import textwrap import re from utils import flatten_list, have_emoji, have_langid def setup_nltk(): import nltk # we'll use this to split into sentences nltk.download("punkt") # if followed installation, then should already be done, don't break air-gap # setup_nltk() sentence_keys = ['sentence_list', 'index'] def init_sentence_state(): sentence_state = dict(sentence_list=[], index=0) return sentence_state def unpack_state(sentence_state): rets = [] for key in sentence_keys: rets.append(sentence_state[key]) return tuple(rets) def pack_state(sentence_state, *args): # don't change dict reference so parent can reuse. Ok to lose reference for list for keyi, key in enumerate(sentence_keys): if isinstance(sentence_state[key], list): sentence_state[key] = args[keyi] else: sentence_state[key] = args[keyi] return sentence_state def split_sentences(sentence, n=250): """ Splits a sentence by spaces into smaller sentences, each with a maximum length of n characters, while preserving whitespace characters like new lines. # 250 due to [!] Warning: The text length exceeds the character limit of 250 for language 'en', this might cause truncated audio. """ # Splitting on spaces while preserving all whitespace characters in a list words = re.split('(\s+)', sentence) sentences = [] current_sentence = [] current_length = 0 for word in words: # Skip empty strings which can occur due to consecutive whitespace if word == '': continue # Check if the word is a whitespace character if word.isspace(): if word == '\n': # If it's a newline, end the current sentence and start a new one sentences.append("".join(current_sentence)) current_sentence = [] current_length = 0 else: # For other whitespace characters, add them to the current sentence current_sentence.append(word) current_length += len(word) else: # Check if adding the next word would exceed the limit if current_length + len(word) > n: if current_sentence: sentences.append("".join(current_sentence)) current_sentence = [word] current_length = len(word) else: # If the word itself is longer than n and there's no current sentence sentences.append(word) current_length = 0 else: current_sentence.append(word) current_length += len(word) # Add the last sentence if it exists if current_sentence: sentences.append("".join(current_sentence)) return sentences def _get_sentences(response, verbose=False, min_start=15, max_length=250): # no mutations of characters allowed here, only breaking apart or merging import nltk # refuse to tokenize first 15 characters into sentence, so language detection works and logic simpler sentences = nltk.sent_tokenize(response[min_start:]) # split any long sentences sentences = flatten_list([split_sentences(x, max_length) for x in sentences]) # drop empty sentences sentences = [x for x in sentences if x.strip()] # restore first min_start if set if sentences and min_start > 0: sentences[0] = response[:min_start] + sentences[0] elif min_start > 0: sentences.append(response[:min_start]) return sentences def get_sentence(response, sentence_state, is_final=False, verbose=False): # get state items sentence_list, index = unpack_state(sentence_state) sentences = _get_sentences(response[index:], min_start=15 if index == 0 else 0, verbose=verbose) if len(sentences) >= 2: # detected new completed sentence # find new index index_delta = response[index:].index(sentences[0]) index += index_delta + len(sentences[0]) sentence_list.append(sentences[0]) # only clean for result, to avoid mis-handling of sentences index cleaned_sentence = clean_sentence(sentences[0], verbose=verbose) return cleaned_sentence, pack_state(sentence_state, sentence_list, index), False elif is_final: # then just return last sentence cleaned_sentence = clean_sentence(' '.join(sentences), verbose=verbose) sentence_list.append(' '.join(sentences)) return cleaned_sentence, pack_state(sentence_state, sentence_list, index), True else: return None, pack_state(sentence_state, sentence_list, index), True def clean_sentence(sentence, verbose=False): if sentence is None or len(sentence) == 0: if verbose: print("empty sentence") return '' # Remove code blocks sentence = re.sub("```.*?```", "", sentence, flags=re.DOTALL) sentence = re.sub("`.*?`", "", sentence, flags=re.DOTALL) sentence = re.sub("\(.*?\)", "", sentence, flags=re.DOTALL) # remove marks sentence = sentence.replace("```", "") sentence = sentence.replace("...", " ") sentence = sentence.replace("(", " ") sentence = sentence.replace(")", " ") sentence = sentence.replace("Dr. ", "Doctor ") sentence = sentence.replace(" w/ ", " with ") sentence = sentence.replace('H2O.ai', "aych two oh ae eye.") sentence = sentence.replace('H2O.AI', "aych two oh ae eye.") sentence = sentence.replace('h2o.ai', "aych two oh ae eye.") sentence = sentence.replace('h2o.ai', "aych two oh ae eye.") # filter out emojis if have_emoji: import emoji sentence = ''.join([x for x in sentence if not emoji.is_emoji(x)]) # fix floating expressions sentence = re.sub(r'(\d+)\.(\d+)', r"\1 dot \2", sentence) # Fix last bad characters sentence = re.sub("([^\x00-\x7F]|\w)(\.|\。|\?|\!)", r"\1\2", sentence) sentence = sentence.strip() if sentence.startswith('. ') or sentence.startswith('? ') or sentence.startswith('! ') or sentence.startswith(', '): sentence = sentence[2:] if sentence.startswith('.') or sentence.startswith('?') or sentence.startswith('!') or sentence.startswith(','): sentence = sentence[1:] if sentence == '1.': sentence = 'One' if sentence == '2.': sentence = 'Two' if sentence == '3.': sentence = 'Three' if sentence == '4.': sentence = 'Four' if sentence == '5.': sentence = 'Five' if sentence == '6.': sentence = 'Six' if sentence == '7.': sentence = 'Seven' if sentence == '8.': sentence = 'Eight' if sentence == '9.': sentence = 'Nine' if sentence == '10.': sentence = 'Ten' if len(sentence) == 0: if verbose: print("EMPTY SENTENCE after processing") return '' if verbose: print("Sentence for speech: %s" % sentence) return sentence def detect_language(prompt, supported_languages, verbose=False): if not have_langid: # if no package, just return english return "en" import langid # Fast language autodetection if len(prompt) > 15: language_predicted = langid.classify(prompt)[0].strip() # strip need as there is space at end! if language_predicted == "zh": # we use zh-cn on xtts language_predicted = "zh-cn" if language_predicted not in supported_languages: print(f"Detected a language not supported by xtts :{language_predicted}, switching to english for now") language = "en" else: language = language_predicted if verbose: print(f"Language: Predicted sentence language:{language_predicted} , using language for xtts:{language}") else: # Hard to detect language fast in short sentence, use english default language = "en" if verbose: print(f"Language: Prompt is short or autodetect language disabled using english for xtts") return language