import ast import asyncio import base64 import functools import io import json import os import platform import re import sys import threading import time import traceback import uuid from collections import deque import filelock import numpy as np from log import logger from openai_server.backend_utils import convert_messages_to_structure, convert_gen_kwargs def start_faulthandler(): # If hit server or any subprocess with signal SIGUSR1, it'll print out all threads stack trace, but wont't quit or coredump # If more than one fork tries to write at same time, then looks corrupted. import faulthandler # SIGUSR1 in h2oai/__init__.py as well faulthandler.enable() if hasattr(faulthandler, 'register'): # windows/mac import signal faulthandler.register(signal.SIGUSR1) start_faulthandler() def decode(x, encoding_name="cl100k_base"): try: import tiktoken encoding = tiktoken.get_encoding(encoding_name) return encoding.decode(x) except ImportError: return '' def encode(x, encoding_name="cl100k_base"): try: import tiktoken encoding = tiktoken.get_encoding(encoding_name) return encoding.encode(x, disallowed_special=()) except ImportError: return [] def count_tokens(x, encoding_name="cl100k_base"): try: import tiktoken encoding = tiktoken.get_encoding(encoding_name) return len(encoding.encode(x, disallowed_special=())) except ImportError: return 0 def get_gradio_auth(user=None, verbose=False): if verbose: print("GRADIO_SERVER_PORT:", os.getenv('GRADIO_SERVER_PORT'), file=sys.stderr) print("GRADIO_GUEST_NAME:", os.getenv('GRADIO_GUEST_NAME'), file=sys.stderr) print("GRADIO_AUTH:", os.getenv('GRADIO_AUTH'), file=sys.stderr) print("GRADIO_AUTH_ACCESS:", os.getenv('GRADIO_AUTH_ACCESS'), file=sys.stderr) gradio_prefix = os.getenv('GRADIO_PREFIX', 'http') if platform.system() in ['Darwin', 'Windows']: gradio_host = os.getenv('GRADIO_SERVER_HOST', '127.0.0.1') else: gradio_host = os.getenv('GRADIO_SERVER_HOST', '0.0.0.0') gradio_port = int(os.getenv('GRADIO_SERVER_PORT', '7860')) gradio_url = f'{gradio_prefix}://{gradio_host}:{gradio_port}' auth = os.environ.get('GRADIO_AUTH', 'None') auth_access = os.environ.get('GRADIO_AUTH_ACCESS', 'open') guest_name = os.environ.get('GRADIO_GUEST_NAME', '') is_guest = False if auth != 'None': if user: user_split = user.split(':') assert len(user_split) >= 2, "username cannot contain : character and must be in form username:password" username = user_split[0] if username == guest_name: is_guest = True auth_kwargs = dict(auth=(username, ':'.join(user_split[1:]))) elif guest_name: if auth_access == 'closed': if os.getenv('H2OGPT_OPENAI_USER'): user = os.getenv('H2OGPT_OPENAI_USER') user_split = user.split(':') assert len( user_split) >= 2, "username cannot contain : character and must be in form username:password" auth_kwargs = dict(auth=(user_split[0], ':'.join(user_split[1:]))) is_guest = True else: raise ValueError( "If closed access, must set ENV H2OGPT_OPENAI_USER (e.g. as 'user:pass' combination) to login from OpenAI->Gradio with some specific user.") else: auth_kwargs = dict(auth=(guest_name, guest_name)) is_guest = True elif auth_access == 'open': auth_kwargs = dict(auth=(str(uuid.uuid4()), str(uuid.uuid4()))) is_guest = True else: auth_kwargs = None else: auth_kwargs = dict() return auth_kwargs, gradio_url, is_guest def get_gradio_client(user=None, verbose=False): auth_kwargs, gradio_url, is_guest = get_gradio_auth(user=user, verbose=verbose) print("OpenAI user: %s" % auth_kwargs, flush=True) try: from gradio_utils.grclient import GradioClient as Client except ImportError: print("Using slower gradio API, for speed ensure gradio_utils/grclient.py exists.") from gradio_client import Client if auth_kwargs: print("Getting gradio client at %s with auth" % gradio_url, flush=True) client = Client(gradio_url, **auth_kwargs) if hasattr(client, 'setup'): with client_lock: client.setup() else: print("BEGIN: Getting non-user gradio client at %s" % gradio_url, flush=True) client = Client(gradio_url) if hasattr(client, 'setup'): with client_lock: client.setup() print("END: getting non-user gradio client at %s" % gradio_url, flush=True) return client # Global lock for synchronizing client access client_lock = threading.Lock() print("global gradio_client", file=sys.stderr) gradio_client_list = {} def sanitize(name): bad_chars = ['[', ']', ',', '/', '\\', '\\w', '\\s', '-', '+', '\"', '\'', '>', '<', ' ', '=', ')', '(', ':', '^'] for char in bad_chars: name = name.replace(char, "_") return name def get_client(user=None): os.makedirs('locks', exist_ok=True) user_lock_file = os.path.join('locks', 'user_%s.lock' % sanitize(str(user))) user_lock = filelock.FileLock(user_lock_file) # concurrent gradio client with user_lock: print(list(gradio_client_list.keys())) gradio_client = gradio_client_list.get(user) if gradio_client is None: print("Getting fresh client: %s" % str(user), file=sys.stderr) # assert user is not None, "Need user set to username:password" gradio_client = get_gradio_client(user=user, verbose=True) with user_lock: gradio_client_list[user] = gradio_client got_fresh_client = True else: print("re-used gradio_client for user: %s" % user, file=sys.stderr) got_fresh_client = False if hasattr(gradio_client, 'clone'): print("cloning for gradio_client.auth=%s" % str(gradio_client.auth), file=sys.stderr) gradio_client0 = gradio_client gradio_client = gradio_client0.clone() print("client.auth=%s" % str(gradio_client.auth), file=sys.stderr) try: new_hash = gradio_client.get_server_hash() assert new_hash except Exception as e: ex = traceback.format_exc() print(f"re-getting fresh client due to exception: {ex}", file=sys.stderr) # just get fresh client if any issues print(f"re-getting fresh client due to exception: {str(e)}", file=sys.stderr) gradio_client_list[user] = get_gradio_client(user=user, verbose=True) if not hasattr(gradio_client, 'clone') and not got_fresh_client: print( "re-get to ensure concurrency ok, slower if API is large, for speed ensure gradio_utils/grclient.py exists.", file=sys.stderr) gradio_client = get_gradio_client(user=user) gradio_client_list[user] = gradio_client # even if not auth, want to login auth_kwargs, gradio_url, is_guest = get_gradio_auth(user=user) if user and not is_guest and auth_kwargs and 'auth' in auth_kwargs: username = auth_kwargs['auth'][0] password = auth_kwargs['auth'][1] print("start login num lock", flush=True) num_model_lock = int(gradio_client.predict(api_name='/num_model_lock')) print("finish login num lock", flush=True) chatbots = [None] * (2 + num_model_lock) h2ogpt_key = '' visible_models = [] side_bar_text = '' doc_count_text = '' submit_buttons_text = '' visible_models_text = '' chat_tab_text = '' doc_selection_tab_text = '' doc_view_tab_text = '' chat_history_tab_text = '' expert_tab_text = '' models_tab_text = '' system_tab_text = '' tos_tab_text = '' login_tab_text = '' hosts_tab_text = '' print("start login", flush=True) t0_login = time.time() gradio_client.predict(None, h2ogpt_key, visible_models, side_bar_text, doc_count_text, submit_buttons_text, visible_models_text, chat_tab_text, doc_selection_tab_text, doc_view_tab_text, chat_history_tab_text, expert_tab_text, models_tab_text, system_tab_text, tos_tab_text, login_tab_text, hosts_tab_text, username, password, *tuple(chatbots), api_name='/login') print("finish login: %s" % (time.time() - t0_login), flush=True) return gradio_client def get_chunk(outputs_list, job_outputs_num, last_response, num, verbose=False): res_str = outputs_list[job_outputs_num + num] res_dict = ast.literal_eval(res_str) if verbose: logger.info('Stream %d: %s\n\n %s\n\n' % (num, res_dict['response'], res_dict)) logger.info('Stream %d' % (job_outputs_num + num)) if 'error' in res_dict and res_dict['error']: raise RuntimeError(res_dict['error']) elif 'error_ex' in res_dict and res_dict['error_ex']: raise RuntimeError(res_dict['error_ex']) elif 'response' not in res_dict: raise RuntimeError("No response in res: %s" % res_dict) else: response = res_dict['response'] chunk = response[len(last_response):] return chunk, response, res_dict async def get_response(chunk_response=True, **kwargs): assert kwargs['query'] is not None, "query must not be None" import ast stream_output = kwargs.get('stream_output', True) stream_output_orig = stream_output # always force streaming to avoid blocking server stream_output = True verbose = kwargs.get('verbose', False) kwargs = convert_gen_kwargs(kwargs) # WIP: # if gen_kwargs.get('skip_gradio'): # fun_with_dict_str_plain # concurrent gradio client client = get_client(user=kwargs.get('user')) res_dict = {} if stream_output: job = client.submit(str(dict(kwargs)), api_name='/submit_nochat_api') job_outputs_num = 0 last_response = '' while not job.done(): outputs_list = job.outputs().copy() job_outputs_num_new = len(outputs_list[job_outputs_num:]) for num in range(job_outputs_num_new): chunk, response, res_dict = get_chunk(outputs_list, job_outputs_num, last_response, num, verbose=verbose) if stream_output_orig: if chunk_response: if chunk: yield chunk else: yield response last_response = response await asyncio.sleep(0.005) await asyncio.sleep(0.005) job_outputs_num += job_outputs_num_new outputs_list = job.outputs().copy() job_outputs_num_new = len(outputs_list[job_outputs_num:]) for num in range(job_outputs_num_new): chunk, response, res_dict = get_chunk(outputs_list, job_outputs_num, last_response, num, verbose=verbose) if stream_output_orig: if chunk_response: if chunk: yield chunk else: yield response last_response = response await asyncio.sleep(0.005) job_outputs_num += job_outputs_num_new if not stream_output_orig: # behave as if not streaming yield res_dict['response'] if verbose: logger.info("total job_outputs_num=%d" % job_outputs_num) else: res_str = client.predict(str(dict(kwargs)), api_name='/submit_nochat_api') res_dict = ast.literal_eval(res_str) yield res_dict['response'] # for usage res_dict.pop('audio', None) yield res_dict def split_concatenated_dicts(concatenated_dicts: str): # Improved regular expression to handle nested braces pattern = r'{(?:[^{}]|{(?:[^{}]|{[^{}]*})*})*}' try: matches = re.findall(pattern, concatenated_dicts) except re.error as e: print(f"Regular expression error: {e}") return [] except MemoryError: print("Memory error: Input might be too large") return [] result = [] for match in matches: try: result.append(ast.literal_eval(match)) except (ValueError, SyntaxError): # If parsing fails, add the string as is result.append(match) return result def get_generator(instruction, gen_kwargs, use_agent=False, stream_output=False, verbose=False): gen_kwargs['stream_output'] = stream_output gen_kwargs['query'] = instruction if gen_kwargs.get('verbose') is None: # for local debugging gen_kwargs['verbose'] = verbose if use_agent: agent_type = gen_kwargs.get('agent_type', 'auto') from openai_server.agent_utils import set_dummy_term, run_agent set_dummy_term() # before autogen imported if agent_type == 'auto': agent_type = 'autogen_2agent' if agent_type in ['autogen_2agent']: from openai_server.autogen_2agent_backend import run_autogen_2agent func = functools.partial(run_agent, run_agent_func=run_autogen_2agent) from openai_server.autogen_utils import get_autogen_response generator = get_autogen_response(func=func, **gen_kwargs) elif agent_type in ['autogen_multi_agent']: from openai_server.autogen_multi_agent_backend import run_autogen_multi_agent func = functools.partial(run_agent, run_agent_func=run_autogen_multi_agent) from openai_server.autogen_utils import get_autogen_response generator = get_autogen_response(func=func, **gen_kwargs) else: raise ValueError("No such agent_type %s" % agent_type) else: generator = get_response(**gen_kwargs) return generator async def achat_completion_action(body: dict, stream_output=False): messages = body.get('messages', []) object_type = 'chat.completions' if not stream_output else 'chat.completions.chunk' created_time = int(time.time()) req_id = "chat_cmpl_id-%s" % str(uuid.uuid4()) resp_list = 'choices' gen_kwargs = body # Consecutive Autogen messages may have the same role, # especially when agent_type involves group chat messages. # Therefore, they need to be concatenated. agent_type = gen_kwargs.get('agent_type', 'auto') if agent_type == "autogen_multi_agent": concat_assistant = concat_user = True else: concat_assistant = concat_user = False instruction, system_message, history, image_files = convert_messages_to_structure( messages=messages, concat_tool=True, # always concat tool calls concat_assistant=concat_assistant, concat_user=concat_user, ) # get from messages, unless none, then try to get from gen_kwargs from extra_body image_file = image_files if image_files else gen_kwargs.get('image_file', []) history = history if history else gen_kwargs.get('chat_conversation', []) gen_kwargs.update({ 'system_prompt': system_message, 'chat_conversation': history, 'stream_output': stream_output, 'image_file': image_file, }) use_agent = gen_kwargs.get('use_agent', False) if use_agent and os.environ.get('is_agent_server', '0') == '0': raise ValueError("Agent is not enabled on this server.") model = gen_kwargs.get('model', '') def chat_streaming_chunk(content): # begin streaming msg1 = {'role': 'assistant', 'content': content} if gen_kwargs.get('guided_json', {}): contents = split_concatenated_dicts(msg1['content']) msg1['tool_calls'] = [ dict(function=dict(name=gen_kwargs['tool_choice'], arguments=json.dumps(x)), id=str(uuid.uuid4())) for x in contents] chunk = { "id": req_id, "object": object_type, "created": created_time, "model": model, resp_list: [{ "index": 0, "finish_reason": None, "message": msg1, "delta": msg1, }], } return chunk if stream_output: yield chat_streaming_chunk('') if instruction is None and gen_kwargs.get('langchain_action', '') == 'Query': instruction = "Continue your response. If your prior response was cut short, then continue exactly at end of your last response without any ellipses, else continue your response by starting with new line and proceeding with an additional useful and related response." if instruction is None: instruction = '' # allowed by h2oGPT, e.g. for summarize or extract generator = get_generator(instruction, gen_kwargs, use_agent=use_agent, stream_output=stream_output) answer = '' usage = {} async for chunk in generator: if stream_output: if isinstance(chunk, dict): usage.update(chunk) else: chat_chunk = chat_streaming_chunk(chunk) answer += chunk yield chat_chunk else: if isinstance(chunk, dict): usage.update(chunk) if 'response' in chunk: # wil use this if exists answer = chunk['response'] else: answer = '' else: # will use this first if exists answer = chunk await asyncio.sleep(0.005) stop_reason = "stop" real_prompt_tokens = usage.get('save_dict', {}).get('extra_dict', {}).get('num_prompt_tokens') if real_prompt_tokens is not None: token_count = real_prompt_tokens else: token_count = count_tokens(instruction) real_completion_tokens = usage.get('save_dict', {}).get('extra_dict', {}).get('ntokens') if real_completion_tokens is not None: completion_token_count = real_completion_tokens else: completion_token_count = count_tokens(answer) usage.update({ "prompt_tokens": token_count, "completion_tokens": completion_token_count, "total_tokens": token_count + completion_token_count, }) if stream_output: chunk = chat_streaming_chunk('') chunk[resp_list][0]['finish_reason'] = stop_reason chunk['usage'] = usage yield chunk else: msg1 = {"role": "assistant", "content": answer} if gen_kwargs.get('guided_json', {}): contents = split_concatenated_dicts(msg1['content']) msg1['tool_calls'] = [ dict(function=dict(name=gen_kwargs['tool_choice'], arguments=json.dumps(x)), id=str(uuid.uuid4())) for x in contents] resp = { "id": req_id, "object": object_type, "created": created_time, "model": model, resp_list: [{ "index": 0, "finish_reason": stop_reason, "message": msg1, }], "usage": usage } yield resp async def acompletions_action(body: dict, stream_output=False): object_type = 'text_completion.chunk' if stream_output else 'text_completion' created_time = int(time.time()) res_id = "res_id-%s" % str(uuid.uuid4()) resp_list = 'choices' prompt_str = 'prompt' assert prompt_str in body, "Missing prompt" gen_kwargs = body gen_kwargs['stream_output'] = stream_output use_agent = gen_kwargs.get('use_agent', False) if use_agent and os.environ.get('is_agent_server', '0') == '0': raise ValueError("Agents not enabled on this server.") usage = {} if not stream_output: prompt_arg = body[prompt_str] if isinstance(prompt_arg, str) or (isinstance(prompt_arg, list) and isinstance(prompt_arg[0], int)): prompt_arg = [prompt_arg] resp_list_data = [] total_completion_token_count = 0 total_prompt_token_count = 0 for idx, prompt in enumerate(prompt_arg, start=0): token_count = count_tokens(prompt) total_prompt_token_count += token_count generator = get_generator(prompt, gen_kwargs, use_agent=use_agent, stream_output=stream_output) ret = {} response = "" try: async for last_value in generator: if isinstance(last_value, dict): ret = last_value else: response = last_value except StopIteration: pass if isinstance(ret, dict): usage.update(ret) if isinstance(response, str): completion_token_count = count_tokens(response) total_completion_token_count += completion_token_count else: # assume image total_completion_token_count = 1500 stop_reason = "stop" res_idx = { "index": idx, "finish_reason": stop_reason, "text": response, "logprobs": None, } resp_list_data.extend([res_idx]) usage.update({ "prompt_tokens": total_prompt_token_count, "completion_tokens": total_completion_token_count, "total_tokens": total_prompt_token_count + total_completion_token_count, }) res_dict = { "id": res_id, "object": object_type, "created": created_time, "model": '', resp_list: resp_list_data, "usage": usage } yield res_dict else: prompt = body[prompt_str] token_count = count_tokens(prompt) def text_streaming_chunk(content): # begin streaming chunk = { "id": res_id, "object": object_type, "created": created_time, "model": '', resp_list: [{ "index": 0, "finish_reason": None, "text": content, "logprobs": None, }], } return chunk generator = get_generator(prompt, gen_kwargs, use_agent=use_agent, stream_output=stream_output) response = '' usage = {} async for chunk in generator: if isinstance(chunk, dict): usage.update(chunk) else: response += chunk yield_chunk = text_streaming_chunk(chunk) yield yield_chunk await asyncio.sleep(0.005) completion_token_count = count_tokens(response) stop_reason = "stop" chunk = text_streaming_chunk('') chunk[resp_list][0]["finish_reason"] = stop_reason usage.update({ "prompt_tokens": token_count, "completion_tokens": completion_token_count, "total_tokens": token_count + completion_token_count, }) chunk["usage"] = usage yield chunk async def astream_chat_completions(body: dict, stream_output=True): async for resp in achat_completion_action(body, stream_output=stream_output): yield resp async def astream_completions(body: dict, stream_output=True): async for resp in acompletions_action(body, stream_output=stream_output): yield resp def get_model_info(): # concurrent gradio client client = get_client() model_dict = ast.literal_eval(client.predict(api_name='/model_names')) return dict(model_names=model_dict) def get_model_list(): # concurrent gradio client client = get_client() model_dict = ast.literal_eval(client.predict(api_name='/model_names')) base_models = [x['base_model'] for x in model_dict] return dict(model_names=base_models) def split_audio_on_silence(audio_bytes): from pydub import AudioSegment from pydub.silence import split_on_silence audio = AudioSegment.from_file(io.BytesIO(audio_bytes), format="wav") chunks = split_on_silence(audio, min_silence_len=500, silence_thresh=-40, keep_silence=200) chunk_bytes = [] for chunk in chunks: chunk_buffer = io.BytesIO() chunk.export(chunk_buffer, format="wav") chunk_bytes.append(chunk_buffer.getvalue()) return chunk_bytes def split_audio_fixed_intervals(audio_bytes, interval_ms=10000): from pydub import AudioSegment audio = AudioSegment.from_file(io.BytesIO(audio_bytes), format="wav") chunks = [audio[i:i + interval_ms] for i in range(0, len(audio), interval_ms)] chunk_bytes = [] for chunk in chunks: chunk_buffer = io.BytesIO() chunk.export(chunk_buffer, format="wav") chunk_bytes.append(chunk_buffer.getvalue()) return chunk_bytes async def audio_to_text(model, audio_file, stream, response_format, chunk, **kwargs): if chunk != 'none': # break-up audio file if chunk == 'silence': audio_files = split_audio_on_silence(audio_file) else: audio_files = split_audio_fixed_intervals(audio_file, interval_ms=chunk) for audio_file1 in audio_files: async for text in _audio_to_text(model, audio_file1, stream, response_format, chunk, **kwargs): yield text else: async for text in _audio_to_text(model, audio_file, stream, response_format, chunk, **kwargs): yield text async def _audio_to_text(model, audio_file, stream, response_format, chunk, **kwargs): # assumes enable_stt=True set for h2oGPT if os.getenv('GRADIO_H2OGPT_H2OGPT_KEY') and not kwargs.get('h2ogpt_key'): kwargs.update(dict(h2ogpt_key=os.getenv('GRADIO_H2OGPT_H2OGPT_KEY'))) client = get_client(kwargs.get('user')) h2ogpt_key = kwargs.get('h2ogpt_key', '') # string of dict for input if not isinstance(audio_file, str): audio_file = base64.b64encode(audio_file).decode('utf-8') inputs = dict(audio_file=audio_file, stream_output=stream, h2ogpt_key=h2ogpt_key) if stream: job = client.submit(*tuple(list(inputs.values())), api_name='/transcribe_audio_api') # ensure no immediate failure (only required for testing) import concurrent.futures try: e = job.exception(timeout=0.2) if e is not None: raise RuntimeError(e) except concurrent.futures.TimeoutError: pass n = 0 for text in job: yield dict(text=text.strip()) n += 1 # get rest after job done outputs = job.outputs().copy() for text in outputs[n:]: yield dict(text=text.strip()) n += 1 else: text = client.predict(*tuple(list(inputs.values())), api_name='/transcribe_audio_api') yield dict(text=text.strip()) async def text_to_audio(model, voice, input, stream, response_format, **kwargs): # tts_model = 'microsoft/speecht5_tts' # tts_model = 'tts_models/multilingual/multi-dataset/xtts_v2' # assumes enable_tts=True set for h2oGPT if os.getenv('GRADIO_H2OGPT_H2OGPT_KEY') and not kwargs.get('h2ogpt_key'): kwargs.update(dict(h2ogpt_key=os.getenv('GRADIO_H2OGPT_H2OGPT_KEY'))) client = get_client(user=kwargs.get('user')) h2ogpt_key = kwargs.get('h2ogpt_key') if not voice or voice in ['alloy', 'echo', 'fable', 'onyx', 'nova', 'shimmer']: # ignore OpenAI voices speaker = "SLT (female)" chatbot_role = "Female AI Assistant" else: # don't know which model used speaker = voice chatbot_role = voice # string of dict for input inputs = dict(chatbot_role=chatbot_role, speaker=speaker, tts_language='autodetect', tts_speed=1.0, prompt=input, stream_output=stream, h2ogpt_key=h2ogpt_key) if stream: job = client.submit(*tuple(list(inputs.values())), api_name='/speak_text_api') # ensure no immediate failure (only required for testing) import concurrent.futures try: e = job.exception(timeout=0.2) if e is not None: raise RuntimeError(e) except concurrent.futures.TimeoutError: pass n = 0 for audio_str in job: yield audio_str_to_bytes(audio_str, response_format=response_format) await asyncio.sleep(0.005) n += 1 # get rest after job done outputs = job.outputs().copy() for audio_str in outputs[n:]: yield audio_str_to_bytes(audio_str, response_format=response_format) await asyncio.sleep(0.005) n += 1 else: audio_str = client.predict(*tuple(list(inputs.values())), api_name='/speak_text_api') yield audio_str_to_bytes(audio_str, response_format=response_format) def audio_str_to_bytes(audio_str1, response_format='wav'): if audio_str1 is None: return b'' # Parse the input string to a dictionary audio_dict = ast.literal_eval(audio_str1) # Extract the base64 audio data and decode it audio = audio_dict['audio'] # Create a BytesIO stream from the binary data s = io.BytesIO(audio) # Extract sample rate and define other audio properties sr = audio_dict['sr'] channels = 1 # Assuming mono channel, adjust if necessary sample_width = 2 # Assuming 16-bit samples (2 bytes), adjust if necessary # Use from_raw to correctly interpret the raw audio data from pydub import AudioSegment audio_segment = AudioSegment.from_raw( s, sample_width=sample_width, frame_rate=sr, channels=channels ) # Export the AudioSegment to a BytesIO object as WAV output_stream = io.BytesIO() audio_segment.export(output_stream, format=response_format) output_bytes = output_stream.getvalue() return output_bytes def list_to_bytes(lst: list) -> str: float_array = np.array(lst, dtype="float32") bytes_array = float_array.tobytes() encoded_bytes = base64.b64encode(bytes_array) ascii_string = encoded_bytes.decode('ascii') return ascii_string def text_to_embedding(model, text, encoding_format, **kwargs): # assumes enable_stt=True set for h2oGPT if os.getenv('GRADIO_H2OGPT_H2OGPT_KEY') and not kwargs.get('h2ogpt_key'): kwargs.update(dict(h2ogpt_key=os.getenv('GRADIO_H2OGPT_H2OGPT_KEY'))) client = get_client(kwargs.get('user')) h2ogpt_key = kwargs.get('h2ogpt_key', '') inputs = dict(text=text, h2ogpt_key=h2ogpt_key, is_list=str(isinstance(text, list))) embeddings = client.predict(*tuple(list(inputs.values())), api_name='/embed_api') embeddings = ast.literal_eval(embeddings) if encoding_format == "base64": data = [{"object": "embedding", "embedding": list_to_bytes(emb), "index": n} for n, emb in enumerate(embeddings)] elif encoding_format == "float": data = [{"object": "embedding", "embedding": emb, "index": n} for n, emb in enumerate(embeddings)] else: data = [{"object": "embedding", "embedding": emb.tolist(), "index": n} for n, emb in enumerate(embeddings)] response = { "object": "list", "data": data, "model": model, "usage": { "prompt_tokens": 0, "total_tokens": 0, } } return response