import logging import os import tempfile import time import uuid from typing import Dict, Iterator, Optional, Tuple from langchain.document_loaders.base import BaseBlobParser from langchain.document_loaders.blob_loaders import Blob from langchain_community.document_loaders.generic import GenericLoader from langchain.schema import Document logger = logging.getLogger(__name__) class OpenAIWhisperParser(BaseBlobParser): """Transcribe and parse audio files. Audio transcription is with OpenAI Whisper model.""" def __init__(self, api_key: Optional[str] = None): self.api_key = api_key def lazy_parse(self, blob: Blob) -> Iterator[Document]: """Lazily parse the blob.""" import io try: from openai import OpenAI if self.api_key: client = OpenAI(api_key=self.api_key) else: client = OpenAI() except ImportError: raise ImportError( "openai package not found, please install it with " "`pip install openai`" ) try: from pydub import AudioSegment except ImportError: raise ImportError( "pydub package not found, please install it with " "`pip install pydub`" ) # Audio file from disk audio = AudioSegment.from_file(blob.path) # Define the duration of each chunk in minutes # Need to meet 25MB size limit for Whisper API chunk_duration = 20 chunk_duration_ms = chunk_duration * 60 * 1000 # Split the audio into chunk_duration_ms chunks for split_number, i in enumerate(range(0, len(audio), chunk_duration_ms)): # Audio chunk chunk = audio[i: i + chunk_duration_ms] file_obj = io.BytesIO(chunk.export(format="mp3").read()) if blob.source is not None: file_obj.name = blob.source + f"_part_{split_number}.mp3" else: file_obj.name = f"part_{split_number}.mp3" # Transcribe print(f"Transcribing part {split_number + 1}!") attempts = 0 while attempts < 3: try: transcript = client.audio.transcribe("whisper-1", file_obj) break except Exception as e: attempts += 1 print(f"Attempt {attempts} failed. Exception: {str(e)}") time.sleep(5) else: print("Failed to transcribe after 3 attempts.") continue yield Document( page_content=transcript.text, metadata={"source": blob.source, "chunk": split_number}, ) class OpenAIWhisperParserLocal(BaseBlobParser): """Transcribe and parse audio files with OpenAI Whisper model. Audio transcription with OpenAI Whisper model locally from transformers. Parameters: device - device to use NOTE: By default uses the gpu if available, if you want to use cpu, please set device = "cpu" lang_model - whisper model to use, for example "openai/whisper-medium" forced_decoder_ids - id states for decoder in multilanguage model, usage example: from transformers import WhisperProcessor processor = WhisperProcessor.from_pretrained("openai/whisper-medium") forced_decoder_ids = WhisperProcessor.get_decoder_prompt_ids(language="french", task="transcribe") forced_decoder_ids = WhisperProcessor.get_decoder_prompt_ids(language="french", task="translate") """ def __init__( self, device: str = 'gpu', device_id: int = 0, lang_model: Optional[str] = None, forced_decoder_ids: Optional[Tuple[Dict]] = None, use_better=True, use_faster=False, ): """Initialize the parser. Args: device: device to use. lang_model: whisper model to use, for example "openai/whisper-medium". Defaults to None. forced_decoder_ids: id states for decoder in a multilanguage model. Defaults to None. """ try: from transformers import pipeline except ImportError: raise ImportError( "transformers package not found, please install it with " "`pip install transformers`" ) try: import torch except ImportError: raise ImportError( "torch package not found, please install it with " "`pip install torch`" ) # set device, cpu by default check if there is a GPU available if device == "cpu": self.device = "cpu" if lang_model is not None: self.lang_model = lang_model print("WARNING! Model override. Using model: ", self.lang_model) else: # unless overridden, use the small base model on cpu self.lang_model = "openai/whisper-base" else: if torch.cuda.is_available(): self.device = "cuda" # check GPU memory and select automatically the model mem = torch.cuda.get_device_properties(self.device).total_memory / ( 1024 ** 2 ) if mem < 5000: rec_model = "openai/whisper-base" elif mem < 7000: rec_model = "openai/whisper-small" elif mem < 12000: rec_model = "openai/whisper-medium" else: rec_model = "openai/whisper-large-v3" # check if model is overridden if lang_model is not None: self.lang_model = lang_model print("WARNING! Model override. Might not fit in your GPU") else: self.lang_model = rec_model else: "cpu" print("Using the following model: ", self.lang_model) # load model for inference if self.device == 'cpu': device = 'cpu' device_map = None else: device = None device_map = {"": 'cuda:%d' % device_id} if device_id >= 0 else {'': 'cuda'} # https://huggingface.co/blog/asr-chunking self.pipe = pipeline( "automatic-speech-recognition", model=self.lang_model, chunk_length_s=30, stride_length_s=5, batch_size=8, device=device, device_map=device_map, ) if use_better: # even faster if not doing real time ASR # stride_length_s=5, batch_size=8 try: from optimum.bettertransformer import BetterTransformer self.pipe.model = BetterTransformer.transform(self.pipe.model, use_flash_attention_2=True) except Exception as e: print("No optimum, not using BetterTransformer: %s" % str(e), flush=True) if use_faster and have_use_faster and self.lang_model in ['openai/whisper-large-v2', 'openai/whisper-large-v3']: self.pipe.model.to('cpu') del self.pipe.model clear_torch_cache() print("Using faster_whisper", flush=True) # has to come here, no framework and no config for model # pip install git+https://github.com/SYSTRAN/faster-whisper.git from faster_whisper import WhisperModel model_size = "large-v3" if self.lang_model == 'openai/whisper-large-v3' else "large-v2" # Run on GPU with FP16 model = WhisperModel(model_size, device=self.device, compute_type="float16") # or run on GPU with INT8 # model = WhisperModel(model_size, device="cuda", compute_type="int8_float16") # or run on CPU with INT8 # model = WhisperModel(model_size, device="cpu", compute_type="int8") self.pipe.model = model if forced_decoder_ids is not None: try: self.pipe.model.config.forced_decoder_ids = forced_decoder_ids except Exception as exception_text: logger.info( "Unable to set forced_decoder_ids parameter for whisper model" f"Text of exception: {exception_text}" "Therefore whisper model will use default mode for decoder" ) def lazy_parse(self, blob: Blob) -> Iterator[Document]: """Lazily parse the blob.""" import io try: from pydub import AudioSegment except ImportError: raise ImportError( "pydub package not found, please install it with `pip install pydub`" ) try: import librosa except ImportError: raise ImportError( "librosa package not found, please install it with " "`pip install librosa`" ) file = str(blob.path) if any([file.endswith(x) for x in ['.mp4', '.mpeg', '.mpg']]): import audioread.ffdec # Use ffmpeg decoder aro = audioread.ffdec.FFmpegAudioFile(blob.path) y, sr = librosa.load(aro, sr=16000) else: # Audio file from disk audio = AudioSegment.from_file(blob.path) file_obj = io.BytesIO(audio.export(format="mp3").read()) # Transcribe print(f"Transcribing part {blob.path}!") y, sr = librosa.load(file_obj, sr=16000) yc = y.copy() try: prediction = self.pipe(yc, batch_size=8)["text"] except ValueError as e: if 'Multiple languages detected' in str(e): prediction = self.pipe(yc, batch_size=8, generate_kwargs={"language": "english"})["text"] else: raise yield Document( page_content=prediction, metadata={"source": blob.source}, ) """ Based upon ImageCaptionLoader in LangChain version: langchain/document_loaders/image_captions.py But accepts preloaded model to avoid slowness in use and CUDA forking issues Loader that loads image captions By default, the loader utilizes the pre-trained image captioning model. https://huggingface.co/microsoft/Florence-2-base """ from typing import List, Union, Any, Tuple from langchain.docstore.document import Document from langchain_community.document_loaders import ImageCaptionLoader from utils import get_device, NullContext, clear_torch_cache, have_use_faster, makedirs, get_gradio_tmp from importlib.metadata import distribution, PackageNotFoundError try: assert distribution('bitsandbytes') is not None have_bitsandbytes = True except (PackageNotFoundError, AssertionError): have_bitsandbytes = False class H2OAudioCaptionLoader(ImageCaptionLoader): """Loader that loads the transcriptions of audio""" def __init__(self, path_audios: Union[str, List[str]] = None, asr_model='openai/whisper-medium', asr_gpu=True, gpu_id='auto', use_better=True, use_faster=False, ): super().__init__(path_audios) self.audio_paths = path_audios self.model = None self.asr_model = asr_model self.asr_gpu = asr_gpu self.context_class = NullContext self.gpu_id = gpu_id if isinstance(gpu_id, int) else 0 self.device = 'cpu' self.device_map = {"": 'cpu'} self.set_context() self.use_better = use_better self.use_faster = use_faster self.files_out = [] def set_context(self): if get_device() == 'cuda' and self.asr_gpu: import torch n_gpus = torch.cuda.device_count() if torch.cuda.is_available() else 0 if n_gpus > 0: self.context_class = torch.device self.device = 'cuda' else: self.device = 'cpu' else: self.device = 'cpu' if get_device() == 'cuda' and self.asr_gpu: if self.gpu_id == 'auto': # blip2 has issues with multi-GPU. Error says need to somehow set language model in device map # device_map = 'auto' self.gpu_id = 0 self.device_map = {"": 'cuda:%d' % self.gpu_id} else: self.gpu_id = -1 self.device_map = {"": 'cpu'} def load_model(self): try: import transformers except ImportError: raise ValueError( "`transformers` package not found, please install with " "`pip install transformers`." ) self.set_context() if self.model: if str(self.model.pipe.model.device) != self.device_map['']: self.model.pipe.model.to(self.device_map['']) return self import torch with torch.no_grad(): with self.context_class(self.device): context_class_cast = NullContext if self.device == 'cpu' else torch.autocast with context_class_cast(self.device): self.model = OpenAIWhisperParserLocal(device=self.device, device_id=self.gpu_id, lang_model=self.asr_model, use_better=self.use_better, use_faster=self.use_faster, ) return self def set_audio_paths(self, path_audios: Union[str, List[str]]): """ Load from a list of audio files """ if isinstance(path_audios, str): self.audio_paths = [path_audios] else: self.audio_paths = path_audios def load(self, from_youtube=False) -> List[Document]: if self.model is None: self.load_model() # https://librosa.org/doc/main/generated/librosa.load.html if from_youtube: save_dir = os.path.join(get_gradio_tmp(), str(uuid.uuid4())) makedirs(save_dir, exist_ok=True) youtube_loader = YoutubeAudioLoader(self.audio_paths, save_dir) loader = GenericLoader(youtube_loader, self.model) docs = loader.load() self.files_out = youtube_loader.files_out return docs else: docs = [] for fil in self.audio_paths: loader = GenericLoader.from_filesystem( os.path.dirname(fil), glob=os.path.basename(fil), parser=self.model) docs += loader.load() return docs def unload_model(self): if hasattr(self, 'model') and hasattr(self.model, 'pipe') and hasattr(self.model.pipe.model, 'cpu'): self.model.pipe.model.cpu() clear_torch_cache() from typing import Iterable, List from langchain_community.document_loaders import FileSystemBlobLoader from langchain.document_loaders.blob_loaders.schema import Blob, BlobLoader class YoutubeAudioLoader(BlobLoader): """Load YouTube urls as audio file(s).""" def __init__(self, urls: List[str], save_dir: str): if not isinstance(urls, list): raise TypeError("urls must be a list") self.urls = urls self.save_dir = save_dir self.files_out = [] def yield_blobs(self) -> Iterable[Blob]: """Yield audio blobs for each url.""" try: import yt_dlp except ImportError: raise ImportError( "yt_dlp package not found, please install it with " "`pip install yt_dlp`" ) # Use yt_dlp to download audio given a YouTube url ydl_opts = { "format": "m4a/bestaudio/best", "noplaylist": True, "outtmpl": self.save_dir + "/%(title)s.%(ext)s", "postprocessors": [ { "key": "FFmpegExtractAudio", "preferredcodec": "m4a", } ], } for url in self.urls: # Download file with yt_dlp.YoutubeDL(ydl_opts) as ydl: ydl.download(url) # Yield the written blobs loader = FileSystemBlobLoader(self.save_dir, glob="*.m4a") self.files_out = [os.path.join(self.save_dir, f) for f in os.listdir(self.save_dir)] for blob in loader.yield_blobs(): yield blob