import os import pytest from tests.utils import wrap_test_forked @pytest.mark.skipif(not os.getenv('BENCHMARK'), reason="Only valid on sufficiently large system and not normal part of testing." " Instead used to get eval scores for all models.") @pytest.mark.parametrize( "base_model", [ "h2oai/h2ogpt-oasst1-falcon-40b", "h2oai/h2ogpt-oig-oasst1-512-6_9b", "h2oai/h2ogpt-oig-oasst1-512-12b", "h2oai/h2ogpt-oig-oasst1-512-20b", "h2oai/h2ogpt-oasst1-512-12b", "h2oai/h2ogpt-oasst1-512-20b", "h2oai/h2ogpt-gm-oasst1-en-1024-20b", "databricks/dolly-v2-12b", "h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt-v2", "ehartford/WizardLM-7B-Uncensored", "ehartford/WizardLM-13B-Uncensored", "AlekseyKorshuk/vicuna-7b", "TheBloke/stable-vicuna-13B-HF", "decapoda-research/llama-7b-hf", "decapoda-research/llama-13b-hf", "decapoda-research/llama-30b-hf", "junelee/wizard-vicuna-13b", "openaccess-ai-collective/wizard-mega-13b", ] ) @wrap_test_forked def test_score_eval(base_model): from src.gen import main main( base_model=base_model, chat=False, stream_output=False, eval=True, gradio=False, eval_prompts_only_num=500, eval_as_output=False, num_beams=2, use_gpu_id=False, ) @pytest.mark.skipif(not os.getenv('FALCONS'), reason="download purpose") @pytest.mark.parametrize( "base_model", [ "OpenAssistant/falcon-7b-sft-top1-696", "OpenAssistant/falcon-7b-sft-mix-2000", "h2oai/h2ogpt-oasst1-falcon-40b", "h2oai/h2ogpt-gm-oasst1-en-2048-falcon-40b-v1", "h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2", "h2oai/h2ogpt-gm-oasst1-multilang-2048-falcon-7b", "OpenAssistant/falcon-40b-sft-top1-560", "OpenAssistant/falcon-40b-sft-mix-1226", ] ) @wrap_test_forked def test_get_falcons(base_model): import torch from transformers import AutoTokenizer, AutoModelForCausalLM t = AutoTokenizer.from_pretrained(base_model, use_fast=False, padding_side="left", trust_remote_code=True, token=True, ) assert t is not None m = AutoModelForCausalLM.from_pretrained(base_model, trust_remote_code=True, torch_dtype=torch.float16, token=True, ) assert m is not None @pytest.mark.skipif(not os.getenv('LLAMA'), reason="LLaMa conversion") @wrap_test_forked def test_get_landmark_llama(): import torch from transformers import AutoTokenizer, AutoModelForCausalLM from transformers import LlamaForCausalLM, LlamaTokenizer m = LlamaForCausalLM.from_pretrained("epfml/landmark-attention-llama7b-wdiff") t = LlamaTokenizer.from_pretrained("epfml/landmark-attention-llama7b-wdiff") assert m is not None and t is not None os.system(""" # # step 1, convert llama to HF format pip install protobuf==3.19.0 source ~/.bashrc.mamba mamba create -n trans conda activate trans conda install python=3.10 -y git clone https://github.com/epfml/landmark-attention.git pip install fire datasets git clone https://github.com/huggingface/transformers.git cd transformers pip install . pip install torch accelerate sentencepiece protobuf==3.19.0 # below requires LLaMa weights python src/transformers/models/llama/convert_llama_weights_to_hf.py --input_dir /data/jon/LLaMA --model_size 7B --output_dir llama_7B # # step 2, make landmark model (change hash if updated) mkdir -p epfml/landmark-attention-llama7b-wdiff cd epfml/landmark-attention-llama7b-wdiff ln -s ~/.cache/huggingface/hub/models--epfml--landmark-attention-llama7b-wdiff/snapshots/050562871ac72723b4ab674f0392b02cd9609842/* . cd ../../ python ../landmark-attention/llama/weight_diff.py recover --path_raw llama_7B --path_diff epfml/landmark-attention-llama7b-wdiff --path_tuned landmark_llama_7b """)