""" Based upon ImageCaptionLoader in LangChain version: langchain/document_loaders/image_captions.py But accepts preloaded model to avoid slowness in use and CUDA forking issues Loader that uses Pix2Struct models to image caption """ from typing import List, Union, Any, Tuple from langchain.docstore.document import Document from langchain_community.document_loaders import ImageCaptionLoader from utils import get_device, clear_torch_cache from PIL import Image class H2OPix2StructLoader(ImageCaptionLoader): """Loader that extracts text from images""" def __init__(self, path_images: Union[str, List[str]] = None, model_type="google/pix2struct-textcaps-base", max_new_tokens=50): super().__init__(path_images) self._pix2struct_model = None self._model_type = model_type self._max_new_tokens = max_new_tokens def set_context(self): if get_device() == 'cuda': import torch n_gpus = torch.cuda.device_count() if torch.cuda.is_available() else 0 if n_gpus > 0: self.context_class = torch.device self.device = 'cuda' else: self.device = 'cpu' else: self.device = 'cpu' def load_model(self): try: from transformers import AutoProcessor, Pix2StructForConditionalGeneration except ImportError: raise ValueError( "`transformers` package not found, please install with " "`pip install transformers`." ) if self._pix2struct_model: self._pix2struct_model = self._pix2struct_model.to(self.device) return self self.set_context() self._pix2struct_processor = AutoProcessor.from_pretrained(self._model_type) self._pix2struct_model = Pix2StructForConditionalGeneration.from_pretrained(self._model_type).to(self.device) return self def unload_model(self): if hasattr(self._pix2struct_model, 'cpu'): self._pix2struct_model.cpu() clear_torch_cache() def set_image_paths(self, path_images: Union[str, List[str]]): """ Load from a list of image files """ if isinstance(path_images, str): self.image_paths = [path_images] else: self.image_paths = path_images def load(self, prompt=None) -> List[Document]: if self._pix2struct_model is None: self.load_model() results = [] for path_image in self.image_paths: caption, metadata = self._get_captions_and_metadata( processor=self._pix2struct_processor, model=self._pix2struct_model, path_image=path_image ) doc = Document(page_content=caption, metadata=metadata) results.append(doc) return results def _get_captions_and_metadata( self, processor: Any, model: Any, path_image: str) -> Tuple[str, dict]: """ Helper function for getting the captions and metadata of an image """ try: image = Image.open(path_image) except Exception: raise ValueError(f"Could not get image data for {path_image}") inputs = self._pix2struct_processor(images=image, return_tensors="pt") inputs = inputs.to(self.device) generated_ids = self._pix2struct_model.generate(**inputs, max_new_tokens=self._max_new_tokens) generated_text = self._pix2struct_processor.batch_decode(generated_ids, skip_special_tokens=True)[0] metadata: dict = {"image_path": path_image} return generated_text, metadata