-1, verbose=False) |
|
update_and_get_source_files_given_langchain_mode(db1, |
|
selection_docs_state1, requests_state1, |
|
langchain_mode, dbs={langchain_mode: db}, |
|
**kwargs2) |
|
update_and_get_source_files_given_langchain_mode(db1, |
|
selection_docs_state2, requests_state2, |
|
'MyData', dbs={}, **kwargs2) |
|
|
|
assert path_to_docs(test_file2_my, db_type=db_type)[0].metadata['source'] == test_file2_my |
|
extra = 1 if db_type == 'chroma' else 0 |
|
assert os.path.normpath( |
|
path_to_docs(os.path.dirname(test_file2_my), db_type=db_type)[1 + extra].metadata[ |
|
'source']) == os.path.normpath( |
|
os.path.abspath(test_file2_my)) |
|
assert path_to_docs([test_file1, test_file2, test_file2_my], db_type=db_type)[0].metadata[ |
|
'source'] == test_file1 |
|
|
|
assert path_to_docs(None, url='arxiv:1706.03762', db_type=db_type)[0].metadata[ |
|
'source'] == 'http://arxiv.org/abs/1706.03762v7' |
|
assert path_to_docs(None, url='http://h2o.ai', db_type=db_type)[0].metadata[ |
|
'source'] == 'http://h2o.ai' |
|
|
|
assert 'user_paste' in path_to_docs(None, |
|
text='Yufuu is a wonderful place and you should really visit because there is lots of sun.', |
|
db_type=db_type)[0].metadata['source'] |
|
|
|
if db_type == 'faiss': |
|
|
|
return |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_user_path3: |
|
msg2 = "Jill ran up the hill" |
|
test_file2 = os.path.join(tmp_user_path3, 'test2.txt') |
|
with open(test_file2, "wt") as f: |
|
f.write(msg2) |
|
db, collection_name = make_db_main(persist_directory=tmp_persist_directory, |
|
user_path=tmp_user_path3, |
|
add_if_exists=True, |
|
fail_any_exception=True, db_type=db_type, |
|
collection_name=collection_name) |
|
assert db is not None |
|
docs = db.similarity_search("World") |
|
assert len(docs) >= 1 |
|
assert docs[0].page_content == msg1 |
|
assert docs[1 + extra].page_content in [msg2, msg1up] |
|
assert docs[2 + extra].page_content in [msg2, msg1up] |
|
assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) |
|
|
|
docs = db.similarity_search("Jill") |
|
assert len(docs) >= 1 |
|
assert docs[0].page_content == msg2 |
|
assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file2) |
|
kill_weaviate(db_type) |
|
|
|
|
|
@pytest.mark.parametrize("db_type", db_types) |
|
@wrap_test_forked |
|
def test_zip_add(db_type): |
|
kill_weaviate(db_type) |
|
from src.make_db import make_db_main |
|
with tempfile.TemporaryDirectory() as tmp_persist_directory: |
|
with tempfile.TemporaryDirectory() as tmp_user_path: |
|
msg1 = "Hello World" |
|
test_file1 = os.path.join(tmp_user_path, 'test.txt') |
|
with open(test_file1, "wt") as f: |
|
f.write(msg1) |
|
zip_file = './tmpdata/data.zip' |
|
zip_data(tmp_user_path, zip_file=zip_file, fail_any_exception=True) |
|
db, collection_name = make_db_main(persist_directory=tmp_persist_directory, user_path=tmp_user_path, |
|
fail_any_exception=True, db_type=db_type, |
|
add_if_exists=False) |
|
assert db is not None |
|
docs = db.similarity_search("World") |
|
assert len(docs) >= 1 |
|
assert docs[0].page_content == msg1 |
|
assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) |
|
kill_weaviate(db_type) |
|
|
|
|
|
@pytest.mark.parametrize("db_type", db_types) |
|
@pytest.mark.parametrize("tar_type", ["tar.gz", "tgz"]) |
|
@wrap_test_forked |
|
def test_tar_add(db_type, tar_type): |
|
kill_weaviate(db_type) |
|
from src.make_db import make_db_main |
|
with tempfile.TemporaryDirectory() as tmp_persist_directory: |
|
with tempfile.TemporaryDirectory() as tmp_user_path: |
|
msg1 = "Hello World" |
|
test_file1 = os.path.join(tmp_user_path, 'test.txt') |
|
with open(test_file1, "wt") as f: |
|
f.write(msg1) |
|
tar_file = f'./tmpdata/data.{tar_type}' |
|
tar_data(tmp_user_path, tar_file=tar_file, fail_any_exception=True) |
|
db, collection_name = make_db_main(persist_directory=tmp_persist_directory, user_path=tmp_user_path, |
|
fail_any_exception=True, db_type=db_type, |
|
add_if_exists=False) |
|
assert db is not None |
|
docs = db.similarity_search("World") |
|
assert len(docs) >= 1 |
|
assert docs[0].page_content == msg1 |
|
assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) |
|
kill_weaviate(db_type) |
|
|
|
|
|
@pytest.mark.parametrize("db_type", db_types) |
|
@wrap_test_forked |
|
def test_url_add(db_type): |
|
kill_weaviate(db_type) |
|
from src.make_db import make_db_main |
|
with tempfile.TemporaryDirectory() as tmp_persist_directory: |
|
url = 'https://h2o.ai/company/team/leadership-team/' |
|
db, collection_name = make_db_main(persist_directory=tmp_persist_directory, url=url, fail_any_exception=True, |
|
db_type=db_type) |
|
assert db is not None |
|
docs = db.similarity_search("list founding team of h2o.ai") |
|
assert len(docs) >= 1 |
|
assert 'Sri Ambati' in docs[0].page_content |
|
kill_weaviate(db_type) |
|
|
|
|
|
@pytest.mark.parametrize("db_type", db_types) |
|
@wrap_test_forked |
|
def test_urls_add(db_type): |
|
kill_weaviate(db_type) |
|
from src.make_db import make_db_main |
|
with tempfile.TemporaryDirectory() as tmp_persist_directory: |
|
urls = ['https://h2o.ai/company/team/leadership-team/', |
|
'https://arxiv.org/abs/1706.03762', |
|
'https://github.com/h2oai/h2ogpt', |
|
'https://h2o.ai' |
|
] |
|
|
|
db, collection_name = make_db_main(persist_directory=tmp_persist_directory, url=urls, |
|
fail_any_exception=True, |
|
db_type=db_type) |
|
assert db is not None |
|
if db_type == 'chroma': |
|
assert len(db.get()['documents']) > 48 |
|
docs = db.similarity_search("list founding team of h2o.ai") |
|
assert len(docs) >= 1 |
|
assert 'Sri Ambati' in docs[0].page_content |
|
kill_weaviate(db_type) |
|
|
|
|
|
@pytest.mark.parametrize("db_type", db_types) |
|
@wrap_test_forked |
|
def test_urls_file_add(db_type): |
|
kill_weaviate(db_type) |
|
from src.make_db import make_db_main |
|
with tempfile.TemporaryDirectory() as tmp_persist_directory: |
|
with tempfile.TemporaryDirectory() as tmp_user_path: |
|
urls = ['https://h2o.ai/company/team/leadership-team/', |
|
'https://arxiv.org/abs/1706.03762', |
|
'https://github.com/h2oai/h2ogpt', |
|
'https://h2o.ai' |
|
] |
|
with open(os.path.join(tmp_user_path, 'list.urls'), 'wt') as f: |
|
f.write('\n'.join(urls)) |
|
|
|
db, collection_name = make_db_main(persist_directory=tmp_persist_directory, url=urls, |
|
user_path=tmp_user_path, |
|
fail_any_exception=True, |
|
db_type=db_type) |
|
assert db is not None |
|
if db_type == 'chroma': |
|
assert len(db.get()['documents']) > 45 |
|
docs = db.similarity_search("list founding team of h2o.ai") |
|
assert len(docs) >= 1 |
|
assert 'Sri Ambati' in docs[0].page_content |
|
kill_weaviate(db_type) |
|
|
|
|
|
@pytest.mark.parametrize("db_type", db_types) |
|
@wrap_test_forked |
|
def test_html_add(db_type): |
|
kill_weaviate(db_type) |
|
from src.make_db import make_db_main |
|
with tempfile.TemporaryDirectory() as tmp_persist_directory: |
|
with tempfile.TemporaryDirectory() as tmp_user_path: |
|
html_content = """ |
|
<!DOCTYPE html> |
|
<html> |
|
<body> |
|
|
|
<h1>Yugu is a wonderful place</h1> |
|
|
|
<p>Animals love to run in the world of Yugu. They play all day long in the alien sun.</p> |
|
|
|
</body> |
|
</html> |
|
""" |
|
test_file1 = os.path.join(tmp_user_path, 'test.html') |
|
with open(test_file1, "wt") as f: |
|
f.write(html_content) |
|
db, collection_name = make_db_main(persist_directory=tmp_persist_directory, user_path=tmp_user_path, |
|
fail_any_exception=True, db_type=db_type, |
|
add_if_exists=False) |
|
assert db is not None |
|
docs = db.similarity_search("Yugu") |
|
assert len(docs) >= 1 |
|
assert 'Yugu' in docs[0].page_content |
|
assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) |
|
kill_weaviate(db_type) |
|
|
|
|
|
@pytest.mark.parametrize("db_type", db_types) |
|
@wrap_test_forked |
|
def test_docx_add(db_type): |
|
kill_weaviate(db_type) |
|
from src.make_db import make_db_main |
|
with tempfile.TemporaryDirectory() as tmp_persist_directory: |
|
with tempfile.TemporaryDirectory() as tmp_user_path: |
|
url = 'https://calibre-ebook.com/downloads/demos/demo.docx' |
|
test_file1 = os.path.join(tmp_user_path, 'demo.docx') |
|
download_simple(url, dest=test_file1) |
|
db, collection_name = make_db_main(persist_directory=tmp_persist_directory, user_path=tmp_user_path, |
|
fail_any_exception=True, db_type=db_type) |
|
assert db is not None |
|
docs = db.similarity_search("What is calibre DOCX plugin do?") |
|
assert len(docs) >= 1 |
|
assert 'calibre' in docs[0].page_content or 'an arrow pointing' in docs[0].page_content |
|
assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) or \ |
|
'image' in os.path.normpath(docs[0].metadata['source']) |
|
kill_weaviate(db_type) |
|
|
|
|
|
@pytest.mark.parametrize("db_type", db_types) |
|
@wrap_test_forked |
|
def test_docx_add2(db_type): |
|
kill_weaviate(db_type) |
|
from src.make_db import make_db_main |
|
with tempfile.TemporaryDirectory() as tmp_persist_directory: |
|
with tempfile.TemporaryDirectory() as tmp_user_path: |
|
shutil.copy('tests/table_as_image.docx', tmp_user_path) |
|
test_file1 = os.path.join(tmp_user_path, 'demo.docx') |
|
db, collection_name = make_db_main(persist_directory=tmp_persist_directory, user_path=tmp_user_path, |
|
fail_any_exception=True, db_type=db_type, |
|
llava_model=os.getenv('H2OGPT_LLAVA_MODEL'), |
|
enable_doctr=True, |
|
) |
|
assert db is not None |
|
docs = db.similarity_search("Approver 1", k=4) |
|
assert len(docs) >= 1 |
|
assert 'Band D' in docs[0].page_content |
|
assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath( |
|
test_file1) or 'image1.png' in os.path.normpath(docs[0].metadata['source']) |
|
kill_weaviate(db_type) |
|
|
|
|
|
@pytest.mark.parametrize("db_type", db_types) |
|
@wrap_test_forked |
|
def test_xls_add(db_type): |
|
kill_weaviate(db_type) |
|
from src.make_db import make_db_main |
|
with tempfile.TemporaryDirectory() as tmp_persist_directory: |
|
with tempfile.TemporaryDirectory() as tmp_user_path: |
|
test_file1 = os.path.join(tmp_user_path, 'example.xlsx') |
|
shutil.copy('data/example.xlsx', tmp_user_path) |
|
db, collection_name = make_db_main(persist_directory=tmp_persist_directory, user_path=tmp_user_path, |
|
fail_any_exception=True, db_type=db_type) |
|
assert db is not None |
|
docs = db.similarity_search("What is Profit?") |
|
assert len(docs) >= 1 |
|
assert '16185' in docs[0].page_content or \ |
|
'Small Business' in docs[0].page_content or \ |
|
'United States of America' in docs[0].page_content |
|
assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) |
|
kill_weaviate(db_type) |
|
|
|
|
|
@pytest.mark.parametrize("db_type", db_types) |
|
@wrap_test_forked |
|
def test_md_add(db_type): |
|
kill_weaviate(db_type) |
|
from src.make_db import make_db_main |
|
with tempfile.TemporaryDirectory() as tmp_persist_directory: |
|
with tempfile.TemporaryDirectory() as tmp_user_path: |
|
test_file1 = 'README.md' |
|
if not os.path.isfile(test_file1): |
|
|
|
test_file1 = '../README.md' |
|
test_file1 = os.path.abspath(test_file1) |
|
shutil.copy(test_file1, tmp_user_path) |
|
test_file1 = os.path.join(tmp_user_path, os.path.basename(test_file1)) |
|
db, collection_name = make_db_main(persist_directory=tmp_persist_directory, user_path=tmp_user_path, |
|
fail_any_exception=True, db_type=db_type) |
|
assert db is not None |
|
docs = db.similarity_search("What is h2oGPT?") |
|
assert len(docs) >= 1 |
|
assert 'Query and summarize your documents' in docs[1].page_content or 'document Q/A' in docs[ |
|
1].page_content or 'go to your browser by visiting' in docs[1].page_content |
|
assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) |
|
kill_weaviate(db_type) |
|
|
|
|
|
@pytest.mark.parametrize("db_type", db_types) |
|
@wrap_test_forked |
|
def test_rst_add(db_type): |
|
kill_weaviate(db_type) |
|
from src.make_db import make_db_main |
|
with tempfile.TemporaryDirectory() as tmp_persist_directory: |
|
with tempfile.TemporaryDirectory() as tmp_user_path: |
|
url = 'https://gist.githubusercontent.com/javiertejero/4585196/raw/21786e2145c0cc0a202ffc4f257f99c26985eaea/README.rst' |
|
test_file1 = os.path.join(tmp_user_path, 'demo.rst') |
|
download_simple(url, dest=test_file1) |
|
test_file1 = os.path.join(tmp_user_path, os.path.basename(test_file1)) |
|
db, collection_name = make_db_main(persist_directory=tmp_persist_directory, user_path=tmp_user_path, |
|
fail_any_exception=True, db_type=db_type) |
|
assert db is not None |
|
docs = db.similarity_search("Font Faces - Emphasis and Examples") |
|
assert len(docs) >= 1 |
|
assert 'Within paragraphs, inline markup' in docs[0].page_content |
|
assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) |
|
kill_weaviate(db_type) |
|
|
|
|
|
@pytest.mark.parametrize("db_type", db_types) |
|
@wrap_test_forked |
|
def test_xml_add(db_type): |
|
kill_weaviate(db_type) |
|
from src.make_db import make_db_main |
|
with tempfile.TemporaryDirectory() as tmp_persist_directory: |
|
with tempfile.TemporaryDirectory() as tmp_user_path: |
|
url = 'https://gist.githubusercontent.com/theresajayne/1409545/raw/a8b46e7799805e86f4339172c9778fa55afb0f30/gistfile1.txt' |
|
test_file1 = os.path.join(tmp_user_path, 'demo.xml') |
|
download_simple(url, dest=test_file1) |
|
test_file1 = os.path.join(tmp_user_path, os.path.basename(test_file1)) |
|
db, collection_name = make_db_main(persist_directory=tmp_persist_directory, user_path=tmp_user_path, |
|
fail_any_exception=True, db_type=db_type) |
|
assert db is not None |
|
docs = db.similarity_search("Entrance Hall") |
|
assert len(docs) >= 1 |
|
assert 'Ensuite Bathroom' in docs[0].page_content |
|
assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) |
|
kill_weaviate(db_type) |
|
|
|
|
|
@pytest.mark.parametrize("db_type", db_types) |
|
@wrap_test_forked |
|
def test_eml_add(db_type): |
|
kill_weaviate(db_type) |
|
from src.make_db import make_db_main |
|
with tempfile.TemporaryDirectory() as tmp_persist_directory: |
|
with tempfile.TemporaryDirectory() as tmp_user_path: |
|
test_file1 = os.path.join(tmp_user_path, 'sample.eml') |
|
shutil.copy('tests/sample.eml', test_file1) |
|
db, collection_name = make_db_main(persist_directory=tmp_persist_directory, user_path=tmp_user_path, |
|
fail_any_exception=True, db_type=db_type, |
|
add_if_exists=False) |
|
assert db is not None |
|
docs = db.similarity_search("What is subject?") |
|
assert len(docs) >= 1 |
|
assert 'testtest' in docs[0].page_content |
|
assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) |
|
kill_weaviate(db_type) |
|
|
|
|
|
@pytest.mark.parametrize("db_type", db_types) |
|
@wrap_test_forked |
|
def test_simple_eml_add(db_type): |
|
kill_weaviate(db_type) |
|
from src.make_db import make_db_main |
|
with tempfile.TemporaryDirectory() as tmp_persist_directory: |
|
with tempfile.TemporaryDirectory() as tmp_user_path: |
|
html_content = """ |
|
Date: Sun, 1 Apr 2012 14:25:25 -0600 |
|
From: [email protected] |
|
Subject: Welcome |
|
To: [email protected] |
|
|
|
Dear Friend, |
|
|
|
Welcome to file.fyicenter.com! |
|
|
|
Sincerely, |
|
FYIcenter.com Team""" |
|
test_file1 = os.path.join(tmp_user_path, 'test.eml') |
|
with open(test_file1, "wt") as f: |
|
f.write(html_content) |
|
db, collection_name = make_db_main(persist_directory=tmp_persist_directory, user_path=tmp_user_path, |
|
fail_any_exception=True, db_type=db_type, |
|
add_if_exists=False) |
|
assert db is not None |
|
docs = db.similarity_search("Subject") |
|
assert len(docs) >= 1 |
|
assert 'Welcome' in docs[0].page_content |
|
assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) |
|
kill_weaviate(db_type) |
|
|
|
|
|
@pytest.mark.parametrize("db_type", db_types) |
|
@wrap_test_forked |
|
def test_odt_add(db_type): |
|
kill_weaviate(db_type) |
|
from src.make_db import make_db_main |
|
with tempfile.TemporaryDirectory() as tmp_persist_directory: |
|
with tempfile.TemporaryDirectory() as tmp_user_path: |
|
url = 'https://github.com/owncloud/example-files/raw/master/Documents/Example.odt' |
|
test_file1 = os.path.join(tmp_user_path, 'sample.odt') |
|
download_simple(url, dest=test_file1) |
|
db, collection_name = make_db_main(persist_directory=tmp_persist_directory, user_path=tmp_user_path, |
|
fail_any_exception=True, db_type=db_type) |
|
assert db is not None |
|
docs = db.similarity_search("What is ownCloud?") |
|
assert len(docs) >= 1 |
|
assert 'ownCloud' in docs[0].page_content |
|
assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) |
|
kill_weaviate(db_type) |
|
|
|
|
|
@pytest.mark.parametrize("db_type", db_types) |
|
@wrap_test_forked |
|
def test_pptx_add(db_type): |
|
kill_weaviate(db_type) |
|
from src.make_db import make_db_main |
|
with tempfile.TemporaryDirectory() as tmp_persist_directory: |
|
with tempfile.TemporaryDirectory() as tmp_user_path: |
|
url = 'https://www.unm.edu/~unmvclib/powerpoint/pptexamples.ppt' |
|
test_file1 = os.path.join(tmp_user_path, 'sample.pptx') |
|
download_simple(url, dest=test_file1) |
|
db, collection_name = make_db_main(persist_directory=tmp_persist_directory, user_path=tmp_user_path, |
|
fail_any_exception=True, db_type=db_type, |
|
add_if_exists=False) |
|
assert db is not None |
|
docs = db.similarity_search("Suggestions") |
|
assert len(docs) >= 1 |
|
assert 'Presentation' in docs[0].page_content |
|
assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) |
|
kill_weaviate(db_type) |
|
|
|
|
|
@pytest.mark.parametrize("use_pypdf", ['auto', 'on', 'off']) |
|
@pytest.mark.parametrize("use_unstructured_pdf", ['auto', 'on', 'off']) |
|
@pytest.mark.parametrize("use_pymupdf", ['auto', 'on', 'off']) |
|
@pytest.mark.parametrize("enable_pdf_doctr", ['auto', 'on', 'off']) |
|
@pytest.mark.parametrize("enable_pdf_ocr", ['auto', 'on', 'off']) |
|
@pytest.mark.parametrize("db_type", db_types) |
|
@wrap_test_forked |
|
def test_pdf_add(db_type, enable_pdf_ocr, enable_pdf_doctr, use_pymupdf, use_unstructured_pdf, use_pypdf): |
|
kill_weaviate(db_type) |
|
from src.make_db import make_db_main |
|
with tempfile.TemporaryDirectory() as tmp_persist_directory: |
|
with tempfile.TemporaryDirectory() as tmp_user_path: |
|
if True: |
|
if False: |
|
url = 'https://www.africau.edu/images/default/sample.pdf' |
|
test_file1 = os.path.join(tmp_user_path, 'sample.pdf') |
|
download_simple(url, dest=test_file1) |
|
else: |
|
test_file1 = os.path.join(tmp_user_path, 'sample2.pdf') |
|
shutil.copy(os.path.join('tests', 'sample.pdf'), test_file1) |
|
else: |
|
if False: |
|
name = 'CityofTshwaneWater.pdf' |
|
location = "tests" |
|
else: |
|
name = '555_593.pdf' |
|
location = '/home/jon/Downloads/' |
|
|
|
test_file1 = os.path.join(location, name) |
|
shutil.copy(test_file1, tmp_user_path) |
|
test_file1 = os.path.join(tmp_user_path, name) |
|
|
|
default_mode = use_pymupdf in ['auto', 'on'] and \ |
|
use_pypdf in ['auto'] and \ |
|
use_unstructured_pdf in ['auto'] and \ |
|
enable_pdf_doctr in ['off', 'auto'] and \ |
|
enable_pdf_ocr in ['off', 'auto'] |
|
no_doc_mode = use_pymupdf in ['off'] and \ |
|
use_pypdf in ['off'] and \ |
|
use_unstructured_pdf in ['off'] and \ |
|
enable_pdf_doctr in ['off'] and \ |
|
enable_pdf_ocr in ['off', 'auto'] |
|
|
|
try: |
|
db, collection_name = make_db_main(persist_directory=tmp_persist_directory, user_path=tmp_user_path, |
|
fail_any_exception=True, db_type=db_type, |
|
use_pymupdf=use_pymupdf, |
|
enable_pdf_ocr=enable_pdf_ocr, |
|
enable_pdf_doctr=enable_pdf_doctr, |
|
use_unstructured_pdf=use_unstructured_pdf, |
|
use_pypdf=use_pypdf, |
|
add_if_exists=False) |
|
except Exception as e: |
|
if 'had no valid text and no meta data was parsed' in str( |
|
e) or 'had no valid text, but meta data was parsed' in str(e): |
|
if no_doc_mode: |
|
return |
|
else: |
|
raise |
|
raise |
|
|
|
assert db is not None |
|
docs = db.similarity_search("Suggestions") |
|
if default_mode: |
|
assert len(docs) >= 1 |
|
else: |
|
|
|
assert len(docs) >= 1 |
|
assert 'And more text. And more text.' in docs[0].page_content |
|
if db_type == 'weaviate': |
|
assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) or os.path.basename( |
|
docs[0].metadata['source']) == os.path.basename(test_file1) |
|
else: |
|
assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) |
|
kill_weaviate(db_type) |
|
|
|
|
|
@pytest.mark.parametrize("use_pypdf", ['auto', 'on', 'off']) |
|
@pytest.mark.parametrize("use_unstructured_pdf", ['auto', 'on', 'off']) |
|
@pytest.mark.parametrize("use_pymupdf", ['auto', 'on', 'off']) |
|
@pytest.mark.parametrize("enable_pdf_doctr", ['auto', 'on', 'off']) |
|
@pytest.mark.parametrize("enable_pdf_ocr", ['auto', 'on', 'off']) |
|
@pytest.mark.parametrize("db_type", db_types) |
|
@wrap_test_forked |
|
def test_image_pdf_add(db_type, enable_pdf_ocr, enable_pdf_doctr, use_pymupdf, use_unstructured_pdf, use_pypdf): |
|
if enable_pdf_ocr == 'off' and not enable_pdf_doctr: |
|
return |
|
kill_weaviate(db_type) |
|
from src.make_db import make_db_main |
|
with tempfile.TemporaryDirectory() as tmp_persist_directory: |
|
with tempfile.TemporaryDirectory() as tmp_user_path: |
|
name = 'CityofTshwaneWater.pdf' |
|
location = "tests" |
|
test_file1 = os.path.join(location, name) |
|
shutil.copy(test_file1, tmp_user_path) |
|
test_file1 = os.path.join(tmp_user_path, name) |
|
|
|
str_test = [db_type, enable_pdf_ocr, enable_pdf_doctr, use_pymupdf, use_unstructured_pdf, use_pypdf] |
|
str_test = [str(x) for x in str_test] |
|
str_test = '-'.join(str_test) |
|
|
|
default_mode = use_pymupdf in ['auto', 'on'] and \ |
|
use_pypdf in ['off', 'auto'] and \ |
|
use_unstructured_pdf in ['auto'] and \ |
|
enable_pdf_doctr in ['off', 'auto'] and \ |
|
enable_pdf_ocr in ['off', 'auto'] |
|
no_doc_mode = use_pymupdf in ['off'] and \ |
|
use_pypdf in ['off'] and \ |
|
use_unstructured_pdf in ['off'] and \ |
|
enable_pdf_doctr in ['off'] and \ |
|
enable_pdf_ocr in ['off', 'auto'] |
|
no_docs = ['off-off-auto-off-auto', 'off-off-on-off-on', 'off-off-auto-off-off', 'off-off-off-off-auto', |
|
'off-off-on-off-off', 'off-off-on-off-auto', 'off-off-auto-off-on', 'off-off-off-off-on', |
|
|
|
] |
|
no_doc_mode |= any([x in str_test for x in no_docs]) |
|
|
|
try: |
|
db, collection_name = make_db_main(persist_directory=tmp_persist_directory, user_path=tmp_user_path, |
|
fail_any_exception=True, db_type=db_type, |
|
use_pymupdf=use_pymupdf, |
|
enable_pdf_ocr=enable_pdf_ocr, |
|
enable_pdf_doctr=enable_pdf_doctr, |
|
use_unstructured_pdf=use_unstructured_pdf, |
|
use_pypdf=use_pypdf, |
|
add_if_exists=False) |
|
except Exception as e: |
|
if 'had no valid text and no meta data was parsed' in str( |
|
e) or 'had no valid text, but meta data was parsed' in str(e): |
|
if no_doc_mode: |
|
return |
|
else: |
|
raise |
|
raise |
|
|
|
if default_mode: |
|
assert db is not None |
|
docs = db.similarity_search("List Tshwane's concerns about water.") |
|
assert len(docs) >= 1 |
|
assert 'we appeal to residents that do have water to please use it sparingly.' in docs[ |
|
1].page_content or 'OFFICE OF THE MMC FOR UTILITIES AND REGIONAL' in docs[1].page_content |
|
else: |
|
|
|
assert db is not None |
|
docs = db.similarity_search("List Tshwane's concerns about water.") |
|
assert len(docs) >= 1 |
|
assert docs[0].page_content |
|
assert docs[1].page_content |
|
if db_type == 'weaviate': |
|
assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) or os.path.basename( |
|
docs[0].metadata['source']) == os.path.basename(test_file1) |
|
else: |
|
assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) |
|
kill_weaviate(db_type) |
|
|
|
|
|
@pytest.mark.parametrize("db_type", db_types) |
|
@wrap_test_forked |
|
def test_simple_pptx_add(db_type): |
|
kill_weaviate(db_type) |
|
from src.make_db import make_db_main |
|
with tempfile.TemporaryDirectory() as tmp_persist_directory: |
|
with tempfile.TemporaryDirectory() as tmp_user_path: |
|
url = 'https://www.suu.edu/webservices/styleguide/example-files/example.pptx' |
|
test_file1 = os.path.join(tmp_user_path, 'sample.pptx') |
|
download_simple(url, dest=test_file1) |
|
db, collection_name = make_db_main(persist_directory=tmp_persist_directory, user_path=tmp_user_path, |
|
fail_any_exception=True, db_type=db_type, |
|
add_if_exists=False) |
|
assert db is not None |
|
docs = db.similarity_search("Example") |
|
assert len(docs) >= 1 |
|
assert 'Powerpoint' in docs[0].page_content |
|
assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) |
|
kill_weaviate(db_type) |
|
|
|
|
|
@pytest.mark.parametrize("db_type", db_types) |
|
@wrap_test_forked |
|
def test_epub_add(db_type): |
|
kill_weaviate(db_type) |
|
from src.make_db import make_db_main |
|
with tempfile.TemporaryDirectory() as tmp_persist_directory: |
|
with tempfile.TemporaryDirectory() as tmp_user_path: |
|
url = 'https://contentserver.adobe.com/store/books/GeographyofBliss_oneChapter.epub' |
|
test_file1 = os.path.join(tmp_user_path, 'sample.epub') |
|
download_simple(url, dest=test_file1) |
|
db, collection_name = make_db_main(persist_directory=tmp_persist_directory, user_path=tmp_user_path, |
|
fail_any_exception=True, db_type=db_type, |
|
add_if_exists=False) |
|
assert db is not None |
|
docs = db.similarity_search("Grump") |
|
assert len(docs) >= 1 |
|
assert 'happy' in docs[0].page_content or 'happiness' in docs[0].page_content |
|
assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) |
|
kill_weaviate(db_type) |
|
|
|
|
|
@pytest.mark.skip(reason="Not supported, GPL3, and msg-extractor code fails too often") |
|
@pytest.mark.xfail(strict=False, |
|
reason="fails with AttributeError: 'Message' object has no attribute '_MSGFile__stringEncoding'. Did you mean: '_MSGFile__overrideEncoding'? even though can use online converter to .eml fine.") |
|
@pytest.mark.parametrize("db_type", db_types) |
|
@wrap_test_forked |
|
def test_msg_add(db_type): |
|
kill_weaviate(db_type) |
|
from src.make_db import make_db_main |
|
with tempfile.TemporaryDirectory() as tmp_persist_directory: |
|
with tempfile.TemporaryDirectory() as tmp_user_path: |
|
url = 'http://file.fyicenter.com/b/sample.msg' |
|
test_file1 = os.path.join(tmp_user_path, 'sample.msg') |
|
download_simple(url, dest=test_file1) |
|
db, collection_name = make_db_main(persist_directory=tmp_persist_directory, user_path=tmp_user_path, |
|
fail_any_exception=True, db_type=db_type) |
|
assert db is not None |
|
docs = db.similarity_search("Grump") |
|
assert len(docs) >= 1 |
|
assert 'Happy' in docs[0].page_content |
|
assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) |
|
kill_weaviate(db_type) |
|
|
|
|
|
os.system('cd tests ; unzip -o driverslicense.jpeg.zip') |
|
|
|
|
|
@pytest.mark.parametrize("file", ['data/pexels-evg-kowalievska-1170986_small.jpg', |
|
'data/Sample-Invoice-printable.png', |
|
'tests/driverslicense.jpeg.zip', |
|
'tests/driverslicense.jpeg']) |
|
@pytest.mark.parametrize("db_type", db_types) |
|
@pytest.mark.parametrize("enable_pix2struct", [False, True]) |
|
@pytest.mark.parametrize("enable_doctr", [False, True]) |
|
@pytest.mark.parametrize("enable_ocr", [False, True]) |
|
@pytest.mark.parametrize("enable_captions", [False, True]) |
|
@pytest.mark.parametrize("pre_load_image_audio_models", [False, True]) |
|
@pytest.mark.parametrize("caption_gpu", [False, True]) |
|
@pytest.mark.parametrize("captions_model", [None, 'microsoft/Florence-2-large']) |
|
@wrap_test_forked |
|
@pytest.mark.parallel10 |
|
def test_png_add(captions_model, caption_gpu, pre_load_image_audio_models, enable_captions, |
|
enable_doctr, enable_pix2struct, enable_ocr, db_type, file): |
|
if not have_gpus and caption_gpu: |
|
|
|
return |
|
if not caption_gpu and captions_model == 'microsoft/Florence-2-large': |
|
|
|
return |
|
if not enable_captions and pre_load_image_audio_models: |
|
|
|
return |
|
if captions_model == 'microsoft/Florence-2-large' and not (have_gpus and mem_gpus[0] > 20 * 1024 ** 3): |
|
|
|
return |
|
if not (enable_ocr or enable_doctr or enable_pix2struct or enable_captions): |
|
|
|
return |
|
|
|
if enable_pix2struct and ( |
|
pre_load_image_audio_models or enable_captions or enable_ocr or enable_doctr or captions_model or caption_gpu): |
|
return |
|
if enable_pix2struct and 'kowalievska' in file: |
|
|
|
return |
|
kill_weaviate(db_type) |
|
try: |
|
return run_png_add(captions_model=captions_model, caption_gpu=caption_gpu, |
|
pre_load_image_audio_models=pre_load_image_audio_models, |
|
enable_captions=enable_captions, |
|
enable_ocr=enable_ocr, |
|
enable_doctr=enable_doctr, |
|
enable_pix2struct=enable_pix2struct, |
|
db_type=db_type, |
|
file=file) |
|
except Exception as e: |
|
if not enable_captions and 'data/pexels-evg-kowalievska-1170986_small.jpg' in file and 'had no valid text and no meta data was parsed' in str( |
|
e): |
|
pass |
|
else: |
|
raise |
|
kill_weaviate(db_type) |
|
|
|
|
|
def run_png_add(captions_model=None, caption_gpu=False, |
|
pre_load_image_audio_models=False, |
|
enable_captions=True, |
|
enable_ocr=False, |
|
enable_doctr=False, |
|
enable_pix2struct=False, |
|
db_type='chroma', |
|
file='data/pexels-evg-kowalievska-1170986_small.jpg'): |
|
from src.make_db import make_db_main |
|
with tempfile.TemporaryDirectory() as tmp_persist_directory: |
|
with tempfile.TemporaryDirectory() as tmp_user_path: |
|
test_file1 = file |
|
if not os.path.isfile(test_file1): |
|
|
|
test_file1 = os.path.join('../', file) |
|
assert os.path.isfile(test_file1) |
|
test_file1 = os.path.abspath(test_file1) |
|
shutil.copy(test_file1, tmp_user_path) |
|
test_file1 = os.path.join(tmp_user_path, os.path.basename(test_file1)) |
|
db, collection_name = make_db_main(persist_directory=tmp_persist_directory, user_path=tmp_user_path, |
|
fail_any_exception=True, |
|
enable_ocr=enable_ocr, |
|
enable_pdf_ocr='auto', |
|
enable_pdf_doctr=False, |
|
caption_gpu=caption_gpu, |
|
pre_load_image_audio_models=pre_load_image_audio_models, |
|
captions_model=captions_model, |
|
enable_captions=enable_captions, |
|
enable_doctr=enable_doctr, |
|
enable_pix2struct=enable_pix2struct, |
|
db_type=db_type, |
|
add_if_exists=False, |
|
fail_if_no_sources=False) |
|
if (enable_captions or enable_pix2struct) and not enable_doctr and not enable_ocr: |
|
if 'kowalievska' in file: |
|
docs = db.similarity_search("cat", k=10) |
|
assert len(docs) >= 1 |
|
assert 'cat sitting' in docs[0].page_content |
|
check_source(docs, test_file1) |
|
elif 'Sample-Invoice-printable' in file: |
|
docs = db.similarity_search("invoice", k=10) |
|
assert len(docs) >= 1 |
|
|
|
assert 'plumbing' in docs[0].page_content.lower() or 'invoice' in docs[0].page_content.lower() |
|
check_source(docs, test_file1) |
|
else: |
|
docs = db.similarity_search("license", k=10) |
|
assert len(docs) >= 1 |
|
check_content_captions(docs, captions_model, enable_pix2struct) |
|
check_source(docs, test_file1) |
|
elif not (enable_captions or enable_pix2struct) and not enable_doctr and enable_ocr: |
|
if 'kowalievska' in file: |
|
assert db is None |
|
elif 'Sample-Invoice-printable' in file: |
|
|
|
assert db is not None |
|
else: |
|
docs = db.similarity_search("license", k=10) |
|
assert len(docs) >= 1 |
|
check_content_ocr(docs) |
|
check_source(docs, test_file1) |
|
elif not (enable_captions or enable_pix2struct) and enable_doctr and not enable_ocr: |
|
if 'kowalievska' in file: |
|
assert db is None |
|
elif 'Sample-Invoice-printable' in file: |
|
|
|
assert db is not None |
|
else: |
|
docs = db.similarity_search("license", k=10) |
|
assert len(docs) >= 1 |
|
check_content_doctr(docs) |
|
check_source(docs, test_file1) |
|
elif not (enable_captions or enable_pix2struct) and enable_doctr and enable_ocr: |
|
if 'kowalievska' in file: |
|
assert db is None |
|
elif 'Sample-Invoice-printable' in file: |
|
|
|
assert db is not None |
|
else: |
|
docs = db.similarity_search("license", k=10) |
|
assert len(docs) >= 1 |
|
check_content_doctr(docs) |
|
check_content_ocr(docs) |
|
check_source(docs, test_file1) |
|
elif (enable_captions or enable_pix2struct) and not enable_doctr and enable_ocr: |
|
if 'kowalievska' in file: |
|
docs = db.similarity_search("cat", k=10) |
|
assert len(docs) >= 1 |
|
assert 'cat sitting' in docs[0].page_content |
|
check_source(docs, test_file1) |
|
elif 'Sample-Invoice-printable' in file: |
|
|
|
assert db is not None |
|
else: |
|
docs = db.similarity_search("license", k=10) |
|
assert len(docs) >= 1 |
|
check_content_ocr(docs) |
|
check_content_captions(docs, captions_model, enable_pix2struct) |
|
check_source(docs, test_file1) |
|
elif (enable_captions or enable_pix2struct) and enable_doctr and not enable_ocr: |
|
if 'kowalievska' in file: |
|
docs = db.similarity_search("cat", k=10) |
|
assert len(docs) >= 1 |
|
assert 'cat sitting' in docs[0].page_content |
|
check_source(docs, test_file1) |
|
elif 'Sample-Invoice-printable' in file: |
|
|
|
assert db is not None |
|
else: |
|
docs = db.similarity_search("license", k=10) |
|
assert len(docs) >= 1 |
|
check_content_doctr(docs) |
|
check_content_captions(docs, captions_model, enable_pix2struct) |
|
check_source(docs, test_file1) |
|
elif (enable_captions or enable_pix2struct) and enable_doctr and enable_ocr: |
|
if 'kowalievska' in file: |
|
docs = db.similarity_search("cat", k=10) |
|
assert len(docs) >= 1 |
|
assert 'cat sitting' in docs[0].page_content |
|
check_source(docs, test_file1) |
|
elif 'Sample-Invoice-printable' in file: |
|
|
|
assert db is not None |
|
else: |
|
if db_type == 'chroma': |
|
assert len(db.get()['documents']) >= 4 |
|
docs = db.similarity_search("license", k=10) |
|
|
|
assert len(docs) >= 1 |
|
check_content_ocr(docs) |
|
|
|
check_content_captions(docs, captions_model, enable_pix2struct) |
|
check_source(docs, test_file1) |
|
else: |
|
raise NotImplementedError() |
|
|
|
|
|
def check_content_captions(docs, captions_model, enable_pix2struct): |
|
assert any(['license' in docs[ix].page_content.lower() for ix in range(len(docs))]) |
|
if captions_model is not None and 'florence' in captions_model: |
|
str_expected = """The image shows a California driver's license with a picture of a woman's face on it.""" |
|
str_expected2 = """The image is a California driver's license.""" |
|
elif enable_pix2struct: |
|
str_expected2 = str_expected = """california license""" |
|
else: |
|
str_expected = """The image shows a California driver's license with a picture of a woman's face on it.""" |
|
str_expected2 = """The image is a California driver's license.""" |
|
assert any([str_expected.lower() in docs[ix].page_content.lower() for ix in range(len(docs))]) or \ |
|
any([str_expected2.lower() in docs[ix].page_content.lower() for ix in range(len(docs))]) |
|
|
|
|
|
def check_content_doctr(docs): |
|
assert any(['DRIVER LICENSE' in docs[ix].page_content for ix in range(len(docs))]) |
|
assert any(['California' in docs[ix].page_content for ix in range(len(docs))]) |
|
assert any(['ExP08/31/2014' in docs[ix].page_content for ix in range(len(docs))]) |
|
assert any(['VETERAN' in docs[ix].page_content for ix in range(len(docs))]) |
|
|
|
|
|
def check_content_ocr(docs): |
|
|
|
|
|
|
|
assert any(['DRIVER LICENSE' in docs[ix].page_content for ix in range(len(docs))]) |
|
|
|
|
|
def check_source(docs, test_file1): |
|
if test_file1.endswith('.zip'): |
|
|
|
|
|
assert os.path.basename(os.path.normpath(test_file1)) in os.path.normpath(docs[0].metadata['source']) |
|
else: |
|
assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) |
|
|
|
|
|
@pytest.mark.parametrize("image_file", ['./models/anthropic.png', 'data/pexels-evg-kowalievska-1170986_small.jpg']) |
|
@pytest.mark.parametrize("db_type", db_types) |
|
@wrap_test_forked |
|
def test_caption_add(image_file, db_type): |
|
kill_weaviate(db_type) |
|
from src.make_db import make_db_main |
|
with tempfile.TemporaryDirectory() as tmp_persist_directory: |
|
with tempfile.TemporaryDirectory() as tmp_user_path: |
|
file = os.path.basename(image_file) |
|
test_file1 = os.path.join(tmp_user_path, file) |
|
shutil.copy(image_file, test_file1) |
|
|
|
db, collection_name = make_db_main(persist_directory=tmp_persist_directory, user_path=tmp_user_path, |
|
fail_any_exception=True, db_type=db_type, |
|
add_if_exists=False, |
|
enable_llava=True, |
|
llava_model=os.getenv('H2OGPT_LLAVA_MODEL'), |
|
llava_prompt=None, |
|
enable_doctr=False, |
|
enable_captions=False, |
|
enable_ocr=False, |
|
enable_transcriptions=False, |
|
enable_pdf_ocr=False, |
|
enable_pdf_doctr=False, |
|
enable_pix2struct=False, |
|
) |
|
assert db is not None |
|
if 'anthropic' in image_file: |
|
docs = db.similarity_search("circle") |
|
assert len(docs) >= 1 |
|
assert 'AI' in docs[0].page_content |
|
else: |
|
docs = db.similarity_search("cat") |
|
assert len(docs) >= 1 |
|
assert 'cat' in docs[0].page_content |
|
assert 'window' in docs[0].page_content or 'outdoors' in docs[0].page_content or 'outside' in docs[ |
|
0].page_content |
|
assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) |
|
kill_weaviate(db_type) |
|
|
|
|
|
@pytest.mark.parametrize("db_type", db_types) |
|
@wrap_test_forked |
|
def test_simple_rtf_add(db_type): |
|
kill_weaviate(db_type) |
|
from src.make_db import make_db_main |
|
with tempfile.TemporaryDirectory() as tmp_persist_directory: |
|
with tempfile.TemporaryDirectory() as tmp_user_path: |
|
rtf_content = """ |
|
{\rtf1\mac\deff2 {\fonttbl{\f0\fswiss Chicago;}{\f2\froman New York;}{\f3\fswiss Geneva;}{\f4\fmodern Monaco;}{\f11\fnil Cairo;}{\f13\fnil Zapf Dingbats;}{\f16\fnil Palatino;}{\f18\fnil Zapf Chancery;}{\f20\froman Times;}{\f21\fswiss Helvetica;} |
|
{\f22\fmodern Courier;}{\f23\ftech Symbol;}{\f24\fnil Mobile;}{\f100\fnil FoxFont;}{\f107\fnil MathMeteor;}{\f164\fnil Futura;}{\f1024\fnil American Heritage;}{\f2001\fnil Arial;}{\f2005\fnil Courier New;}{\f2010\fnil Times New Roman;} |
|
{\f2011\fnil Wingdings;}{\f2515\fnil MT Extra;}{\f3409\fnil FoxPrint;}{\f11132\fnil InsigniaLQmono;}{\f11133\fnil InsigniaLQprop;}{\f14974\fnil LB Helvetica Black;}{\f14976\fnil L Helvetica Light;}}{\colortbl\red0\green0\blue0;\red0\green0\blue255; |
|
\red0\green255\blue255;\red0\green255\blue0;\red255\green0\blue255;\red255\green0\blue0;\red255\green255\blue0;\red255\green255\blue255;}{\stylesheet{\f4\fs18 \sbasedon222\snext0 Normal;}}{\info{\title samplepostscript.msw}{\author |
|
Computer Science Department}}\widowctrl\ftnbj \sectd \sbknone\linemod0\linex0\cols1\endnhere \pard\plain \qc \f4\fs18 {\plain \b\f21 Sample Rich Text Format Document\par |
|
}\pard {\plain \f20 \par |
|
}\pard \ri-80\sl-720\keep\keepn\absw570 {\caps\f20\fs92\dn6 T}{\plain \f20 \par |
|
}\pard \qj {\plain \f20 his is a sample rich text format (RTF), document. This document was created using Microsoft Word and then printing the document to a RTF file. It illustrates the very basic text formatting effects that can be achieved using RTF. |
|
\par |
|
\par |
|
}\pard \qj\li1440\ri1440\box\brdrs \shading1000 {\plain \f20 RTF }{\plain \b\f20 contains codes for producing advanced editing effects. Such as this indented, boxed, grayed background, entirely boldfaced paragraph.\par |
|
}\pard \qj {\plain \f20 \par |
|
Microsoft Word developed RTF for document transportability and gives a user access to the complete set of the effects that can be achieved using RTF. \par |
|
}} |
|
""" |
|
test_file1 = os.path.join(tmp_user_path, 'test.rtf') |
|
with open(test_file1, "wt") as f: |
|
f.write(rtf_content) |
|
db, collection_name = make_db_main(persist_directory=tmp_persist_directory, user_path=tmp_user_path, |
|
fail_any_exception=True, db_type=db_type, |
|
add_if_exists=False) |
|
assert db is not None |
|
docs = db.similarity_search("How was this document created?") |
|
assert len(docs) >= 1 |
|
assert 'Microsoft' in docs[0].page_content |
|
assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) |
|
kill_weaviate(db_type) |
|
|
|
|
|
|
|
@pytest.mark.parametrize("db_type", ['chroma']) |
|
@wrap_test_forked |
|
def test_url_more_add(db_type): |
|
kill_weaviate(db_type) |
|
from src.make_db import make_db_main |
|
with tempfile.TemporaryDirectory() as tmp_persist_directory: |
|
url = 'https://edition.cnn.com/2023/08/19/europe/ukraine-f-16s-counteroffensive-intl/index.html' |
|
db, collection_name = make_db_main(persist_directory=tmp_persist_directory, url=url, fail_any_exception=True, |
|
db_type=db_type) |
|
assert db is not None |
|
docs = db.similarity_search("Ukraine") |
|
assert len(docs) >= 1 |
|
assert 'Ukraine' in docs[0].page_content |
|
kill_weaviate(db_type) |
|
|
|
|
|
json_data = { |
|
"quiz": { |
|
"sport": { |
|
"q1": { |
|
"question": "Which one is correct team name in NBA?", |
|
"options": [ |
|
"New York Bulls", |
|
"Los Angeles Kings", |
|
"Golden State Warriros", |
|
"Huston Rocket" |
|
], |
|
"answer": "Huston Rocket" |
|
} |
|
}, |
|
"maths": { |
|
"q1": { |
|
"question": "5 + 7 = ?", |
|
"options": [ |
|
"10", |
|
"11", |
|
"12", |
|
"13" |
|
], |
|
"answer": "12" |
|
}, |
|
"q2": { |
|
"question": "12 - 8 = ?", |
|
"options": [ |
|
"1", |
|
"2", |
|
"3", |
|
"4" |
|
], |
|
"answer": "4" |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
@pytest.mark.parametrize("db_type", db_types) |
|
@wrap_test_forked |
|
def test_json_add(db_type): |
|
kill_weaviate(db_type) |
|
from src.make_db import make_db_main |
|
with tempfile.TemporaryDirectory() as tmp_persist_directory: |
|
with tempfile.TemporaryDirectory() as tmp_user_path: |
|
|
|
|
|
|
|
test_file1 = os.path.join(tmp_user_path, 'sample.json') |
|
|
|
|
|
with open(test_file1, 'wt') as f: |
|
f.write(json.dumps(json_data)) |
|
|
|
db, collection_name = make_db_main(persist_directory=tmp_persist_directory, user_path=tmp_user_path, |
|
fail_any_exception=True, db_type=db_type, |
|
add_if_exists=False) |
|
assert db is not None |
|
docs = db.similarity_search("NBA") |
|
assert len(docs) >= 1 |
|
assert 'Bulls' in docs[0].page_content |
|
assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1) |
|
kill_weaviate(db_type) |
|
|
|
|
|
@pytest.mark.parametrize("db_type", db_types) |
|
@wrap_test_forked |
|
def test_jsonl_gz_add(db_type): |
|
kill_weaviate(db_type) |
|
from src.make_db import make_db_main |
|
with tempfile.TemporaryDirectory() as tmp_persist_directory: |
|
with tempfile.TemporaryDirectory() as tmp_user_path: |
|
|
|
test_file1 = os.path.join(tmp_user_path, 'sample.jsonl.gz') |
|
|
|
|
|
with gzip.open(test_file1, 'wb') as f: |
|
f.write(json.dumps(json_data).encode()) |
|
|
|
db, collection_name = make_db_main(persist_directory=tmp_persist_directory, user_path=tmp_user_path, |
|
fail_any_exception=True, db_type=db_type, |
|
add_if_exists=False) |
|
assert db is not None |
|
docs = db.similarity_search("NBA") |
|
assert len(docs) >= 1 |
|
assert 'Bulls' in docs[0].page_content |
|
assert os.path.normpath(docs[0].metadata['source']) == os.path.normpath(test_file1).replace('.gz', '') |
|
kill_weaviate(db_type) |
|
|
|
|
|
@wrap_test_forked |
|
def test_url_more_subunit(): |
|
url = 'https://edition.cnn.com/2023/08/19/europe/ukraine-f-16s-counteroffensive-intl/index.html' |
|
from langchain.document_loaders import UnstructuredURLLoader |
|
docs1 = UnstructuredURLLoader(urls=[url]).load() |
|
docs1 = [x for x in docs1 if x.page_content] |
|
assert len(docs1) > 0 |
|
|
|
|
|
url_easy = 'https://github.com/h2oai/h2ogpt' |
|
|
|
from langchain.document_loaders import PlaywrightURLLoader |
|
docs1 = PlaywrightURLLoader(urls=[url_easy]).load() |
|
docs1 = [x for x in docs1 if x.page_content] |
|
assert len(docs1) > 0 |
|
|
|
from langchain.document_loaders import SeleniumURLLoader |
|
docs1 = SeleniumURLLoader(urls=[url_easy]).load() |
|
docs1 = [x for x in docs1 if x.page_content] |
|
assert len(docs1) > 0 |
|
|
|
|
|
@wrap_test_forked |
|
@pytest.mark.parametrize("db_type", db_types_full) |
|
@pytest.mark.parametrize("num", [1000, 100000]) |
|
def test_many_text(db_type, num): |
|
from langchain.docstore.document import Document |
|
|
|
sources = [Document(page_content=str(i)) for i in range(0, num)] |
|
hf_embedding_model = "fake" |
|
|
|
|
|
db = get_db(sources, db_type=db_type, langchain_mode='ManyTextData', hf_embedding_model=hf_embedding_model) |
|
documents = get_documents(db)['documents'] |
|
assert len(documents) == num |
|
|
|
|
|
@pytest.mark.parametrize("db_type", db_types) |
|
@wrap_test_forked |
|
def test_youtube_audio_add(db_type): |
|
kill_weaviate(db_type) |
|
from src.make_db import make_db_main |
|
with tempfile.TemporaryDirectory() as tmp_persist_directory: |
|
with tempfile.TemporaryDirectory() as tmp_user_path: |
|
url = 'https://www.youtube.com/watch?v=cwjs1WAG9CM' |
|
db, collection_name = make_db_main(persist_directory=tmp_persist_directory, url=url, |
|
fail_any_exception=True, db_type=db_type, |
|
add_if_exists=False, |
|
extract_frames=0) |
|
assert db is not None |
|
docs = db.similarity_search("Example") |
|
assert len(docs) >= 1 |
|
assert 'Contrasting this' in docs[0].page_content |
|
assert url in docs[0].metadata['source'] |
|
kill_weaviate(db_type) |
|
|
|
|
|
@pytest.mark.parametrize("db_type", db_types) |
|
@wrap_test_forked |
|
def test_youtube_full_add(db_type): |
|
kill_weaviate(db_type) |
|
from src.make_db import make_db_main |
|
with tempfile.TemporaryDirectory() as tmp_persist_directory: |
|
with tempfile.TemporaryDirectory() as tmp_user_path: |
|
url = 'https://www.youtube.com/shorts/JjdqlglRxrU' |
|
db, collection_name = make_db_main(persist_directory=tmp_persist_directory, url=url, |
|
fail_any_exception=True, db_type=db_type, |
|
add_if_exists=False) |
|
assert db is not None |
|
docs = db.similarity_search("cat") |
|
assert len(docs) >= 1 |
|
assert 'couch' in str([x.page_content for x in docs]) |
|
assert url in docs[0].metadata['source'] or url in docs[0].metadata['original_source'] |
|
docs = db.similarity_search("cat", 100) |
|
assert 'egg' in str([x.page_content for x in docs]) |
|
kill_weaviate(db_type) |
|
|
|
|
|
@pytest.mark.parametrize("db_type", db_types) |
|
@wrap_test_forked |
|
def test_mp3_add(db_type): |
|
kill_weaviate(db_type) |
|
from src.make_db import make_db_main |
|
with tempfile.TemporaryDirectory() as tmp_persist_directory: |
|
with tempfile.TemporaryDirectory() as tmp_user_path: |
|
test_file1 = os.path.join(tmp_user_path, 'sample.mp3.zip') |
|
shutil.copy('tests/porsche.mp3.zip', test_file1) |
|
db, collection_name = make_db_main(persist_directory=tmp_persist_directory, user_path=tmp_user_path, |
|
fail_any_exception=True, db_type=db_type) |
|
assert db is not None |
|
docs = db.similarity_search("Porsche") |
|
assert len(docs) >= 1 |
|
assert 'Porsche Macan' in docs[0].page_content |
|
assert 'porsche.mp3' in os.path.normpath(docs[0].metadata['source']) |
|
kill_weaviate(db_type) |
|
|
|
|
|
@pytest.mark.parametrize("db_type", db_types) |
|
@wrap_test_forked |
|
def test_mp4_add(db_type): |
|
kill_weaviate(db_type) |
|
from src.make_db import make_db_main |
|
with tempfile.TemporaryDirectory() as tmp_persist_directory: |
|
with tempfile.TemporaryDirectory() as tmp_user_path: |
|
url = 'https://h2o-release.s3.amazonaws.com/h2ogpt/iG_jeMeUPBnUO6sx.mp4' |
|
test_file1 = os.path.join(tmp_user_path, 'demo.mp4') |
|
download_simple(url, dest=test_file1) |
|
db, collection_name = make_db_main(persist_directory=tmp_persist_directory, user_path=tmp_user_path, |
|
fail_any_exception=True, db_type=db_type, |
|
enable_captions=True) |
|
assert db is not None |
|
docs = db.similarity_search("Gemini") |
|
assert len(docs) >= 1 |
|
assert 'Gemini' in str([x.page_content for x in docs]) |
|
assert 'demo.mp4' in os.path.normpath(docs[0].metadata['source']) |
|
docs = db.similarity_search("AI", 100) |
|
assert 'fun birthday party' in str([x.page_content for x in docs]) |
|
assert 'Gemini tries to design' in str([x.page_content for x in docs]) |
|
assert 'H2OAudioCaptionLoader' in str([x.metadata for x in docs]) |
|
assert 'H2OImageCaptionLoader' in str([x.metadata for x in docs]) |
|
assert '.jpg' in str([x.metadata for x in docs]) |
|
kill_weaviate(db_type) |
|
|
|
|
|
@wrap_test_forked |
|
def test_chroma_filtering(): |
|
|
|
model, tokenizer, base_model, prompt_type = get_test_model() |
|
|
|
|
|
requests_state1 = {'username': 'foo'} |
|
verbose1 = True |
|
max_raw_chunks = None |
|
api = False |
|
n_jobs = -1 |
|
db_type1 = 'chroma' |
|
load_db_if_exists1 = True |
|
use_openai_embedding1 = False |
|
migrate_embedding_model_or_db1 = False |
|
|
|
def get_userid_auth_fake(requests_state1, auth_filename=None, auth_access=None, guest_name=None, **kwargs): |
|
return str(uuid.uuid4()) |
|
|
|
other_kwargs = dict(load_db_if_exists1=load_db_if_exists1, |
|
db_type1=db_type1, |
|
use_openai_embedding1=use_openai_embedding1, |
|
migrate_embedding_model_or_db1=migrate_embedding_model_or_db1, |
|
verbose1=verbose1, |
|
get_userid_auth1=get_userid_auth_fake, |
|
max_raw_chunks=max_raw_chunks, |
|
api=api, |
|
n_jobs=n_jobs, |
|
enforce_h2ogpt_api_key=False, |
|
enforce_h2ogpt_ui_key=False, |
|
) |
|
mydata_mode1 = LangChainMode.MY_DATA.value |
|
from src.make_db import make_db_main |
|
|
|
for chroma_new in [True]: |
|
print("chroma_new: %s" % chroma_new, flush=True) |
|
if chroma_new: |
|
|
|
user_path = make_user_path_test() |
|
from langchain_community.vectorstores import Chroma |
|
db, collection_name = make_db_main(user_path=user_path) |
|
assert isinstance(db, Chroma) |
|
|
|
hf_embedding_model = 'hkunlp/instructor-xl' |
|
langchain_mode1 = collection_name |
|
query = 'What is h2oGPT?' |
|
else: |
|
raise RuntimeError("Migration no longer supported") |
|
|
|
db1s = {langchain_mode1: [None] * length_db1(), mydata_mode1: [None] * length_db1()} |
|
|
|
dbs1 = {langchain_mode1: db} |
|
langchain_modes = [langchain_mode1] |
|
langchain_mode_paths = dict(langchain_mode1=None) |
|
langchain_mode_types = dict(langchain_modes='shared') |
|
selection_docs_state1 = dict(langchain_modes=langchain_modes, |
|
langchain_mode_paths=langchain_mode_paths, |
|
langchain_mode_types=langchain_mode_types) |
|
|
|
run_db_kwargs = dict(query=query, |
|
db=db, |
|
use_openai_model=False, use_openai_embedding=False, text_limit=None, |
|
hf_embedding_model=hf_embedding_model, |
|
db_type=db_type1, |
|
langchain_mode_paths=langchain_mode_paths, |
|
langchain_mode_types=langchain_mode_types, |
|
langchain_mode=langchain_mode1, |
|
langchain_agents=[], |
|
llamacpp_dict={}, |
|
|
|
model=model, |
|
tokenizer=tokenizer, |
|
model_name=base_model, |
|
prompt_type=prompt_type, |
|
|
|
top_k_docs=10, |
|
cut_distance=1.8, |
|
) |
|
|
|
|
|
for answer_with_sources in [-1, True]: |
|
print("answer_with_sources: %s" % answer_with_sources, flush=True) |
|
|
|
append_sources_to_answer = answer_with_sources != -1 |
|
for doc_choice in ['All', 1, 2]: |
|
if doc_choice == 'All': |
|
document_choice = [DocumentChoice.ALL.value] |
|
else: |
|
docs = [x['source'] for x in db.get()['metadatas']] |
|
if doc_choice == 1: |
|
document_choice = docs[:doc_choice] |
|
else: |
|
|
|
docs = sorted(set(docs)) |
|
document_choice = docs[:doc_choice] |
|
print("doc_choice: %s" % doc_choice, flush=True) |
|
for langchain_action in [LangChainAction.QUERY.value, LangChainAction.SUMMARIZE_MAP.value]: |
|
print("langchain_action: %s" % langchain_action, flush=True) |
|
for document_subset in [DocumentSubset.Relevant.name, DocumentSubset.TopKSources.name, |
|
DocumentSubset.RelSources.name]: |
|
print("document_subset: %s" % document_subset, flush=True) |
|
|
|
ret = _run_qa_db(**run_db_kwargs, |
|
langchain_action=langchain_action, |
|
document_subset=document_subset, |
|
document_choice=document_choice, |
|
answer_with_sources=answer_with_sources, |
|
append_sources_to_answer=append_sources_to_answer, |
|
) |
|
rets = check_ret(ret) |
|
rets1 = rets[0] |
|
if chroma_new: |
|
if answer_with_sources == -1: |
|
assert len(rets1) >= 7 and ( |
|
'h2oGPT' in rets1['response'] or 'H2O GPT' in rets1['response'] or 'H2O.ai' in |
|
rets1['response']) |
|
else: |
|
assert len(rets1) >= 7 and ( |
|
'h2oGPT' in rets1['response'] or 'H2O GPT' in rets1['response'] or 'H2O.ai' in |
|
rets1['response']) |
|
if document_subset == DocumentSubset.Relevant.name: |
|
assert 'h2oGPT' in str(rets1['sources']) |
|
else: |
|
if answer_with_sources == -1: |
|
assert len(rets1) >= 7 and ( |
|
'whisper' in rets1['response'].lower() or |
|
'phase' in rets1['response'].lower() or |
|
'generate' in rets1['response'].lower() or |
|
'statistic' in rets1['response'].lower() or |
|
'a chat bot that' in rets1['response'].lower() or |
|
'non-centrality parameter' in rets1['response'].lower() or |
|
'.pdf' in rets1['response'].lower() or |
|
'gravitational' in rets1['response'].lower() or |
|
'answer to the question' in rets1['response'].lower() or |
|
'not responsible' in rets1['response'].lower() |
|
) |
|
else: |
|
assert len(rets1) >= 7 and ( |
|
'whisper' in rets1['response'].lower() or |
|
'phase' in rets1['response'].lower() or |
|
'generate' in rets1['response'].lower() or |
|
'statistic' in rets1['response'].lower() or |
|
'.pdf' in rets1['response'].lower()) |
|
if document_subset == DocumentSubset.Relevant.name: |
|
assert 'whisper' in str(rets1['sources']) or \ |
|
'unbiased' in str(rets1['sources']) or \ |
|
'approximate' in str(rets1['sources']) |
|
if answer_with_sources == -1: |
|
if document_subset == DocumentSubset.Relevant.name: |
|
assert 'score' in rets1['sources'][0] and 'content' in rets1['sources'][ |
|
0] and 'source' in rets1['sources'][0] |
|
if doc_choice in [1, 2]: |
|
if langchain_action == 'Summarize': |
|
assert len(set(flatten_list([x['source'].split(docs_joiner_default) for x in |
|
rets1['sources']]))) >= doc_choice |
|
else: |
|
assert len(set([x['source'] for x in rets1['sources']])) >= 1 |
|
else: |
|
assert len(set([x['source'] for x in rets1['sources']])) >= 1 |
|
elif document_subset == DocumentSubset.RelSources.name: |
|
if doc_choice in [1, 2]: |
|
assert len(set([x['source'] for x in rets1['sources']])) <= doc_choice |
|
else: |
|
if langchain_action == 'Summarize': |
|
assert len(set(flatten_list( |
|
[x['source'].split(docs_joiner_default) for x in rets1['sources']]))) >= 1 |
|
else: |
|
assert len(set([x['source'] for x in rets1['sources']])) >= 1 |
|
else: |
|
|
|
|
|
assert len(set([x['source'] for x in rets1['sources']])) >= 1 |
|
|
|
|
|
single_document_choice1 = [x['source'] for x in db.get()['metadatas']][0] |
|
text_context_list1 = [] |
|
pdf_height = 800 |
|
h2ogpt_key1 = '' |
|
for view_raw_text_checkbox1 in [True, False]: |
|
print("view_raw_text_checkbox1: %s" % view_raw_text_checkbox1, flush=True) |
|
from src.gradio_runner import show_doc |
|
show_ret = show_doc(db1s, selection_docs_state1, requests_state1, |
|
langchain_mode1, |
|
single_document_choice1, |
|
view_raw_text_checkbox1, |
|
text_context_list1, |
|
pdf_height, |
|
h2ogpt_key1, |
|
dbs1=dbs1, |
|
hf_embedding_model1=hf_embedding_model, |
|
**other_kwargs |
|
) |
|
assert len(show_ret) == 8 |
|
if chroma_new: |
|
assert1 = show_ret[4]['value'] is not None and 'README.md' in show_ret[4]['value'] |
|
assert2 = show_ret[3]['value'] is not None and 'h2oGPT' in show_ret[3]['value'] |
|
assert assert1 or assert2 |
|
else: |
|
assert1 = show_ret[4]['value'] is not None and single_document_choice1 in show_ret[4]['value'] |
|
assert2 = show_ret[3]['value'] is not None and single_document_choice1 in show_ret[3]['value'] |
|
assert assert1 or assert2 |
|
|
|
|
|
@pytest.mark.parametrize("max_input_tokens", [ |
|
1024, None |
|
]) |
|
@pytest.mark.parametrize("data_kind", [ |
|
'simple', |
|
'helium1', |
|
'helium2', |
|
'helium3', |
|
'helium4', |
|
'helium5', |
|
'long', |
|
'very_long', |
|
]) |
|
@wrap_test_forked |
|
def test_merge_docs(data_kind, max_input_tokens): |
|
t0 = time.time() |
|
|
|
model_max_length = 4096 |
|
if max_input_tokens is None: |
|
max_input_tokens = model_max_length - 512 |
|
docs_joiner = docs_joiner_default |
|
docs_token_handling = docs_token_handling_default |
|
tokenizer = FakeTokenizer(model_max_length=model_max_length, is_super_fake=True) |
|
|
|
from langchain.docstore.document import Document |
|
if data_kind == 'simple': |
|
texts = texts_simple |
|
elif data_kind == 'helium1': |
|
texts = texts_helium1 |
|
elif data_kind == 'helium2': |
|
texts = texts_helium2 |
|
elif data_kind == 'helium3': |
|
texts = texts_helium3 |
|
elif data_kind == 'helium4': |
|
texts = texts_helium4 |
|
elif data_kind == 'helium5': |
|
texts = texts_helium5 |
|
elif data_kind == 'long': |
|
texts = texts_long |
|
elif data_kind == 'very_long': |
|
texts = ['\n'.join(texts_long * 100)] |
|
else: |
|
raise RuntimeError("BAD") |
|
|
|
docs_with_score = [(Document(page_content=page_content, metadata={"source": "%d" % pi}), 1.0) for pi, page_content |
|
in enumerate(texts)] |
|
|
|
docs_with_score_new, max_docs_tokens = ( |
|
split_merge_docs(docs_with_score, tokenizer=tokenizer, max_input_tokens=max_input_tokens, |
|
docs_token_handling=docs_token_handling, joiner=docs_joiner, verbose=True)) |
|
|
|
text_context_list = [x[0].page_content for x in docs_with_score_new] |
|
tokens = [get_token_count(x + docs_joiner, tokenizer) for x in text_context_list] |
|
print(tokens) |
|
|
|
if data_kind == 'simple': |
|
assert len(docs_with_score_new) == 1 |
|
assert all([x <= max_input_tokens for x in tokens]) |
|
assert time.time() - t0 < 0.1 |
|
elif data_kind == 'helium1': |
|
assert len(docs_with_score_new) == 4 if max_input_tokens == 1024 else 2, len(docs_with_score_new) |
|
assert all([x <= max_input_tokens for x in tokens]) |
|
assert time.time() - t0 < 0.1 |
|
elif data_kind == 'helium2': |
|
assert len(docs_with_score_new) == 7 if max_input_tokens == 1024 else 3, len(docs_with_score_new) |
|
assert all([x <= max_input_tokens for x in tokens]) |
|
assert time.time() - t0 < 0.1 |
|
elif data_kind == 'helium3': |
|
assert len(docs_with_score_new) == 6 if max_input_tokens == 1024 else 2, len(docs_with_score_new) |
|
assert all([x <= max_input_tokens for x in tokens]) |
|
assert time.time() - t0 < 0.1 |
|
elif data_kind == 'helium4': |
|
assert len(docs_with_score_new) == 6 if max_input_tokens == 1024 else 2, len(docs_with_score_new) |
|
assert all([x <= max_input_tokens for x in tokens]) |
|
assert time.time() - t0 < 0.1 |
|
elif data_kind == 'helium5': |
|
assert len(docs_with_score_new) == 6 if max_input_tokens == 1024 else 1, len(docs_with_score_new) |
|
assert all([x <= max_input_tokens for x in tokens]) |
|
assert time.time() - t0 < 0.1 |
|
elif data_kind == 'long': |
|
assert len(docs_with_score_new) == 47 if max_input_tokens == 1024 else 6, len(docs_with_score_new) |
|
assert all([x <= max_input_tokens for x in tokens]) |
|
assert time.time() - t0 < 0.1 |
|
elif data_kind == 'very_long': |
|
assert len(docs_with_score_new) == 4601 if max_input_tokens == 1024 else 6, len(docs_with_score_new) |
|
assert all([x <= max_input_tokens for x in tokens]) |
|
if max_input_tokens == 1024: |
|
assert time.time() - t0 < 60 |
|
else: |
|
assert time.time() - t0 < 10 |
|
print("duration: %s" % (time.time() - t0), flush=True) |
|
|
|
|
|
@wrap_test_forked |
|
def test_split_and_merge(): |
|
kwargs = {'max_input_tokens': 7118, 'docs_token_handling': 'split_or_merge', 'joiner': '\n\n', |
|
'non_doc_prompt': '<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nGive a summary that is well-structured yet concise.<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n"""\n\n"""\nWrite a summary for a physics Ph.D. and assistant professor in physics doing astrophysics, identifying key points of interest.<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n', |
|
'verbose': False} |
|
from transformers import AutoTokenizer |
|
tokenizer = AutoTokenizer.from_pretrained('meta-llama/Meta-Llama-3-8B-Instruct') |
|
from langchain_core.documents import Document |
|
docs_with_score = [(Document(page_content=page_content, metadata={"source": "%d" % pi}), 1.0) for pi, page_content |
|
in enumerate(texts_long)] |
|
|
|
docs_with_score, max_doc_tokens = split_merge_docs(docs_with_score, |
|
tokenizer, |
|
**kwargs) |
|
assert len(docs_with_score) == 6 |
|
|
|
assert docs_with_score[0][0].page_content.startswith('Y') |
|
|
|
|
|
@wrap_test_forked |
|
def test_crawl(): |
|
from src.gpt_langchain import Crawler |
|
final_urls = Crawler(urls=['https://github.com/h2oai/h2ogpt'], verbose=True).run() |
|
assert 'https://github.com/h2oai/h2ogpt/blob/main/docs/README_GPU.md' in final_urls |
|
print(final_urls) |
|
|
|
|
|
@wrap_test_forked |
|
def test_hyde_acc(): |
|
answer = 'answer' |
|
llm_answers = dict(response_raw='raw') |
|
hyde_show_intermediate_in_accordion = False |
|
map_reduce_show_intermediate_in_accordion = False |
|
answer, hyde = get_hyde_acc(answer, llm_answers, hyde_show_intermediate_in_accordion, |
|
map_reduce_show_intermediate_in_accordion) |
|
assert hyde == '' |
|
|
|
answer = ['answer'] |
|
llm_answers = dict(response_raw='raw') |
|
hyde_show_intermediate_in_accordion = False |
|
map_reduce_show_intermediate_in_accordion = False |
|
answer, hyde = get_hyde_acc(answer, llm_answers, hyde_show_intermediate_in_accordion, |
|
map_reduce_show_intermediate_in_accordion) |
|
assert hyde is None |
|
|
|
|
|
if __name__ == '__main__': |
|
pass |
|
|