import ast import asyncio import selectors import contextlib import functools import gc import hashlib import inspect import io import json import os import pathlib import pickle import platform import random import shutil import subprocess import sys import threading import time import traceback import zipfile import tarfile from array import array from collections import deque from concurrent.futures import ProcessPoolExecutor from datetime import datetime from typing import Tuple, Callable, Dict from queue import Queue, Empty from concurrent.futures import ThreadPoolExecutor from urllib.parse import urlparse import filelock import fire import numpy as np import pandas as pd import psutil import requests import uuid import re from packaging import version import tabulate from fire import inspectutils from joblib import Parallel from tqdm.auto import tqdm from enums import split_google, invalid_json_str, docs_joiner_default, git_hash_unset, is_json_model, \ openai_supports_functiontools, openai_supports_parallel_functiontools, does_support_functiontools from utils_procs import reulimit reulimit() def H2O_Fire(component=None): config_prefix = "H2OGPT_" args = sys.argv[1:] query_args = [arg.split("=")[0].split(" ")[0].lstrip("-") for arg in args] fn_spec = inspectutils.GetFullArgSpec(component) for key, value in os.environ.items(): if not ( (key.startswith(config_prefix) or key.startswith(config_prefix.lower())) and len(key) > len(config_prefix) ): continue # ignore as non H2OGPT argument new_key = key[len(config_prefix):].lower() if new_key in query_args: continue # ignore as already passed as script argument if new_key not in fn_spec.args: continue # ignore as not a valid H2OGPT argument args.append(f"--{new_key}={value}") fire.Fire(component=component, command=args) def set_seed(seed: int): """ Sets the seed of the entire notebook so results are the same every time we run. This is for REPRODUCIBILITY. """ import torch np.random.seed(seed) random_state = np.random.RandomState(seed) random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False os.environ['PYTHONHASHSEED'] = str(seed) return random_state def flatten_list(lis): """Given a list, possibly nested to any level, return it flattened.""" new_lis = [] for item in lis: if type(item) == type([]): new_lis.extend(flatten_list(item)) else: new_lis.append(item) return new_lis def clear_torch_cache(allow_skip=False): if allow_skip and os.getenv('CLEAR_CLEAR_TORCH', '2') == '1' or os.getenv('CLEAR_CLEAR_TORCH', '2') == '0': return try: import torch if torch.cuda.is_available(): torch.cuda.empty_cache() torch.cuda.ipc_collect() gc.collect() except RuntimeError as e: print("clear_torch_cache error: %s" % ''.join(traceback.format_tb(e.__traceback__)), flush=True) def ping(): try: print('Ping: %s' % str(datetime.now()), flush=True) except AttributeError: # some programs wrap print and will fail with flush passed pass def ping_gpu(): try: print('Ping_GPU: %s %s' % (str(datetime.now()), system_info()), flush=True) except AttributeError: # some programs wrap print and will fail with flush passed pass try: ping_gpu_memory() except Exception as e: print('Ping_GPU memory failure: %s' % str(e), flush=True) def ping_gpu_memory(): from models.gpu_mem_track import MemTracker gpu_tracker = MemTracker() # define a GPU tracker from torch.cuda import memory_summary gpu_tracker.track() def get_torch_allocated(): import torch return torch.cuda.memory_allocated() def get_device(n_gpus=None): import torch if torch.cuda.is_available() and n_gpus != 0: device = "cuda" elif torch.backends.mps.is_built(): device = "mps" else: device = "cpu" return device def system_info(): import psutil system = {} # https://stackoverflow.com/questions/48951136/plot-multiple-graphs-in-one-plot-using-tensorboard # https://arshren.medium.com/monitoring-your-devices-in-python-5191d672f749 try: temps = psutil.sensors_temperatures(fahrenheit=False) if 'coretemp' in temps: coretemp = temps['coretemp'] temp_dict = {k.label: k.current for k in coretemp} for k, v in temp_dict.items(): system['CPU_C/%s' % k] = v except AttributeError: pass # https://github.com/gpuopenanalytics/pynvml/blob/master/help_query_gpu.txt try: from pynvml.smi import nvidia_smi nvsmi = nvidia_smi.getInstance() gpu_power_dict = {'W_gpu%d' % i: x['power_readings']['power_draw'] for i, x in enumerate(nvsmi.DeviceQuery('power.draw')['gpu'])} for k, v in gpu_power_dict.items(): system['GPU_W/%s' % k] = v gpu_temp_dict = {'C_gpu%d' % i: x['temperature']['gpu_temp'] for i, x in enumerate(nvsmi.DeviceQuery('temperature.gpu')['gpu'])} for k, v in gpu_temp_dict.items(): system['GPU_C/%s' % k] = v gpu_memory_free_dict = {'MiB_gpu%d' % i: x['fb_memory_usage']['free'] for i, x in enumerate(nvsmi.DeviceQuery('memory.free')['gpu'])} gpu_memory_total_dict = {'MiB_gpu%d' % i: x['fb_memory_usage']['total'] for i, x in enumerate(nvsmi.DeviceQuery('memory.total')['gpu'])} gpu_memory_frac_dict = {k: gpu_memory_free_dict[k] / gpu_memory_total_dict[k] for k in gpu_memory_total_dict} for k, v in gpu_memory_frac_dict.items(): system[f'GPU_M/%s' % k] = v except (KeyError, ModuleNotFoundError): pass system['hash'] = get_githash() debug_mem = False if debug_mem: try: # pip install guppy3 from guppy import hpy h = hpy() print(h.heap()) print(h.heap().byvia) print(h.heap().byid) except: pass return system def system_info_print(): try: df = pd.DataFrame.from_dict(system_info(), orient='index') # avoid slamming GPUs time.sleep(1) return df.to_markdown() except Exception as e: return "Error: %s" % str(e) def zip_data(root_dirs=None, zip_file=None, base_dir='./', fail_any_exception=False): try: return _zip_data(zip_file=zip_file, base_dir=base_dir, root_dirs=root_dirs) except Exception as e: traceback.print_exc() print('Exception in zipping: %s' % str(e)) if not fail_any_exception: raise def _zip_data(root_dirs=None, zip_file=None, base_dir='./'): if isinstance(root_dirs, str): root_dirs = [root_dirs] if zip_file is None: datetime_str = str(datetime.now()).replace(" ", "_").replace(":", "_") host_name = os.getenv('HF_HOSTNAME', 'emptyhost') zip_file = "data_%s_%s.zip" % (datetime_str, host_name) assert root_dirs is not None base_path = os.path.dirname(zip_file) if not os.path.isdir(base_path) and os.path.dirname(zip_file): base_path = makedirs(base_path, exist_ok=True, tmp_ok=True, use_base=True) zip_file = os.path.join(base_path, os.path.basename(zip_file)) with zipfile.ZipFile(zip_file, "w") as expt_zip: for root_dir in root_dirs: if root_dir is None: continue for root, d, files in os.walk(root_dir): for file in files: file_to_archive = os.path.join(root, file) assert os.path.exists(file_to_archive) path_to_archive = os.path.relpath(file_to_archive, base_dir) expt_zip.write(filename=file_to_archive, arcname=path_to_archive) return zip_file, zip_file def tar_data(root_dirs=None, tar_file=None, base_dir='./', fail_any_exception=False): try: return _tar_data(tar_file=tar_file, base_dir=base_dir, root_dirs=root_dirs) except Exception as e: traceback.print_exc() print('Exception in tar archiving: %s' % str(e)) if not fail_any_exception: raise def _tar_data(root_dirs=None, tar_file=None, base_dir='./'): if isinstance(root_dirs, str): root_dirs = [root_dirs] if tar_file is None: datetime_str = str(datetime.now()).replace(" ", "_").replace(":", "_") host_name = os.getenv('HF_HOSTNAME', 'emptyhost') tar_file = "data_%s_%s.tar.gz" % (datetime_str, host_name) assert root_dirs is not None base_path = os.path.dirname(tar_file) if not os.path.isdir(base_path) and os.path.dirname(tar_file): base_path = makedirs(base_path, exist_ok=True, tmp_ok=True, use_base=True) tar_file = os.path.join(base_path, os.path.basename(tar_file)) with tarfile.open(tar_file, "w:gz") as expt_tar: for root_dir in root_dirs: if root_dir is None: continue for root, d, files in os.walk(root_dir): for file in files: file_to_archive = os.path.join(root, file) assert os.path.exists(file_to_archive) path_to_archive = os.path.relpath(file_to_archive, base_dir) expt_tar.add(name=file_to_archive, arcname=path_to_archive) return tar_file, tar_file def save_generate_output(prompt=None, output=None, base_model=None, save_dir=None, where_from='unknown where from', extra_dict={}, error='', sources=[], which_api='', valid_key=None, h2ogpt_key='', return_dict=False, **kwargs_extra): if not save_dir: return try: return _save_generate_output(prompt=prompt, output=output, base_model=base_model, save_dir=save_dir, where_from=where_from, extra_dict=extra_dict, error=error, sources=sources, which_api=which_api, valid_key=valid_key, h2ogpt_key=h2ogpt_key, return_dict=return_dict, **kwargs_extra) except Exception as e: traceback.print_exc() print('Exception in saving: %s' % str(e)) def _save_generate_tokens(response_no_refs, extra_dict): # tokenize at end if need to, so doesn't block generation in multi-generator case if extra_dict.get('ntokens') is None: extra_dict['ntokens'] = FakeTokenizer().num_tokens_from_string(str(response_no_refs)) # only do below if didn't already compute ntokens, else assume also computed rate if extra_dict.get('ntokens') is not None and extra_dict.get('t_generate') is not None: extra_dict['tokens_persecond'] = extra_dict['ntokens'] / extra_dict['t_generate'] return extra_dict def _save_generate_output(prompt=None, output=None, base_model=None, save_dir=None, where_from='unknown where from', extra_dict={}, error='', sources=[], which_api='', valid_key=None, h2ogpt_key='', return_dict=False, **kwargs_extra): """ Save conversation to .json, row by row. json_file_path is path to final JSON file. If not in ., then will attempt to make directories. Appends if file exists """ prompt = '' if prompt is None else prompt output = '' if output is None else output extra_dict = _save_generate_tokens(output, extra_dict) dict_to_save = dict(prompt=prompt, text=output, time=time.ctime(), base_model=base_model, where_from=where_from, error=error, sources=sources, which_api=which_api, valid_key=valid_key, h2ogpt_key=h2ogpt_key, ) dict_to_save.update(extra_dict) dict_to_save.update(kwargs_extra) if return_dict: return dict_to_save if os.path.exists(save_dir) and not os.path.isdir(save_dir): raise RuntimeError("save_dir already exists and is not a directory!") makedirs(save_dir, exist_ok=True) # already should be made, can't change at this point import json with filelock.FileLock("%s.lock" % os.path.basename(save_dir)): # lock logging in case have concurrency with open(os.path.join(save_dir, "history.json"), "a") as f: # just add [ at start, and ] at end, and have proper JSON dataset f.write( " " + json.dumps( dict_to_save ) + ",\n" ) def s3up(filename): try: return _s3up(filename) except Exception as e: traceback.print_exc() print('Exception for file %s in s3up: %s' % (filename, str(e))) return "Failed to upload %s: Error: %s" % (filename, str(e)) def _s3up(filename): import boto3 aws_access_key_id = os.getenv('AWS_SERVER_PUBLIC_KEY') aws_secret_access_key = os.getenv('AWS_SERVER_SECRET_KEY') bucket = os.getenv('AWS_BUCKET') assert aws_access_key_id, "Set AWS key" assert aws_secret_access_key, "Set AWS secret" assert bucket, "Set AWS Bucket" s3 = boto3.client('s3', aws_access_key_id=os.getenv('AWS_SERVER_PUBLIC_KEY'), aws_secret_access_key=os.getenv('AWS_SERVER_SECRET_KEY'), ) ret = s3.upload_file( Filename=filename, Bucket=os.getenv('AWS_BUCKET'), Key=filename, ) if ret in [None, '']: return "Successfully uploaded %s" % filename def get_githash(): githash = git_hash_unset try: githash = subprocess.run(['git', 'rev-parse', 'HEAD'], stdout=subprocess.PIPE).stdout.decode('utf-8')[0:-1] if githash in ['', None]: githash = git_hash_unset except Exception as e: print("git failed to run: %s" % str(e)) if githash == git_hash_unset: try: from version import __version__ githash = __version__ except: pass if os.getenv('HARD_ASSERTS'): assert is_full_git_hash(githash) return githash def copy_code(run_id): """ copy code to track changes :param run_id: :return: """ rnd_num = str(random.randint(0, 2 ** 31)) run_id = 'run_' + str(run_id) os.makedirs(run_id, exist_ok=True) me_full = os.path.join(pathlib.Path(__file__).parent.resolve(), __file__) me_file = os.path.basename(__file__) new_me = os.path.join(run_id, me_file + '_' + get_githash()) if os.path.isfile(new_me): new_me = os.path.join(run_id, me_file + '_' + get_githash() + '_' + rnd_num) shutil.copy(me_full, new_me) else: shutil.copy(me_full, new_me) class NullContext(threading.local): """No-op context manager, executes block without doing any additional processing. Used as a stand-in if a particular block of code is only sometimes used with a normal context manager: """ def __init__(self, *args, **kwargs): pass def __enter__(self): return self def __exit__(self, exc_type, exc_value, exc_traceback): self.finally_act() def finally_act(self): pass class AsyncNullContext(threading.local): """No-op async context manager, executes block without doing any additional processing. Used as a stand-in if a particular block of code is only sometimes used with a normal async context manager: """ def __init__(self, *args, **kwargs): pass async def __aenter__(self): return self async def __aexit__(self, exc_type, exc_value, exc_traceback): await self.finally_act() async def finally_act(self): pass def wrapped_partial(func, *args, **kwargs): """ Give partial properties of normal function, like __name__ attribute etc. :param func: :param args: :param kwargs: :return: """ partial_func = functools.partial(func, *args, **kwargs) functools.update_wrapper(partial_func, func) return partial_func class ThreadException(Exception): pass class EThread(threading.Thread): # Function that raises the custom exception def __init__(self, group=None, target=None, name=None, args=(), kwargs=None, *, daemon=None, streamer=None, bucket=None, async_output=False): self.bucket = bucket self.streamer = streamer self.exc = None self._return = None self.async_output = async_output super().__init__(group=group, target=target, name=name, args=args, kwargs=kwargs, daemon=daemon) def run(self): # Variable that stores the exception, if raised by someFunction try: if self._target is not None: if self.async_output: self._return = asyncio.run(self._target(*self._args, **self._kwargs)) else: self._return = self._target(*self._args, **self._kwargs) except BaseException as e: print("thread exception: %s" % str(traceback.format_exc())) self.bucket.put(sys.exc_info()) self.exc = e if self.streamer: print("make stop: %s" % str(traceback.format_exc()), flush=True) self.streamer.do_stop = True finally: # Avoid a refcycle if the thread is running a function with # an argument that has a member that points to the thread. del self._target, self._args, self._kwargs def join(self, timeout=None): threading.Thread.join(self) # Since join() returns in caller thread # we re-raise the caught exception # if any was caught if self.exc: raise self.exc return self._return def import_matplotlib(): import matplotlib matplotlib.use('agg') # KEEP THESE HERE! START import matplotlib.pyplot as plt import pandas as pd # to avoid dlopen deadlock in fork import pandas.core.computation.expressions as pd_expressions import pandas.core.algorithms as pd_algorithms import pandas.core.common as pd_com import numpy as np # KEEP THESE HERE! END def get_sha(value): return hashlib.md5(str(value).encode('utf-8')).hexdigest() def sanitize_filename(name, file_length_limit=250): """ Sanitize file *base* names. :param name: name to sanitize :param file_length_limit: bit smaller than 256 for safety :return: """ bad_chars = ['[', ']', ',', '/', '\\', '\\w', '\\s', '-', '+', '\"', '\'', '>', '<', ' ', '=', ')', '(', ':', '^'] for char in bad_chars: name = name.replace(char, "_") length = len(name) sha_length = 32 real_length_limit = file_length_limit - (sha_length + 2) assert real_length_limit > 0, "Bad file limit length: %s %s" % (file_length_limit, real_length_limit) if length > file_length_limit: sha = get_sha(name) half_real_length_limit = max(1, int(real_length_limit / 2)) name = name[0:half_real_length_limit] + "_" + sha + "_" + name[length - half_real_length_limit:length] return name def shutil_rmtree(*args, **kwargs): path = args[0] assert not os.path.samefile(path, '/'), "Should not be trying to remove entire root directory: %s" % str(path) assert not os.path.samefile(path, './'), "Should not be trying to remove entire local directory: %s" % str(path) return shutil.rmtree(*args, **kwargs) def remove(path: str): try: if path is not None and os.path.exists(path): if os.path.isdir(path): shutil_rmtree(path, ignore_errors=True) else: with contextlib.suppress(FileNotFoundError): os.remove(path) except: pass def makedirs(path, exist_ok=True, tmp_ok=False, use_base=False): """ Avoid some inefficiency in os.makedirs() :param path: :param exist_ok: :param tmp_ok: use /tmp if can't write locally :param use_base: :return: """ if path is None: return path # if base path set, make relative to that, unless user_path absolute path if use_base: if os.path.normpath(path) == os.path.normpath(os.path.abspath(path)): pass else: if os.getenv('H2OGPT_BASE_PATH') is not None: base_dir = os.path.normpath(os.getenv('H2OGPT_BASE_PATH')) path = os.path.normpath(path) if not path.startswith(base_dir): path = os.path.join(os.getenv('H2OGPT_BASE_PATH', ''), path) path = os.path.normpath(path) if os.path.isdir(path) and os.path.exists(path): assert exist_ok, "Path already exists" return path try: os.makedirs(path, exist_ok=exist_ok) return path except FileExistsError: # e.g. soft link return path except PermissionError: if tmp_ok: path0 = path path = os.path.join('/tmp/', path) print("Permission denied to %s, using %s instead" % (path0, path), flush=True) os.makedirs(path, exist_ok=exist_ok) return path else: raise def atomic_move_simple(src, dst): try: shutil.move(src, dst) except (shutil.Error, FileExistsError): pass remove(src) def atomic_copy(src="", dst=None, content=None): my_uuid = uuid.uuid4() src_tmp = None if content is not None: src_tmp = os.path.join('./', str(my_uuid)) with open(src_tmp, 'wt') as f: f.write(content) elif src != "": src_tmp = src + str(my_uuid) shutil.copy(src, src_tmp) if src_tmp is not None: makedirs(os.path.dirname(dst), exist_ok=True) shutil.move(src_tmp, dst) remove(src_tmp) def move_tree(src, dst, include_root=True): makedirs(dst, exist_ok=True) if include_root: shutil.move(src, dst) else: for (path, dirs, files) in os.walk(src): new_path = path.replace(src, dst) makedirs(new_path, exist_ok=True) for file in files: filename = os.path.join(path, file) new_filename = os.path.join(new_path, file) # print("%s -> %s" % (filename, new_filename)) try: # only move if file doesn't already exist # this ensures use earliest installation if used for pip install race avoidance if not os.path.isfile(new_filename): shutil.move(filename, new_filename) except FileExistsError: pass for (path, dirs, files) in os.walk(src): shutil.rmtree(path, ignore_errors=True) def copy_tree(src, dst, follow_symlink=False): makedirs(dst, exist_ok=True) for (path, dirs, files) in os.walk(src, followlinks=follow_symlink): new_path = path.replace(src, dst) makedirs(new_path, exist_ok=True) for file in files: filename = os.path.join(path, file) new_filename = os.path.join(new_path, file) # print("%s -> %s" % (filename, new_filename)) try: atomic_copy(filename, new_filename) except FileNotFoundError: pass def download_simple(url, dest=None, overwrite=False, verbose=False): if dest is None: dest = os.path.basename(url) base_path = os.path.dirname(dest) if base_path: # else local path base_path = makedirs(base_path, exist_ok=True, tmp_ok=True, use_base=True) dest = os.path.join(base_path, os.path.basename(dest)) if os.path.isfile(dest): if not overwrite: if verbose: print("Already have %s from url %s, delete file if invalid" % (dest, str(url)), flush=True) return dest else: remove(dest) if verbose: print("BEGIN get url %s" % str(url), flush=True) if url.startswith("file://"): from requests_file import FileAdapter s = requests.Session() s.mount('file://', FileAdapter()) url_data = s.get(url, stream=True) else: url_data = requests.get(url, stream=True) if verbose: print("GOT url %s" % str(url), flush=True) if url_data.status_code != requests.codes.ok: msg = "Cannot get url %s, code: %s, reason: %s" % ( str(url), str(url_data.status_code), str(url_data.reason), ) raise requests.exceptions.RequestException(msg) url_data.raw.decode_content = True uuid_tmp = str(uuid.uuid4())[:6] dest_tmp = dest + "_dl_" + uuid_tmp + ".tmp" # Sizes in bytes. total_size = int(url_data.headers.get("content-length", 0)) block_size = 1024 with tqdm(total=total_size, unit="B", unit_scale=True) as progress_bar: with open(dest_tmp, "wb") as file: for data in url_data.iter_content(block_size): progress_bar.update(len(data)) file.write(data) if total_size != 0 and progress_bar.n != total_size: raise RuntimeError("Could not download file") atomic_move_simple(dest_tmp, dest) if verbose: print("DONE url %s" % str(url), flush=True) return dest def download(url, dest=None, dest_path=None): if dest_path is not None: dest = os.path.join(dest_path, os.path.basename(url)) if os.path.isfile(dest): print("already downloaded %s -> %s" % (url, dest)) return dest elif dest is not None: if os.path.exists(dest): print("already downloaded %s -> %s" % (url, dest)) return dest else: uuid_tmp = "dl2_" + str(uuid.uuid4())[:6] dest = uuid_tmp + os.path.basename(url) print("downloading %s to %s" % (url, dest)) if url.startswith("file://"): from requests_file import FileAdapter s = requests.Session() s.mount('file://', FileAdapter()) url_data = s.get(url, stream=True) else: url_data = requests.get(url, stream=True) if url_data.status_code != requests.codes.ok: msg = "Cannot get url %s, code: %s, reason: %s" % ( str(url), str(url_data.status_code), str(url_data.reason)) raise requests.exceptions.RequestException(msg) url_data.raw.decode_content = True dirname = os.path.dirname(dest) if dirname != "" and not os.path.isdir(dirname): base_path = os.path.dirname(dest) base_path = makedirs(base_path, exist_ok=True, tmp_ok=True, use_base=True) dest = os.path.join(base_path, os.path.basename(dest)) uuid_tmp = "dl3_" + str(uuid.uuid4())[:6] dest_tmp = dest + "_" + uuid_tmp + ".tmp" with open(dest_tmp, 'wb') as f: shutil.copyfileobj(url_data.raw, f) try: shutil.move(dest_tmp, dest) except FileExistsError: pass remove(dest_tmp) return dest def get_doc(x): return x.page_content def get_source(x): return x.metadata.get('source', "UNKNOWN SOURCE") def markdown_to_html(content): import markdown # Create a Markdown object markdowner = markdown.Markdown() # Convert the Markdown block to HTML try: html = markdowner.reset().convert(content) except Exception as e: # FIXME: print("Invalid conversion of markdown to html: %s\n\n%s" % (content, str(e))) html = content return html def is_markdown(string): """Returns True if the string is markdown, False otherwise.""" # Check for the presence of double square brackets if re.search(r'\[\[.+?\]\]', string): return True # Check for the presence of angle brackets if re.search(r'<.+?>', string): return False # If neither of the above patterns are found, assume the string is markdown return True def get_accordion_named(content, title, font_size=8): # content = content.replace('\n', '
') if is_markdown(content): content = markdown_to_html(content) return f"""
{title}{content}
""" def hyde_titles(level): if level == 0: title = "HYDE 0: LLM" elif level == 1: title = "HYDE 1: Prompt+LLM embedding" elif level == 2: title = "HYDE 2: Prompt+LLM+HYDE 1 embedding" elif level == 3: title = "HYDE 3: Prompt+LLM+HYDE 1&2 embedding" else: title = "HYDE 4: Prompt+LLM+HYDE 1&2&3 embedding" return title def get_accordion(x, font_size=2, head_acc=50): title = x.page_content[:head_acc].replace("\n", ' ').replace("
", ' ').replace("

", ' ').replace("\r", ' ') content = x.page_content return f"""

{title}{content}
""" def get_url(x, from_str=False, short_name=False, font_size=2): if not from_str: source = x.metadata['source'] else: source = x if short_name: source_name = get_short_name(source) else: source_name = source if source.startswith('http://') or source.startswith('https://'): return """%s""" % ( font_size, source, source_name) elif ' maxl: allow_length = maxl - 3 half_allowed = max(1, int(allow_length / 2)) name = name[0:half_allowed] + "..." + name[length - half_allowed:length] return name def cuda_vis_check(total_gpus): """Helper function to count GPUs by environment variable Stolen from Jon's h2o4gpu utils """ cudavis = os.getenv("CUDA_VISIBLE_DEVICES") which_gpus = [] if cudavis is not None: # prune away white-space, non-numerics, # except commas for simple checking cudavis = "".join(cudavis.split()) import re cudavis = re.sub("[^0-9,]", "", cudavis) lencudavis = len(cudavis) if lencudavis == 0: total_gpus = 0 else: total_gpus = min( total_gpus, os.getenv("CUDA_VISIBLE_DEVICES").count(",") + 1) which_gpus = os.getenv("CUDA_VISIBLE_DEVICES").split(",") which_gpus = [int(x) for x in which_gpus] else: which_gpus = list(range(0, total_gpus)) return total_gpus, which_gpus def get_ngpus_vis(raise_if_exception=True): ngpus_vis1 = None shell = False if shell: cmd = "nvidia-smi -L 2> /dev/null" else: cmd = ["nvidia-smi", "-L"] try: timeout = 5 * 3 o = subprocess.check_output(cmd, shell=shell, timeout=timeout) lines = o.decode("utf-8").splitlines() ngpus_vis1 = 0 for line in lines: if 'Failed to initialize NVML' not in line: ngpus_vis1 += 1 except (FileNotFoundError, subprocess.CalledProcessError, OSError): # GPU systems might not have nvidia-smi, so can't fail pass except subprocess.TimeoutExpired as e: print('Failed get_ngpus_vis: %s' % str(e)) if raise_if_exception: raise if ngpus_vis1 is None: import torch if get_device() == 'cuda': ngpus_vis1 = torch.cuda.device_count() if torch.cuda.is_available() else 0 else: ngpus_vis1 = 0 ngpus_vis1, which_gpus = cuda_vis_check(ngpus_vis1) return ngpus_vis1 def get_mem_gpus(raise_if_exception=True, ngpus=None): totalmem_gpus1 = 0 usedmem_gpus1 = 0 freemem_gpus1 = 0 if ngpus == 0: return totalmem_gpus1, usedmem_gpus1, freemem_gpus1 try: cmd = "nvidia-smi -q 2> /dev/null | grep -A 3 'FB Memory Usage'" o = subprocess.check_output(cmd, shell=True, timeout=15) lines = o.decode("utf-8").splitlines() for line in lines: if 'Total' in line: totalmem_gpus1 += int(line.split()[2]) * 1024 ** 2 if 'Used' in line: usedmem_gpus1 += int(line.split()[2]) * 1024 ** 2 if 'Free' in line: freemem_gpus1 += int(line.split()[2]) * 1024 ** 2 except (FileNotFoundError, subprocess.CalledProcessError, OSError): # GPU systems might not have nvidia-smi, so can't fail pass except subprocess.TimeoutExpired as e: print('Failed get_mem_gpus: %s' % str(e)) if raise_if_exception: raise return totalmem_gpus1, usedmem_gpus1, freemem_gpus1 n_gpus_global = get_ngpus_vis() class ForkContext(threading.local): """ Set context for forking Ensures state is returned once done """ def __init__(self, args=None, kwargs=None, forkdata_capable=True): """ :param args: :param kwargs: :param forkdata_capable: whether fork is forkdata capable and will use copy-on-write forking of args/kwargs """ self.forkdata_capable = forkdata_capable if self.forkdata_capable: self.has_args = args is not None self.has_kwargs = kwargs is not None forkdatacontext.args = args forkdatacontext.kwargs = kwargs else: self.has_args = False self.has_kwargs = False def __enter__(self): try: # flush all outputs so doesn't happen during fork -- don't print/log inside ForkContext contexts! sys.stdout.flush() sys.stderr.flush() except BaseException as e: # exit not called if exception, and don't want to leave forkdatacontext filled in that case print("ForkContext failure on enter: %s" % str(e)) self.finally_act() raise return self def __exit__(self, exc_type, exc_value, exc_traceback): self.finally_act() def finally_act(self): """ Done when exception hit or exit is reached in context first reset forkdatacontext as crucial to have reset even if later 2 calls fail :return: None """ if self.forkdata_capable and (self.has_args or self.has_kwargs): forkdatacontext._reset() class _ForkDataContext(threading.local): def __init__( self, args=None, kwargs=None, ): """ Global context for fork to carry data to subprocess instead of relying upon copy/pickle/serialization :param args: args :param kwargs: kwargs """ assert isinstance(args, (tuple, type(None))) assert isinstance(kwargs, (dict, type(None))) self.__args = args self.__kwargs = kwargs @property def args(self) -> Tuple: """returns args""" return self.__args @args.setter def args(self, args): if self.__args is not None: raise AttributeError( "args cannot be overwritten: %s %s" % (str(self.__args), str(self.__kwargs)) ) self.__args = args @property def kwargs(self) -> Dict: """returns kwargs""" return self.__kwargs @kwargs.setter def kwargs(self, kwargs): if self.__kwargs is not None: raise AttributeError( "kwargs cannot be overwritten: %s %s" % (str(self.__args), str(self.__kwargs)) ) self.__kwargs = kwargs def _reset(self): """Reset fork arg-kwarg context to default values""" self.__args = None self.__kwargs = None def get_args_kwargs(self, func, args, kwargs) -> Tuple[Callable, Tuple, Dict]: if self.__args: args = self.__args[1:] if not func: assert len(self.__args) > 0, "if have no func, must have in args" func = self.__args[0] # should always be there if self.__kwargs: kwargs = self.__kwargs try: return func, args, kwargs finally: forkdatacontext._reset() @staticmethod def get_args_kwargs_for_traced_func(func, args, kwargs): """ Return args/kwargs out of forkdatacontext when using copy-on-write way of passing args/kwargs :param func: actual function ran by _traced_func, which itself is directly what mppool treats as function :param args: :param kwargs: :return: func, args, kwargs from forkdatacontext if used, else originals """ # first 3 lines are debug func_was_None = func is None args_was_None_or_empty = args is None or len(args) == 0 kwargs_was_None_or_empty = kwargs is None or len(kwargs) == 0 forkdatacontext_args_was_None = forkdatacontext.args is None forkdatacontext_kwargs_was_None = forkdatacontext.kwargs is None func, args, kwargs = forkdatacontext.get_args_kwargs(func, args, kwargs) using_forkdatacontext = func_was_None and func is not None # pulled func out of forkdatacontext.__args[0] assert forkdatacontext.args is None, "forkdatacontext.args should be None after get_args_kwargs" assert forkdatacontext.kwargs is None, "forkdatacontext.kwargs should be None after get_args_kwargs" proc_type = kwargs.get('proc_type', 'SUBPROCESS') if using_forkdatacontext: assert proc_type == "SUBPROCESS" or proc_type == "SUBPROCESS" if proc_type == "NORMAL": assert forkdatacontext_args_was_None, "if no fork, expect forkdatacontext.args None entering _traced_func" assert forkdatacontext_kwargs_was_None, "if no fork, expect forkdatacontext.kwargs None entering _traced_func" assert func is not None, "function should not be None, indicates original args[0] was None or args was None" return func, args, kwargs def using_conda(): """ Whether using conda and want to use conda :return: """ import os, sys return os.path.exists(os.path.join(sys.prefix, 'conda-meta')) and os.environ.get('AVOID_FULL_CONDA') is None def get_python_paths(): """ Various python paths, same as make/get_python_paths.sh :return: """ import os, sys exec_file = sys.executable bpath = os.path.dirname(sys.executable) rootpath = os.path.dirname(os.path.dirname(sys.executable)) libpath = os.path.join(rootpath, "lib") includepath = os.path.join(rootpath, "include") from sysconfig import get_paths info = get_paths() spackagespath = info['purelib'] pincludepath = info['platinclude'] plibpath = info['platstdlib'] from distutils.sysconfig import get_config_var plibfile = '%s/%s' % (get_config_var('LIBDIR'), get_config_var('INSTSONAME')) return dict(exec_file=exec_file, bpath=bpath, rootpath=rootpath, libpath=libpath, includepath=includepath, spackagespath=spackagespath, pincludepath=pincludepath, plibpath=plibpath, plibfile=plibfile) forkdatacontext = _ForkDataContext() def _traced_func(func, *args, **kwargs): try: func, args, kwargs = forkdatacontext.get_args_kwargs_for_traced_func(func, args, kwargs) return func(*args, **kwargs) except BaseException as e: print(e) ex = traceback.format_exc() raise RuntimeError(str(ex)) def call_subprocess_onetask(func, args=None, kwargs=None): if platform.system() in ['Darwin', 'Windows']: return func(*args, **kwargs) if isinstance(args, list): args = tuple(args) if args is None: args = () if kwargs is None: kwargs = {} args = list(args) args = [func] + args args = tuple(args) with ForkContext(args=args, kwargs=kwargs): args = (None,) kwargs = {} with ProcessPoolExecutor(max_workers=1) as executor: future = executor.submit(_traced_func, *args, **kwargs) return future.result() class ProgressParallel(Parallel): def __init__(self, use_tqdm=True, total=None, *args, **kwargs): self._use_tqdm = use_tqdm self._total = total super().__init__(*args, **kwargs) def __call__(self, *args, **kwargs): with tqdm(disable=not self._use_tqdm, total=self._total) as self._pbar: return Parallel.__call__(self, *args, **kwargs) def print_progress(self): if self._total is None: self._pbar.total = self.n_dispatched_tasks self._pbar.n = self.n_completed_tasks self._pbar.refresh() def get_kwargs(func, exclude_names=None, **kwargs): func_names = list(inspect.signature(func).parameters) missing_kwargs = [x for x in func_names if x not in kwargs] if exclude_names: for k in exclude_names: if k in missing_kwargs: missing_kwargs.remove(k) if k in func_names: func_names.remove(k) assert not missing_kwargs, "Missing %s" % missing_kwargs kwargs = {k: v for k, v in kwargs.items() if k in func_names} return kwargs from importlib.metadata import distribution, PackageNotFoundError have_faiss = False try: assert distribution('faiss') is not None have_faiss = True except (PackageNotFoundError, AssertionError): pass try: assert distribution('faiss_gpu') is not None have_faiss = True except (PackageNotFoundError, AssertionError): pass try: assert distribution('faiss_cpu') is not None have_faiss = True except (PackageNotFoundError, AssertionError): pass have_serpapi = False try: assert distribution('google-search-results') is not None have_serpapi = True except (PackageNotFoundError, AssertionError): pass have_autogen = False try: assert distribution('pyautogen') is not None have_autogen = True except (PackageNotFoundError, AssertionError): pass def hash_file(file): try: import hashlib # BUF_SIZE is totally arbitrary, change for your app! BUF_SIZE = 65536 # lets read stuff in 64kb chunks! md5 = hashlib.md5() # sha1 = hashlib.sha1() if not os.path.isfile(file): md5.update(file.encode(encoding='UTF-8')) else: with open(file, 'rb') as f: while True: data = f.read(BUF_SIZE) if not data: break md5.update(data) # sha1.update(data) except BaseException as e: print("Cannot hash %s due to %s" % (file, str(e))) traceback.print_exc() return '' return md5.hexdigest() def start_faulthandler(): # If hit server or any subprocess with signal SIGUSR1, it'll print out all threads stack trace, but wont't quit or coredump # If more than one fork tries to write at same time, then looks corrupted. import faulthandler # SIGUSR1 in h2oai/__init__.py as well faulthandler.enable() if hasattr(faulthandler, 'register'): # windows/mac import signal faulthandler.register(signal.SIGUSR1) def get_hf_server(inference_server): inf_split = inference_server.split(" ") if len(inf_split) == 3: assert len(inf_split) == 1 or len(inf_split) == 3 inference_server = inf_split[0] headers = {"authorization": "%s %s" % (inf_split[1], inf_split[2])} user = None password = None else: ip_port_vllm = ':'.join(inference_server.split(':')[0:]) if ip_port_vllm.startswith('https://'): http_prefix = 'https://' ip_port_vllm = ip_port_vllm[len(http_prefix):] elif ip_port_vllm.startswith('http://'): http_prefix = 'http://' ip_port_vllm = ip_port_vllm[len(http_prefix):] else: http_prefix = 'http://' inf_split = ip_port_vllm.split(":") if len(inf_split) <= 2: # i.e. just DNS or IP and no port or IP + port user = None password = None elif len(inf_split) == 3: # i.e. just DNS or IP, no port + user + pass = 3 user = inf_split[len(inf_split) - 2] password = inf_split[len(inf_split) - 1] ip_port_vllm = ':'.join(inf_split[:len(inf_split) - 2]) elif len(inf_split) == 4: # i.e. DNS/IP + port + user + pass = 4 port = inf_split[len(inf_split) - 3] user = inf_split[len(inf_split) - 2] password = inf_split[len(inf_split) - 1] if port not in [None, 'None']: ip_port_vllm = ':'.join([inf_split[0], port]) else: ip_port_vllm = inf_split[0] else: raise ValueError("Malformed inference_server=%s" % inference_server) headers = None # remove None if port was None if 'None' in ip_port_vllm.split(':'): ip_port_vllm = ':'.join([x for x in ip_port_vllm.split(':') if x != 'None']) inference_server = http_prefix + ip_port_vllm return inference_server, headers, user, password class FakeTokenizer: """ 1) For keeping track of model_max_length 2) For when model doesn't directly expose tokenizer but need to count tokens """ def __init__(self, model_max_length=2048, encoding_name="cl100k_base", is_openai=False, is_anthropic=False, is_google=False, is_hf=False, tokenizer=None, is_llama_cpp=False, is_super_fake=False, is_mistral=False, ): if model_max_length is None: assert not ( is_openai or is_anthropic or is_google), "Should have set model_max_length for OpenAI or Anthropic or Google" model_max_length = 2048 self.is_openai = is_openai self.is_anthropic = is_anthropic self.is_google = is_google self.is_hf = is_hf self.is_llama_cpp = is_llama_cpp self.is_super_fake = is_super_fake self.is_mistral = is_mistral self.tokenizer = tokenizer self.model_max_length = model_max_length if not self.is_openai and not self.is_anthropic and not self.is_llama_cpp: # don't push limit, since if using fake tokenizer, only estimate, and seen underestimates by order 250 self.model_max_length -= 250 self.encoding_name = encoding_name if self.is_super_fake: self.encoding = None # The first time this runs, it will require an internet connection to download. Later runs won't need an internet connection. elif not (self.is_anthropic or self.is_google or self.is_mistral): import tiktoken self.encoding = tiktoken.get_encoding(self.encoding_name) else: self.encoding = None def encode(self, x, *args, return_tensors="pt", **kwargs): if not x: return dict(input_ids=[]) if self.is_super_fake: input_ids = self.heuristic_encode(x) # avoid torch tensor return dict(input_ids=input_ids) elif self.is_llama_cpp: # and len(x) < 4 * 4 * self.model_max_length: # don't use llama.cpp if too much input_ids = self.tokenizer.tokenize(b" " + x.encode("utf-8")) elif self.is_anthropic: from anthropic import Anthropic client = Anthropic() tokenizer = client.get_tokenizer() input_ids = tokenizer.encode(x).ids elif self.is_google: input_ids = [0] * self.tokenizer(x).total_tokens # fake tokens elif self.is_hf: input_ids = self.tokenizer.encode(x) elif self.is_mistral: from mistral_common.protocol.instruct.request import ChatCompletionRequest input_ids = self.tokenizer.encode_chat_completion( ChatCompletionRequest(messages=[dict(role='user', content=x)])).tokens else: input_ids = self.encoding.encode(x, disallowed_special=()) if return_tensors == 'pt' and isinstance(input_ids, list): import torch input_ids = torch.tensor(input_ids) return dict(input_ids=input_ids) def decode(self, x, *args, **kwargs): if self.is_super_fake: return ['aaaa'] * len(x) # fake elif self.is_llama_cpp: # and len(x) < 4 * self.model_max_length: # don't use llama.cpp if too much return self.tokenizer.detokenize(x) elif self.is_anthropic: from anthropic import Anthropic client = Anthropic() tokenizer = client.get_tokenizer() return tokenizer.decode(x) elif self.is_google: return ['a'] * len(x) # fake elif self.is_mistral: return ['a'] * len(x) # fake elif self.is_hf: return self.tokenizer.decode(x) # input is input_ids[0] form return self.encoding.decode(x) def num_tokens_from_string(self, prompt: str) -> int: """Returns the number of tokens in a text string.""" if self.is_super_fake: return len(self.heuristic_encode(prompt)) elif self.is_anthropic: from anthropic import Anthropic client = Anthropic() return client.count_tokens(prompt) elif self.is_google: return self.tokenizer(prompt) elif self.is_mistral: return len(self.encode(prompt)) elif self.is_hf: return len(self.tokenizer.encode(prompt)) num_tokens = len(self.encode(prompt)['input_ids']) return num_tokens def heuristic_encode(self, text: str) -> list: """ A heuristic-based approach to estimate token counts. """ total_tokens = len(text) // 4 if len(text) >= 4 else 1 return [0] * total_tokens def __call__(self, x, *args, **kwargs): return self.encode(x, *args, **kwargs) def get_local_ip(): import socket s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) try: # doesn't even have to be reachable s.connect(('10.255.255.255', 1)) IP = s.getsockname()[0] except Exception: IP = '127.0.0.1' finally: s.close() return IP try: assert distribution('langchain') is not None have_langchain = True except (PackageNotFoundError, AssertionError): have_langchain = False import distutils.spawn have_tesseract = distutils.spawn.find_executable("tesseract") have_libreoffice = distutils.spawn.find_executable("libreoffice") try: from weasyprint import HTML import doctr have_doctr = True except: have_doctr = False try: assert distribution('arxiv') is not None assert distribution('pymupdf') is not None have_arxiv = True except (PackageNotFoundError, AssertionError): have_arxiv = False try: assert distribution('pymupdf') is not None have_pymupdf = True except (PackageNotFoundError, AssertionError): have_pymupdf = False have_pymupdf4llm = False try: assert distribution('pymupdf4llm') is not None have_pymupdf4llm = False # too slow, avoid for now except (PackageNotFoundError, AssertionError): pass try: assert distribution('selenium') is not None have_selenium = True except (PackageNotFoundError, AssertionError): have_selenium = False try: assert distribution('pillow') is not None have_pillow = True except (PackageNotFoundError, AssertionError): have_pillow = False try: assert distribution('playwright') is not None have_playwright = True except (PackageNotFoundError, AssertionError): have_playwright = False try: assert distribution('jq') is not None have_jq = True except (PackageNotFoundError, AssertionError): have_jq = False try: assert distribution('optimum') is not None have_optimum = True except (PackageNotFoundError, AssertionError): have_optimum = False try: assert distribution('librosa') is not None have_librosa = True except (PackageNotFoundError, AssertionError): have_librosa = False try: assert distribution('wavio') is not None have_wavio = True except (PackageNotFoundError, AssertionError): have_wavio = False try: assert distribution('soundfile') is not None have_soundfile = True except (PackageNotFoundError, AssertionError): have_soundfile = False try: assert distribution('deepspeed') is not None have_deepspeed = True except (PackageNotFoundError, AssertionError): have_deepspeed = False try: assert distribution('emoji') is not None have_emoji = True except (PackageNotFoundError, AssertionError): have_emoji = False try: assert distribution('langid') is not None have_langid = True except (PackageNotFoundError, AssertionError): have_langid = False try: assert distribution('TTS') is not None have_TTS = True except (PackageNotFoundError, AssertionError): have_TTS = False try: assert distribution('faster_whisper') is not None have_use_faster = True except (PackageNotFoundError, AssertionError): have_use_faster = False try: assert distribution('flash_attn') is not None have_flash_attention = True have_flash_attention_2 = distribution('flash_attn').version.startswith('2.') except (PackageNotFoundError, AssertionError): have_flash_attention = False have_flash_attention_2 = False try: assert distribution('gradio') is not None have_gradio = True is_gradio_version4 = distribution('gradio').version.startswith('4.') except (PackageNotFoundError, AssertionError): have_gradio = False is_gradio_version4 = False try: assert distribution('gradio_pdf') is not None have_gradio_pdf = is_gradio_version4 except (PackageNotFoundError, AssertionError): have_gradio_pdf = False try: assert distribution('pyrubberband') is not None have_pyrubberband = True except (PackageNotFoundError, AssertionError): have_pyrubberband = False try: assert distribution('fiftyone') is not None have_fiftyone = True except (PackageNotFoundError, AssertionError): have_fiftyone = False try: assert distribution('diffusers') is not None have_diffusers = True except (PackageNotFoundError, AssertionError): have_diffusers = False try: assert distribution('opencv-python-headless') is not None have_cv2 = True except (PackageNotFoundError, AssertionError): try: assert distribution('opencv-python') is not None have_cv2 = True except (PackageNotFoundError, AssertionError): have_cv2 = False only_unstructured_urls = os.environ.get("ONLY_UNSTRUCTURED_URLS", "0") == "1" only_selenium = os.environ.get("ONLY_SELENIUM", "0") == "1" only_playwright = os.environ.get("ONLY_PLAYWRIGHT", "0") == "1" def set_openai(inference_server, model_name=None): if inference_server.startswith('sglang'): inference_server_split = inference_server.split(':') inference_server_split[1] = None inference_server = ':'.join([x for x in inference_server_split if x is not None]) if inference_server.startswith('vllm') or inference_server.startswith('sglang'): api_key = "EMPTY" inf_type = inference_server.split(':')[0].strip() ip_port = ':'.join(inference_server.split(':')[1:]) if ip_port.startswith('https://'): http_prefix = 'https://' ip_port = ip_port[len(http_prefix):] auto_v1 = False elif ip_port.startswith('http://'): http_prefix = 'http://' ip_port = ip_port[len(http_prefix):] auto_v1 = False else: http_prefix = 'http://' auto_v1 = True if inference_server.startswith('sglang') and '/v1' not in inference_server: auto_v1 = True address = ':'.join(ip_port.split(':')[0:1]).strip() api_base = http_prefix + address if len(ip_port.split(':')) >= 2: port = ip_port.split(':')[1].strip() if port not in [None, 'None']: api_base += ':' + port if len(ip_port.split(':')) >= 3: # if not there, use EMPTY as default url_path = ip_port.split(':')[2].strip() if url_path not in [None, 'None']: api_base += url_path # assume includes prefix of / and /v1 if auto_v1 and not api_base.endswith('/v1'): api_base += '/v1' if len(ip_port.split(':')) >= 4: # if not there, use EMPTY as default api_key = ip_port.split(':')[3].strip() from openai import OpenAI, AsyncOpenAI client_args = dict(base_url=api_base, api_key=api_key) client = OpenAI(**client_args) async_client = AsyncOpenAI(**client_args) return client, async_client, inf_type, None, api_base, None, api_key else: api_key = os.getenv("OPENAI_API_KEY") base_url = None deployment_type = None api_version = None inf_type = inference_server.split(':')[0].strip() if len(inference_server.split(':')) >= 2: deployment_type = inference_server.split(':')[1].strip() if len(inference_server.split(':')) >= 3: base_url = inference_server.split(':')[2].strip() base_url = 'https://' + base_url if len(inference_server.split(':')) >= 4: api_version = inference_server.split(':')[3].strip() if inference_server.startswith('openai_azure'): if api_version in ['None', None]: # for function tools support # https://github.com/Azure/azure-rest-api-specs/tree/main/specification/cognitiveservices/data-plane/AzureOpenAI/inference/preview/2023-12-01-preview # https://learn.microsoft.com/en-us/azure/ai-services/openai/api-version-deprecation # https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/function-calling api_version = "2024-07-01-preview" if os.getenv('OPENAI_AZURE_KEY') is not None: # use this instead if exists api_key = os.getenv("OPENAI_AZURE_KEY") elif api_version in ['None', None]: api_version = None if len(inference_server.split(':')) >= 5: api_key0 = inference_server.split(':')[4].strip() if api_key0 not in ['None', None]: api_key = api_key0 if deployment_type == 'None': deployment_type = None if base_url == 'None': base_url = None if base_url == 'None': base_url = None # cannot use non-chat model, uses old openai. stuff if go through to H2OOpenAI with chat model if model_name: chat_model = (model_name.startswith("gpt-3.5-turbo") or model_name.startswith( "gpt-4")) and "-instruct" not in model_name if chat_model and inf_type == 'openai_azure': inf_type = 'openai_azure_chat' if chat_model and inf_type == 'openai': inf_type = 'openai_chat' from openai import OpenAI, AzureOpenAI, AsyncOpenAI, AsyncAzureOpenAI if inf_type in ['openai_azure', 'openai_azure_chat']: client_args = dict(azure_deployment=deployment_type, azure_endpoint=base_url, api_version=api_version, api_key=api_key) client = AzureOpenAI(**client_args) async_client = AsyncAzureOpenAI(**client_args) else: client_args = dict(base_url=base_url, api_key=api_key) client = OpenAI(**client_args) async_client = AsyncOpenAI(**client_args) return client, async_client, inf_type, deployment_type, base_url, api_version, api_key def get_model_name(model_name, openai_client): if os.getenv('DISABLE_OPENAI_AUTO_MODEL_NAME', '0') == '1': return model_name # override, required for lmdeploy # https://github.com/InternLM/lmdeploy/issues/1674 # https://github.com/InternLM/lmdeploy/blob/e6468e7afda6b29d4c065f296a4e893b52bd33d5/lmdeploy/serve/proxy/proxy.py#L320 # https://lmdeploy.readthedocs.io/en/latest/serving/api_server.html#restful-api try: model_names = openai_client.models.list().data if len(model_names) == 1: model_name = openai_client.models.list().data[0].id else: print("Too few or too many models in list so do not know which to chose: given: %s list: %s" % ( model_name, model_names)) except Exception as e: print(f"Failed to get model name from OpenAI client, using default {model_name}: {str(e)}") return model_name def get_list_or_str(x): if isinstance(x, list): return x elif isinstance(x, str): try: x1 = ast.literal_eval(x) assert isinstance(x1, list) return x1 except: return x else: return x def deepcopy_by_pickle_object(object): """ Faster deepcopy, can only work on things that are picklable. Naive Deepcopy is more general. Same method as for class Individual :param object: :return: """ gc.disable() new_object = pickle.loads(pickle.dumps(object, -1)) gc.enable() return new_object def url_alive(url): if not isinstance(url, str): return False try: response = requests.head(url) except Exception as e: return False else: if response.status_code in [200, 301, 302, 307]: return True else: return False def return_good_url(url): # ignore status code, just see if exists or not for prefix in ['', 'https://', 'http://', 'https://www.', 'http://www.']: try: url_test = prefix + url response = requests.head(url_test, timeout=10) except requests.exceptions.Timeout as e: response = None url_test = None except Exception as e: response = None url_test = None if response is not None: # and response.status_code < 400: # don't do status check, if got status, then is real URL regardless of goodness, not text return url_test return None def is_probably_url(url): if not isinstance(url, str): return False # url_alive too slow return any(url.startswith(prefix) for prefix in ['www.', 'http://', 'https://', 'https://www.', 'http://www.']) def dict_to_html(x, small=True, api=False): x = {k: v if not in_gradio_root(v) and not is_probably_url(v) else get_url(v, from_str=True, short_name=True) for k, v in x.items()} df = pd.DataFrame(x.items(), columns=['Key', 'Value']) df.index = df.index + 1 df.index.name = 'index' if api: return tabulate.tabulate(df, headers='keys') else: res = tabulate.tabulate(df, headers='keys', tablefmt='unsafehtml') if small: return "" + res + "" else: return res def split_into_sentences(text): # Split text by specified punctuation followed by space or end of text sentences = re.split(r'(?<=[.!?]) +', text) return sentences def text_to_html(x, api=False): if api: return x return """
%s
""" % '
'.join(split_into_sentences(x)) def lg_to_gr( **kwargs, ): # translate: import torch n_gpus = torch.cuda.device_count() if torch.cuda.is_available() else 0 n_gpus, _ = cuda_vis_check(n_gpus) image_audio_loaders_options = ['Caption'] if n_gpus != 0: image_audio_loaders_options.extend(['CaptionLarge', 'Pix2Struct']) if have_tesseract: image_audio_loaders_options.append('OCR') if have_doctr: image_audio_loaders_options.append('DocTR') if have_librosa: image_audio_loaders_options.append('ASR') if n_gpus != 0: image_audio_loaders_options.append('ASRLarge') if kwargs['enable_llava'] and kwargs['llava_model']: image_audio_loaders_options.append('LLaVa') image_audio_loaders_options0 = [] if have_tesseract and kwargs['enable_ocr']: image_audio_loaders_options0.append('OCR') if have_doctr and kwargs['enable_doctr']: image_audio_loaders_options0.append('DocTR') if kwargs['enable_captions']: if kwargs['max_quality'] and n_gpus > 0: # BLIP2 only on GPU image_audio_loaders_options0.append('CaptionLarge') else: image_audio_loaders_options0.append('Caption') if have_librosa and kwargs['enable_transcriptions']: if kwargs['max_quality'] and n_gpus > 0: image_audio_loaders_options0.append('ASRLarge') else: image_audio_loaders_options0.append('ASR') if kwargs['enable_llava'] and kwargs['llava_model'] and 'vllm' not in kwargs['llava_model']: # Caption like llava model is only gradio based, legacy method # and n_gpus > 0 # don't require local GPUs # LLaVa better and faster if present # and kwargs['max_quality'] image_audio_loaders_options0.append('LLaVa') if 'Caption' in image_audio_loaders_options0: image_audio_loaders_options0.remove('Caption') if 'CaptionLarge' in image_audio_loaders_options0: image_audio_loaders_options0.remove('CaptionLarge') pdf_loaders_options = ['Unstructured', 'PyPDF', 'TryHTML'] if have_pymupdf: pdf_loaders_options = ['PyMuPDF'] + pdf_loaders_options if have_tesseract: pdf_loaders_options.append('OCR') if have_doctr: pdf_loaders_options.append('DocTR') pdf_loaders_options0 = [] if have_pymupdf and kwargs['use_pymupdf'] in [True, 'auto', 'on']: pdf_loaders_options0.append('PyMuPDF') if kwargs['enable_pdf_ocr'] in [True, 'on']: pdf_loaders_options0.append('OCR') if have_doctr and kwargs['enable_pdf_doctr'] in [True, 'on']: pdf_loaders_options0.append('DocTR') # in case my pymupdf, use pypdf as backup default if kwargs['use_pypdf'] in [True, 'on'] and have_pymupdf or kwargs['use_pypdf'] in [True, 'auto', 'on'] and not have_pymupdf: pdf_loaders_options0.append('PyPDF') if kwargs['use_unstructured_pdf'] in [True, 'on']: pdf_loaders_options0.append('Unstructured') if kwargs['try_pdf_as_html'] in [True, 'on']: pdf_loaders_options0.append('TryHTML') url_loaders_options = [] if only_unstructured_urls: url_loaders_options.append('Unstructured') elif have_selenium and only_selenium: url_loaders_options.append('Selenium') elif have_playwright and only_playwright: url_loaders_options.append('PlayWright') else: url_loaders_options.append('Unstructured') if have_selenium: url_loaders_options.append('Selenium') if have_playwright: url_loaders_options.append('PlayWright') url_loaders_options.append('ScrapeWithPlayWright') url_loaders_options.append('ScrapeWithHttp') url_loaders_options0 = [url_loaders_options[0]] assert set(image_audio_loaders_options0).issubset(image_audio_loaders_options), "%s %s" % ( image_audio_loaders_options0, image_audio_loaders_options) assert set(pdf_loaders_options0).issubset(pdf_loaders_options), "%s %s" % ( pdf_loaders_options0, pdf_loaders_options) assert set(url_loaders_options0).issubset(url_loaders_options), "%s %s" % ( url_loaders_options0, url_loaders_options) return image_audio_loaders_options0, image_audio_loaders_options, \ pdf_loaders_options0, pdf_loaders_options, \ url_loaders_options0, url_loaders_options def enqueue_output(file, queue): # for line in iter(file.readline, ''): for line in iter(file.readline, b'' if isinstance(file, io.BufferedReader) else ''): queue.put(line) file.close() def read_popen_pipes(p): with ThreadPoolExecutor(2) as pool: q_stdout, q_stderr = Queue(), Queue() pool.submit(enqueue_output, p.stdout, q_stdout) pool.submit(enqueue_output, p.stderr, q_stderr) while True: if p.poll() is not None and q_stdout.empty() and q_stderr.empty(): break out_line = err_line = '' try: out_line = q_stdout.get_nowait() except Empty: pass try: err_line = q_stderr.get_nowait() except Empty: pass yield out_line, err_line def start_process(cmd): start_cmd = sys.executable + " -i -q -u" print_cmd = 'print("{}")' cmd = [start_cmd] + [cmd] process = subprocess.Popen(cmd, stdout=subprocess.PIPE) for c in iter(lambda: process.stdout.read(1), b''): sys.stdout.write(c) def execute_cmd_stream(cmd=None, script_content=None, cwd=None, env=None, timeout=None, capture_output=True, text=True, print_tags=False, print_literal=True, print_func=print, guard_func=None, sleep=0.05, max_stream_length=4096, max_memory_usage=16*1024**3): if script_content is None and cmd is None: raise ValueError("Either script_content or cmd must be provided") if script_content is not None: script_path = 'temp_script.py' with open(script_path, 'w') as f: f.write(script_content) cmd = [sys.executable, script_path] else: script_path = None assert cmd, "cmd must be provided if script_content is None" length = 0 try: # Prepare Popen arguments popen_kwargs = { 'cwd': cwd, 'env': env, 'bufsize': 1, # Line-buffered 'stdout': subprocess.PIPE, 'stderr': subprocess.PIPE, 'universal_newlines': text, } with subprocess.Popen(cmd, **popen_kwargs) as p: # Start psutil process to monitor memory usage psutil_process = psutil.Process(p.pid) sel = selectors.DefaultSelector() sel.register(p.stdout, selectors.EVENT_READ) sel.register(p.stderr, selectors.EVENT_READ) stdout_data = [] stderr_data = [] start_time = time.time() while True: if timeout and time.time() - start_time > timeout: p.terminate() raise subprocess.TimeoutExpired(cmd, timeout) # Monitor memory usage for the main process and all its children if max_memory_usage: measure_t0 = time.time() try: # Get memory usage of the main process and its children mem_info = psutil_process.memory_info().rss children = psutil_process.children(recursive=True) for child in children: mem_info += child.memory_info().rss except psutil.NoSuchProcess: mem_info = 0 # Check if the total memory usage exceeds the limit if mem_info > max_memory_usage: try: p.terminate() except Exception as e: print(f"Error terminating process: {e}") try: p.kill() except Exception as e: print(f"Error killing process: {e}") error = f"Process and its children used memory {mem_info} that exceeded memory limit of {max_memory_usage} bytes detected in {time.time() - measure_t0}." stderr_data.append(error) print(f"OOM on cmd:\n\n{cmd}\n\n", flush=True, file=sys.stderr) events = sel.select(timeout=1) if not events and p.poll() is not None: break # No more events and the process has exited for key, _ in events: data = key.fileobj.readline() if not data: # EOF sel.unregister(key.fileobj) continue if guard_func: data = guard_func(data) if key.fileobj is p.stdout: stdout_data.append(data) if length + len(data) <= max_stream_length: if print_tags: if data.strip(): print_func(f"STDOUT: {data.strip()}") elif print_literal: print_func(data, end='') else: print_func(data) length += len(data) elif key.fileobj is p.stderr: stderr_data.append(data) if length + len(data) <= max_stream_length: if print_tags: if data.strip(): print_func(f"STDERR: {data.strip()}") elif print_literal: print_func(data, end='') else: print_func(data) length += len(data) if p.poll() is not None and not sel.get_map(): break # Process has exited and no more data to read # sleep shouldn't be too long or else will get chunky streaming and not detect memory usage rapidly enough # sleep shouldn't be too short or else will constantly be doing psutil stuff time.sleep(sleep) p.wait(timeout=timeout) # Prepare return object similar to subprocess.CompletedProcess return subprocess.CompletedProcess( args=cmd, returncode=p.returncode, stdout=''.join(stdout_data) if capture_output else None, stderr=''.join(stderr_data) if capture_output else None ) finally: if script_path and os.path.exists(script_path): os.remove(script_path) def str_to_list(x, allow_none=False): if isinstance(x, str): if len(x.strip()) > 0: if x.strip().startswith('['): try: x = ast.literal_eval(x.strip()) except Exception: print("bad x: %s" % x, flush=True) raise else: raise ValueError("Invalid str_to_list for %s" % x) else: x = [] elif x is None and not allow_none: x = [] if allow_none: assert isinstance(x, (type(None), list)) else: assert isinstance(x, list) return x def str_to_dict(x): if isinstance(x, str): if len(x.strip()) > 0: if x.strip().startswith('{'): x = ast.literal_eval(x.strip()) else: raise ValueError("Invalid str_to_dict for %s" % x) else: x = {} elif x is None: x = {} assert isinstance(x, dict) return x def get_token_count(x, tokenizer, token_count_fun=None, add_special_tokens=True): # NOTE: Somewhat duplicates H2OTextGenerationPipeline.get_token_count() # handle ambiguity in if get dict or list other_kwargs = dict(add_special_tokens=add_special_tokens) if hasattr(tokenizer, 'add_special_tokens') else {} if tokenizer is not None: if hasattr(tokenizer, 'encode'): tokens = tokenizer.encode(x, **other_kwargs) else: tokens = tokenizer(x, **other_kwargs) if isinstance(tokens, dict) and 'input_ids' in tokens: tokens = tokens['input_ids'] if isinstance(tokens, list): n_tokens = len(tokens) elif len(tokens.shape) == 2: n_tokens = tokens.shape[1] elif len(tokens.shape) == 1: n_tokens = tokens.shape[0] else: raise RuntimeError("Cannot handle tokens: %s" % tokens) elif token_count_fun is not None: assert callable(token_count_fun) other_kwargs = dict(add_special_tokens=add_special_tokens) if hasattr(token_count_fun, 'add_special_tokens') else {} n_tokens = token_count_fun(x, **other_kwargs) else: tokenizer = FakeTokenizer() n_tokens = tokenizer.num_tokens_from_string(x) return n_tokens def reverse_ucurve_list(lst): if not lst: return [] if len(lst) == 1: return lst if len(lst) == 2: return [lst[1], lst[0]] front_list = [] end_list = [] for i, item in enumerate(lst): if i % 2 == 0: end_list.append(item) else: front_list.append(item) return front_list + end_list[::-1] def undo_reverse_ucurve_list(lst): if not lst: return [] if len(lst) == 1: return lst if len(lst) == 2: return [lst[1], lst[0]] # Split the list into two halves: the first half and the second half (reversed) mid = len(lst) // 2 first_half = lst[:mid] second_half = lst[mid:][::-1] # Merge the two halves by taking elements alternatively from the second half and then the first half result = [] for i in range(mid): result.append(second_half[i]) result.append(first_half[i]) # If the length of the list is odd, append the last element of the second half if len(lst) % 2 != 0: result.append(second_half[-1]) return result def get_size(start_path='.'): total_size = 0 for dirpath, dirnames, filenames in os.walk(start_path): for f in filenames: fp = os.path.join(dirpath, f) # skip if it is symbolic link if not os.path.islink(fp): total_size += os.path.getsize(fp) return total_size def get_test_name_core(): tn = os.environ['PYTEST_CURRENT_TEST'].split(':')[-1] tn = "_".join(tn.split(' ')[:-1]) # skip (call) at end return sanitize_filename(tn) class FullSet(set): def __contains__(self, item): return True import os def create_relative_symlink(target, link_name): """ Creates a relative symlink to a target from a link location, ensuring parent directories exist. The target can be either a file or a directory. Parameters: - target: The path to the target file or directory. This can be an absolute or a relative path. - link_name: The path where the symlink will be created. This should include the name of the symlink itself. Raises: - ValueError: If the target does not exist. """ # Ensure the target exists if not os.path.exists(target): raise ValueError("Target does not exist: " + target) # Calculate the absolute paths target_abs = os.path.abspath(target) link_dir = os.path.dirname(os.path.abspath(link_name)) # Ensure the parent directory of the link exists os.makedirs(link_dir, exist_ok=True) # Calculate the relative path for the symlink relative_path = os.path.relpath(target_abs, link_dir) # Remove the link if it already exists if os.path.exists(link_name) or os.path.islink(link_name): os.remove(link_name) # Create the symlink os.symlink(relative_path, link_name) print(f"Symlink created: {link_name} -> {relative_path}") def get_gradio_tmp(): gradio_tmp = '/tmp/gradio' makedirs(gradio_tmp, exist_ok=True) # won't hurt if soft link if exists gradio_tmp = os.path.realpath(gradio_tmp) return gradio_tmp def in_gradio_root(file): ret = False ret |= isinstance(file, str) and os.path.isfile(file) and os.path.abspath(file).startswith('/tmp/gradio') ret |= isinstance(file, str) and os.path.isfile(file) and os.path.abspath(file).startswith(get_gradio_tmp()) return ret def get_is_gradio_h2oai(): try: import gradio as gr return gr.__h2oai__ except: return False def split_list(input_list, split_size): for i in range(0, len(input_list), split_size): yield input_list[i:i + split_size] def get_lock_file(name): lock_type = name base_path = os.path.join('locks', '%s_locks' % name) base_path = makedirs(base_path, exist_ok=True, tmp_ok=True, use_base=True) lock_file = os.path.join(base_path, "%s.lock" % lock_type) makedirs(os.path.dirname(lock_file)) # ensure made return lock_file def merge_dict(dict1, dict2): ret = dict1.copy() ret.update(dict2) return ret def is_uuid4(string): # Regular expression to match the UUID v4 format pattern = re.compile(r'^[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}$', re.IGNORECASE) return bool(pattern.match(string)) def is_full_git_hash(s): # This regex checks for exactly 40 hexadecimal characters. return bool(re.fullmatch(r'[0-9a-f]{40}', s)) def get_show_username(username1): if split_google in username1: show_username = split_google.join(username1.split(split_google)[0:1]) else: show_username = username1 return show_username # for extracting code blocks pattern = re.compile(r"```(.*?)(\n[\s\S]*?)?```", re.DOTALL) def get_code_blocks(response): return pattern.findall(response) def get_json(response, fixup=True, json_schema_type=None): is_list = isinstance(response, list) if not is_list: response = [response] response_new = [_get_json(x, fixup=fixup, json_schema_type=json_schema_type) for x in response] if not is_list: response_new = response_new[0] return response_new def extract_values(data): if isinstance(data, dict): if 'type' in data and 'value' in data: return data['value'] elif 'items' in data: return [extract_values(item) for item in data['items']] elif 'properties' in data: return {key: extract_values(value) for key, value in data['properties'].items()} elif 'enum' in data: return data['enum'] # return the enum values elif 'const' in data: return data['const'] # return the const value elif 'oneOf' in data: return [extract_values(item) for item in data['oneOf']] elif 'anyOf' in data: return [extract_values(item) for item in data['anyOf']] elif 'allOf' in data: return [extract_values(item) for item in data['allOf']] else: return {key: extract_values(value) for key, value in data.items()} elif isinstance(data, list): return [extract_values(item) for item in data] else: return data # Function to check if JSON contains schema information def contains_schema(data): if isinstance(data, dict): if 'type' in data and 'value' in data: return True for key, value in data.items(): if contains_schema(value): return True elif isinstance(data, list): for item in data: if contains_schema(item): return True return False # Main function to handle both schema and regular JSON def handle_json(data): if contains_schema(data): return extract_values(data) else: return data def repair_json_by_type(response, json_schema_type=None): # WIP for later if json_schema_type in ['object', None]: from json_repair import repair_json response_str = response response = repair_json(response) if response in ['""', """''""", '', None]: return {} try: # assumes already dict response = handle_json(json.loads(response)) if isinstance(response, list) and len(response) >= 1 and not response_str.startswith('['): response = response[-1] # take last if list, if was not pure list response return json.dumps(response) except Exception as e: print("Did not extract_values: %s" % str(e)) return response else: from json_repair import repair_json return repair_json(response) def _get_json(response, fixup=True, json_schema_type=None): if fixup: # first rely upon json_repair package, handles code block extraction as well automatically try: response0 = repair_json_by_type(response, json_schema_type=json_schema_type) if response0: return response0 except Exception as e: # FIXME: best effort, don't understand if package will hae issues print("repair_json exception1: %s: %s" % (str(e), response)) # if json_repair fails, try to extract code block content # sIf content is found (not an empty string), return None (or possibly an empty string as per updated logic) response0 = extract_code_block_content(response) if response0: if fixup: try: response0 = repair_json_by_type(response0, json_schema_type=json_schema_type) except Exception as e: # FIXME: best effort, don't understand if package will hae issues print("repair_json exception2: %s: %s" % (str(e), response)) return response0 # Next, check if the response looks like JSON, return it if so if looks_like_json(response): response = response.strip() if response.endswith('```'): response = response[:-3].strip() if fixup: try: response = repair_json_by_type(response, json_schema_type=json_schema_type) except Exception as e: # FIXME: best effort, don't understand if package will hae issues print("repair_json exception3: %s: %s" % (str(e), response)) return response # If it doesn't look like JSON, return an empty string as a default case return invalid_json_str # Adjusted pattern to match code block content accurately pattern_extract_codeblock = re.compile(r"```(?:[a-zA-Z]*)\s*(.*?)(```|$)", re.DOTALL) def preprocess_code_blocks(stream_content): # Remove consecutive starting code block delimiters, but keep the inner content stream_content = re.sub(r"```[a-zA-Z]*\n```[a-zA-Z]*", "```", stream_content) # Remove consecutive ending code block delimiters stream_content = re.sub(r"```\n```", "```", stream_content) return stream_content def extract_code_block_content(stream_content): # Postprocess to handle nested or consecutive code block delimiters stream_content = preprocess_code_blocks(stream_content) match = pattern_extract_codeblock.search(stream_content) if match: return match.group(1).strip() else: return '' def has_starting_code_block(text): pattern_partial_codeblock = re.compile(r"(^|\n|\r|)\s*```") return bool(pattern_partial_codeblock.search(text)) def looks_like_json(text): # Strip leading whitespace and check the first non-whitespace character stripped_text = text.lstrip() # Check if the text starts with '{', '[', or potentially a JSON string if stripped_text.startswith(('{', '[', '"')): return True # Optionally, check for simple numeric values or null, true, false which are valid JSON if re.match(r'(-?\d+(\.\d+)?([eE][+-]?\d+)?|null|true|false)\s*($|[,\]}])', stripped_text): return True return False def is_json_vllm(model, base_model, inference_server, verbose=False): if inference_server and not inference_server.startswith('vllm') or not inference_server: return False if isinstance(model, dict) and 'client' in model: openai_client = model['client'] else: openai_client, _, _, _, _, _, _ = set_openai(inference_server, model_name=base_model) vllm_version = get_vllm_version(openai_client, inference_server, verbose=verbose) json_vllm_version = "0.4.0" # The version to compare against # Parse the version strings into comparable objects parsed_vllm_version = version.parse(vllm_version) parsed_json_vllm_version = version.parse(json_vllm_version) # Compare the versions if parsed_vllm_version >= parsed_json_vllm_version: return True else: return False def get_vllm_version(openai_client, inference_server, verbose=False): vllm_version = '0.3.0' if inference_server.startswith('vllm'): # https://github.com/vllm-project/vllm/blob/main/vllm/entrypoints/openai/api_server.py parsed_url = str(openai_client.base_url).replace("/v1", "/version") try: response = requests.get(parsed_url, timeout=int(os.getenv('REQUEST_TIMEOUT', '30'))) if response.status_code == 200: # Parsing the JSON response content to a dictionary data = response.json() # Accessing the version from the response vllm_version = data.get('version', vllm_version) if verbose: print(f"vLLM Server version: {vllm_version}") else: if verbose: print(f"Failed to retrieve version, status code: {response.status_code}") except (requests.exceptions.Timeout, requests.exceptions.JSONDecodeError, requests.exceptions.ConnectionError): # if times out, assume older version, with no JSON. Or might not be real vllm vllm_version = '0.3.0' print(f"vLLM Server version timeout, assuming: {vllm_version}") return vllm_version def get_docs_tokens(tokenizer, text_context_list=[], max_input_tokens=None, docs_joiner=docs_joiner_default): """ max_input_tokens: Over all LLM calls, upper limit of total token count, or single LLM call if want to know what docs fit into single call """ if text_context_list is None or len(text_context_list) == 0: return 0, None, 0 assert max_input_tokens is not None, "Must set max_input_tokens" tokens = [get_token_count(x + docs_joiner, tokenizer) for x in text_context_list] tokens_cumsum = np.cumsum(tokens) where_res = np.where(tokens_cumsum <= max_input_tokens)[0] # if below condition fails, then keep top_k_docs=-1 and trigger special handling next if where_res.shape[0] > 0: top_k_docs = 1 + where_res[-1] one_doc_size = None num_doc_tokens = tokens_cumsum[top_k_docs - 1] # by index else: # if here, means 0 and just do best with 1 doc top_k_docs = 1 text_context_list = text_context_list[:top_k_docs] # critical protection from h2oai_pipeline import H2OTextGenerationPipeline doc_content = text_context_list[0] doc_content, new_tokens0 = H2OTextGenerationPipeline.limit_prompt(doc_content, tokenizer, max_prompt_length=max_input_tokens) text_context_list[0] = doc_content one_doc_size = len(doc_content) num_doc_tokens = get_token_count(doc_content + docs_joiner, tokenizer) print( "Unexpected large chunks and can't add to context, will add 1 anyways. Tokens %s -> %s for max_input_tokens=%s" % ( tokens[0], new_tokens0, max_input_tokens), flush=True) return top_k_docs, one_doc_size, num_doc_tokens def get_limited_text(hard_limit_tokens, text, tokenizer, verbose=False): if tokenizer is None: return text[:4 * hard_limit_tokens] low = 0 high = len(text) best_guess = text # Initialize best_guess to ensure it's defined ntokens0 = len(tokenizer.tokenize(best_guess)) ntokens = None max_steps = 5 steps = 0 while low <= high: mid = low + (high - low) // 2 # Calculate midpoint for current search interval # Estimate a trial cut of the text based on mid trial_text_length = max(int(mid * 4), 1) # Using mid * 4 as an estimation, ensuring at least 1 character trial_text = text[-trial_text_length:] # Take text from the end, based on trial_text_length # Tokenize the trial text and count tokens ntokens = len(tokenizer.tokenize(trial_text)) if ntokens > hard_limit_tokens: # If the trial exceeds the token limit, reduce 'high' to exclude the current trial length high = mid - 1 else: # If the trial does not exceed the token limit, update 'best_guess' and increase 'low' best_guess = trial_text # Update best_guess with the current trial_text low = mid + 1 # Attempt to include more text in the next trial if steps >= max_steps: break steps += 1 # 'best_guess' now contains the text that best fits the criteria if verbose: print("steps: %s ntokens0: %s/%s text0: %s ntokens: %s/%s text: %s" % ( steps, ntokens0, hard_limit_tokens, len(text), ntokens, hard_limit_tokens, len(best_guess))) return best_guess def deduplicate_names(names): # Dictionary to hold the counts of each name name_counts = {} # List to store the final results deduplicated_names = [] for name in names: # Check if the name already exists in the dictionary if name in name_counts: # Increment the count for this name name_counts[name] += 1 # Append the new name with the count as a suffix deduplicated_names.append(f"{name}_{name_counts[name]}") else: # Add the name to the dictionary with a count of 0 name_counts[name] = 0 # Append the name as it is the first occurrence deduplicated_names.append(name) return deduplicated_names def download_image(image_url, save_dir): """ Download an image from a URL and save it to a specified directory. Parameters: image_url (str): The URL of the image to download. save_dir (str): The directory path where the image will be saved. Returns: str or None: The file path where the image was saved, or None if an error occurred. """ try: response = requests.get(image_url) response.raise_for_status() # Check if the request was successful # Extract the file name from the URL parsed_url = urlparse(image_url) file_name = os.path.basename(parsed_url.path) # Create the full save path save_path = os.path.join(save_dir, file_name) makedirs(save_dir, exist_ok=True) # Save the image with open(save_path, 'wb') as file: file.write(response.content) return save_path except requests.exceptions.RequestException as e: print(f"Error downloading the image: {e}") return None # Check if the input is a URL url_pattern = re.compile( r'^(?:http|ftp)s?://' # http:// or https:// r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+(?:[A-Z]{2,6}\.?|[A-Z0-9-]{2,}\.?)|' # domain... r'localhost|' # localhost... r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}|' # ...or ipv4 r'\[?[A-F0-9]*:[A-F0-9:]+\]?)' # ...or ipv6 r'(?::\d+)?' # optional port r'(?:/?|[/?]\S+)$', re.IGNORECASE) def check_input_type(input_string): """ Check if the input string is a file path, URL, or a base64 encoded image. Parameters: input_string (str): The input string to check. Returns: str: 'file', 'url', 'base64', or 'unknown' based on the input type. """ if not isinstance(input_string, str): return 'unknown' # Check if the input string looks like a base64 encoded image if input_string.startswith("data:image/") or input_string.startswith("b'data:image/"): return 'base64' if re.match(url_pattern, input_string): return 'url' is_youtube = any( input_string.replace('http://', '').replace('https://', '').replace('www.', '').startswith(prefix) for prefix in url_prefixes_youtube) if is_youtube: return 'youtube' # Check if the input is a file path if os.path.isfile(input_string): return 'file' return 'unknown' def get_youtube_urls(): # https://www.netify.ai/resources/applications/youtube base = ['googlevideo.com', 'video.google.com', 'video.l.google.com', 'wide-youtube.l.google.com', 'youtu.be', 'youtube.ae', 'youtube.al', 'youtube.am', 'youtube.at', 'youtube.az', 'youtube.ba', 'youtube.be', 'youtube.bg', 'youtube.bh', 'youtube.bo', 'youtube.by', 'youtube.ca', 'youtube.cat', 'youtube.ch', 'youtube.cl', 'youtube.co', 'youtube.co.ae', 'youtube.co.at', 'youtube.co.cr', 'youtube.co.hu', 'youtube.co.id', 'youtube.co.il', 'youtube.co.in', 'youtube.co.jp', 'youtube.co.ke', 'youtube.co.kr', 'youtube.com', 'youtube.co.ma', 'youtube.com.ar', 'youtube.com.au', 'youtube.com.az', 'youtube.com.bd', 'youtube.com.bh', 'youtube.com.bo', 'youtube.com.br', 'youtube.com.by', 'youtube.com.co', 'youtube.com.do', 'youtube.com.ec', 'youtube.com.ee', 'youtube.com.eg', 'youtube.com.es', 'youtube.com.gh', 'youtube.com.gr', 'youtube.com.gt', 'youtube.com.hk', 'youtube.com.hn', 'youtube.com.hr', 'youtube.com.jm', 'youtube.com.jo', 'youtube.com.kw', 'youtube.com.lb', 'youtube.com.lv', 'youtube.com.ly', 'youtube.com.mk', 'youtube.com.mt', 'youtube.com.mx', 'youtube.com.my', 'youtube.com.ng', 'youtube.com.ni', 'youtube.com.om', 'youtube.com.pa', 'youtube.com.pe', 'youtube.com.ph', 'youtube.com.pk', 'youtube.com.pt', 'youtube.com.py', 'youtube.com.qa', 'youtube.com.ro', 'youtube.com.sa', 'youtube.com.sg', 'youtube.com.sv', 'youtube.com.tn', 'youtube.com.tr', 'youtube.com.tw', 'youtube.com.ua', 'youtube.com.uy', 'youtube.com.ve', 'youtube.co.nz', 'youtube.co.th', 'youtube.co.tz', 'youtube.co.ug', 'youtube.co.uk', 'youtube.co.ve', 'youtube.co.za', 'youtube.co.zw', 'youtube.cr', 'youtube.cz', 'youtube.de', 'youtube.dk', 'youtubeeducation.com', 'youtube.ee', 'youtubeembeddedplayer.googleapis.com', 'youtube.es', 'youtube.fi', 'youtube.fr', 'youtube.ge', 'youtube.googleapis.com', 'youtube.gr', 'youtube.gt', 'youtube.hk', 'youtube.hr', 'youtube.hu', 'youtube.ie', 'youtubei.googleapis.com', 'youtube.in', 'youtube.iq', 'youtube.is', 'youtube.it', 'youtube.jo', 'youtube.jp', 'youtubekids.com', 'youtube.kr', 'youtube.kz', 'youtube.la', 'youtube.lk', 'youtube.lt', 'youtube.lu', 'youtube.lv', 'youtube.ly', 'youtube.ma', 'youtube.md', 'youtube.me', 'youtube.mk', 'youtube.mn', 'youtube.mx', 'youtube.my', 'youtube.ng', 'youtube.ni', 'youtube.nl', 'youtube.no', 'youtube-nocookie.com', 'youtube.pa', 'youtube.pe', 'youtube.ph', 'youtube.pk', 'youtube.pl', 'youtube.pr', 'youtube.pt', 'youtube.qa', 'youtube.ro', 'youtube.rs', 'youtube.ru', 'youtube.sa', 'youtube.se', 'youtube.sg', 'youtube.si', 'youtube.sk', 'youtube.sn', 'youtube.soy', 'youtube.sv', 'youtube.tn', 'youtube.tv', 'youtube.ua', 'youtube.ug', 'youtube-ui.l.google.com', 'youtube.uy', 'youtube.vn', 'yt3.ggpht.com', 'yt.be', 'ytimg.com', 'ytimg.l.google.com', 'ytkids.app.goo.gl', 'yt-video-upload.l.google.com'] url_prefixes_youtube1 = [] for x in base: url_prefixes_youtube1.extend([ # '%s/watch?v=' % x, '%s' % x, # '%s/shorts/' % x, ]) return set(url_prefixes_youtube1) url_prefixes_youtube = get_youtube_urls() def get_llama_lower_hf(llama_lower): if 'huggingface.co' in llama_lower and '/resolve/' in llama_lower and len(llama_lower.split('huggingface.co')) == 2: llama_lower_hf = llama_lower.split('huggingface.co')[1].split('resolve/')[0] else: llama_lower_hf = None return llama_lower_hf def get_depth_normal(lst): if isinstance(lst, list) and lst: return 1 + max(get_depth_normal(item) for item in lst) else: return 0 def get_gradio_depth(lst): def get_depth(lst): if isinstance(lst, (tuple, list)) and lst: depths = [get_depth(item) for item in lst] return 1 + max(depths) else: return 0 def has_single_element_sublist(lst, depth): if depth == 1: return isinstance(lst, (tuple, list)) and len(lst) == 1 if isinstance(lst, (tuple, list)): return any(has_single_element_sublist(item, depth - 1) for item in lst) return False depth = get_depth(lst) if has_single_element_sublist(lst, depth): depth -= 1 return depth def is_empty(obj): if obj is None: return True if isinstance(obj, (str, list, tuple, dict, set)): return len(obj) == 0 if isinstance(obj, bool): return False if isinstance(obj, (int, float)): # Numbers can't be "empty" in the traditional sense, so go by value for them return False if 0 else True if isinstance(obj, complex): return obj == 0 if isinstance(obj, bytes): return len(obj) == 0 if isinstance(obj, bytearray): return len(obj) == 0 if isinstance(obj, memoryview): return len(obj) == 0 if isinstance(obj, range): return len(obj) == 0 if isinstance(obj, frozenset): return len(obj) == 0 if isinstance(obj, deque): return len(obj) == 0 if isinstance(obj, array): return len(obj) == 0 if isinstance(obj, (map, filter, zip)): # These are iterators and need to be converted to a list to check if they are empty return len(list(obj)) == 0 if hasattr(obj, '__len__'): return len(obj) == 0 return False from typing import Any, Dict, List, Union from typing_extensions import TypedDict def create_typed_dict(schema: Dict[str, Any], name: str = "Schema") -> type: properties = schema.get("properties", {}) required = set(schema.get("required", [])) fields: Dict[str, Union[type, Any]] = {} total = len(required) == len(properties) for prop, details in properties.items(): prop_type = details.get("type") if prop_type == "string": field_type = str elif prop_type == "integer": field_type = int elif prop_type == "number": field_type = float elif prop_type == "boolean": field_type = bool elif prop_type == "array": items = details.get("items", {}) if items.get("type") == "string": field_type = List[str] elif items.get("type") == "object": field_type = List[create_typed_dict(items, f"{name}Item")] else: field_type = List[Any] elif prop_type == "object": field_type = create_typed_dict(details, f"{name}{prop.capitalize()}") else: field_type = Any if prop in required: fields[prop] = field_type else: fields[prop] = Union[field_type, None] return TypedDict(name, fields, total=total) def get_supports_schema(inference_server, base_model, response_format='json_object', guided_json={}, json_vllm=False, just_test=False): if just_test: supports_schema = True else: supports_schema = not is_empty(guided_json) and \ response_format == 'json_object' supports_schema &= is_json_model(base_model, inference_server, json_vllm=json_vllm) supports_schema &= json_vllm or \ not is_empty(inference_server) and \ any(inference_server.startswith(x) for x in ['openai_chat', 'openai_azure_chat']) and \ not is_empty( base_model) and base_model in openai_supports_functiontools + openai_supports_parallel_functiontools or \ not is_empty(inference_server) and \ inference_server.startswith('anthropic') or \ not is_empty(inference_server) and \ inference_server.startswith('google') and base_model == 'gemini-1.5-pro-latest' or \ not is_empty(inference_server) and \ inference_server.startswith('mistralai') and \ does_support_functiontools(inference_server, base_model) return supports_schema def dedup_list(x): x = [x.text if hasattr(x, 'text') else x for x in x] return list(dict.fromkeys(x))