""" Based upon ImageCaptionLoader in LangChain version: langchain/document_loaders/image_captions.py But accepts preloaded model to avoid slowness in use and CUDA forking issues Loader that loads image captions By default, the loader utilizes the pre-trained image captioning model. https://huggingface.co/microsoft/Florence-2-base """ from typing import List, Union, Any, Tuple import requests from langchain.docstore.document import Document from langchain_community.document_loaders import ImageCaptionLoader from utils import get_device, NullContext, clear_torch_cache from importlib.metadata import distribution, PackageNotFoundError try: assert distribution('bitsandbytes') is not None have_bitsandbytes = True except (PackageNotFoundError, AssertionError): have_bitsandbytes = False from io import BytesIO from pathlib import Path from typing import Any, List, Tuple, Union import requests from langchain_core.documents import Document from langchain_community.document_loaders.base import BaseLoader class ImageCaptionLoader(BaseLoader): """Load image captions. By default, the loader utilizes the pre-trained Salesforce BLIP image captioning model. https://huggingface.co/Salesforce/blip-image-captioning-base """ def __init__( self, images: Union[str, Path, bytes, List[Union[str, bytes, Path]]], caption_processor: str = "Salesforce/blip-image-captioning-base", caption_model: str = "Salesforce/blip-image-captioning-base", ): """Initialize with a list of image data (bytes) or file paths Args: images: Either a single image or a list of images. Accepts image data (bytes) or file paths to images. caption_processor: The name of the pre-trained BLIP processor. caption_model: The name of the pre-trained BLIP model. """ if isinstance(images, (str, Path, bytes)): self.images = [images] else: self.images = images self.caption_processor = caption_processor self.caption_model = caption_model def load(self) -> List[Document]: """Load from a list of image data or file paths""" try: from transformers import BlipForConditionalGeneration, BlipProcessor except ImportError: raise ImportError( "`transformers` package not found, please install with " "`pip install transformers`." ) processor = BlipProcessor.from_pretrained(self.caption_processor) model = BlipForConditionalGeneration.from_pretrained(self.caption_model) results = [] for image in self.images: caption, metadata = self._get_captions_and_metadata( model=model, processor=processor, image=image ) doc = Document(page_content=caption, metadata=metadata) results.append(doc) return results def _get_captions_and_metadata( self, model: Any, processor: Any, image: Union[str, Path, bytes] ) -> Tuple[str, dict]: """Helper function for getting the captions and metadata of an image.""" try: from PIL import Image except ImportError: raise ImportError( "`PIL` package not found, please install with `pip install pillow`" ) image_source = image # Save the original source for later reference try: if isinstance(image, bytes): image = Image.open(BytesIO(image)).convert("RGB") elif isinstance(image, str) and ( image.startswith("http://") or image.startswith("https://") ): image = Image.open(requests.get(image, stream=True).raw).convert("RGB") else: image = Image.open(image).convert("RGB") except Exception: if isinstance(image_source, bytes): msg = "Could not get image data from bytes" else: msg = f"Could not get image data for {image_source}" raise ValueError(msg) inputs = processor(image, "an image of", return_tensors="pt") output = model.generate(**inputs) caption: str = processor.decode(output[0]) if isinstance(image_source, bytes): metadata: dict = {"image_source": "Image bytes provided"} else: metadata = {"image_path": str(image_source)} return caption, metadata class H2OImageCaptionLoader(ImageCaptionLoader): """Loader that loads the captions of an image""" def __init__(self, path_images: Union[str, List[str]] = None, caption_processor: str = None, caption_model: str = None, caption_gpu=True, load_in_8bit=True, # True doesn't seem to work, even though https://huggingface.co/Salesforce/blip2-flan-t5-xxl#in-8-bit-precision-int8 load_half=False, load_gptq='', load_awq='', load_exllama=False, use_safetensors=False, revision=None, min_new_tokens=512, max_tokens=50, gpu_id='auto'): if caption_model is None or caption_model is None: caption_processor = "microsoft/Florence-2-base" caption_model = "microsoft/Florence-2-base" super().__init__(path_images, caption_processor, caption_model) self.caption_processor = caption_processor self.caption_model = caption_model self.processor = None self.model = None self.caption_gpu = caption_gpu self.context_class = NullContext self.load_in_8bit = load_in_8bit and have_bitsandbytes # only for blip2 self.load_half = load_half self.load_gptq = load_gptq self.load_awq = load_awq self.load_exllama = load_exllama self.use_safetensors = use_safetensors self.revision = revision self.gpu_id = gpu_id # default prompt self.prompt = "image of" self.min_new_tokens = min_new_tokens self.max_tokens = max_tokens self.device = 'cpu' self.device_map = {"": 'cpu'} self.set_context() def set_context(self): if get_device() == 'cuda' and self.caption_gpu: import torch n_gpus = torch.cuda.device_count() if torch.cuda.is_available() else 0 if n_gpus > 0: self.context_class = torch.device self.device = 'cuda' else: self.device = 'cpu' else: self.device = 'cpu' if self.caption_gpu: if self.gpu_id == 'auto': # blip2 has issues with multi-GPU. Error says need to somehow set language model in device map # device_map = 'auto' self.device_map = {"": 0} else: if self.device == 'cuda': self.device_map = {"": 'cuda:%d' % self.gpu_id} else: self.device_map = {"": 'cpu'} else: self.device_map = {"": 'cpu'} def load_model(self): try: import transformers except ImportError: raise ValueError( "`transformers` package not found, please install with " "`pip install transformers`." ) self.set_context() if self.model: if not self.load_in_8bit and str(self.model.device) != self.device_map['']: self.model.to(self.device) return self import torch with torch.no_grad(): with self.context_class(self.device): context_class_cast = NullContext if self.device == 'cpu' else torch.autocast with context_class_cast(self.device): if 'blip2' in self.caption_processor.lower(): from transformers import Blip2Processor, Blip2ForConditionalGeneration if self.load_half and not self.load_in_8bit: self.processor = Blip2Processor.from_pretrained(self.caption_processor, device_map=self.device_map).half() self.model = Blip2ForConditionalGeneration.from_pretrained(self.caption_model, device_map=self.device_map).half() else: self.processor = Blip2Processor.from_pretrained(self.caption_processor, load_in_8bit=self.load_in_8bit, device_map=self.device_map, ) self.model = Blip2ForConditionalGeneration.from_pretrained(self.caption_model, load_in_8bit=self.load_in_8bit, device_map=self.device_map) elif 'blip' in self.caption_processor.lower(): from transformers import BlipForConditionalGeneration, BlipProcessor self.load_half = False # not supported self.processor = BlipProcessor.from_pretrained(self.caption_processor, device_map=self.device_map) self.model = BlipForConditionalGeneration.from_pretrained(self.caption_model, device_map=self.device_map) else: from transformers import AutoModelForCausalLM, AutoProcessor self.load_half = False # not supported self.processor = AutoProcessor.from_pretrained(self.caption_processor, device_map=self.device_map, trust_remote_code=True) self.model = AutoModelForCausalLM.from_pretrained(self.caption_model, device_map=self.device_map, trust_remote_code=True) return self def set_image_paths(self, path_images: Union[str, List[str]]): """ Load from a list of image files """ if isinstance(path_images, str): self.image_paths = [path_images] else: self.image_paths = path_images def load(self, prompt=None) -> List[Document]: if self.processor is None or self.model is None: self.load_model() results = [] for path_image in self.image_paths: caption, metadata = self._get_captions_and_metadata( model=self.model, processor=self.processor, path_image=path_image, prompt=prompt, ) doc = Document(page_content=caption, metadata=metadata) results.append(doc) return results def unload_model(self): if hasattr(self, 'model') and hasattr(self.model, 'cpu'): self.model.cpu() clear_torch_cache() def _get_captions_and_metadata( self, model: Any, processor: Any, path_image: str, prompt=None) -> Tuple[str, dict]: """ Helper function for getting the captions and metadata of an image """ if prompt is None: prompt = self.prompt try: from PIL import Image except ImportError: raise ValueError( "`PIL` package not found, please install with `pip install pillow`" ) try: if path_image.startswith("http://") or path_image.startswith("https://"): image = Image.open(requests.get(path_image, stream=True).raw).convert( "RGB" ) else: image = Image.open(path_image).convert("RGB") except Exception: raise ValueError(f"Could not get image data for {path_image}") import torch with torch.no_grad(): with self.context_class(self.device): context_class_cast = NullContext if self.device == 'cpu' else torch.autocast with context_class_cast(self.device): extra_kwargs = {} if isinstance(self.caption_model, str) and 'florence' in self.caption_model.lower(): caption_detail_task_map = { "low": "", "medium": "", "high": "", } task_prompt = caption_detail_task_map[ 'high' if 'large' in self.caption_model else 'medium' ] num_beams = 3 if 'large' in self.caption_model else 1 extra_kwargs.update(dict(num_beams=num_beams)) if prompt and False: prompt = task_prompt + prompt else: prompt = task_prompt if isinstance(self.caption_model, str) and 'blip' in self.caption_model: min_length = len(prompt) // 4 + self.min_new_tokens self.max_tokens = max(self.max_tokens, min_length) extra_kwargs.update(dict(min_length=min_length)) if self.load_half: # FIXME: RuntimeError: "slow_conv2d_cpu" not implemented for 'Half' inputs = processor(image, prompt, return_tensors="pt") # .half() else: inputs = processor(image, prompt, return_tensors="pt") else: inputs = processor(text=prompt, images=image, return_tensors="pt") inputs.to(model.device) output = model.generate(**inputs, max_length=self.max_tokens, **extra_kwargs) caption: str = processor.decode(output[0], skip_special_tokens=True) if isinstance(self.caption_model, str) and 'blip' in self.caption_model: prompti = caption.find(prompt) if prompti >= 0: caption = caption[prompti + len(prompt):] elif isinstance(self.caption_model, str) and 'florence' in self.caption_model.lower(): parsed_answer = processor.post_process_generation( caption, task=task_prompt, image_size=(image.width, image.height) ) caption: str = parsed_answer[task_prompt].strip() metadata: dict = {"image_path": path_image} return caption, metadata