Spaces:
Sleeping
Sleeping
File size: 6,055 Bytes
535c52b 4aaf04f 535c52b 4aaf04f 535c52b 4aaf04f 535c52b 4aaf04f 535c52b 4aaf04f 535c52b 4aaf04f 535c52b 4aaf04f 535c52b 4aaf04f 535c52b 4aaf04f 535c52b 4aaf04f 535c52b 4aaf04f 535c52b 4aaf04f 535c52b 4aaf04f 535c52b 55d906c f461359 55d906c 535c52b 55d906c 535c52b 9a3f61d 55d906c f461359 535c52b 55d906c 00e87f4 f461359 55d906c 00e87f4 55d906c f461359 55d906c f461359 535c52b 55d906c 535c52b 00e87f4 535c52b 55d906c 00e87f4 55d906c 00e87f4 55d906c 535c52b 55d906c 00e87f4 55d906c 00e87f4 55d906c 4aaf04f 535c52b 55d906c 00e87f4 55d906c 00e87f4 4aaf04f 535c52b 00e87f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
# import gradio as gr
# from transformers import pipeline, AutoModelForImageSegmentation
# from gradio_imageslider import ImageSlider
# import torch
# from torchvision import transforms
# import spaces
# from PIL import Image
# import numpy as np
# import time
# birefnet = AutoModelForImageSegmentation.from_pretrained(
# "ZhengPeng7/BiRefNet", trust_remote_code=True
# )
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# print("Using device:", device)
# birefnet.to(device)
# transform_image = transforms.Compose(
# [
# transforms.Resize((1024, 1024)),
# transforms.ToTensor(),
# transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
# ]
# )
# # @spaces.GPU
# # def PreProcess(image):
# # size = image.size
# # image = transform_image(image).unsqueeze(0).to(device)
# # with torch.no_grad():
# # preds = birefnet(image)[-1].sigmoid().cpu()
# # pred = preds[0].squeeze()
# # pred = transforms.ToPILImage()(pred)
# # mask = pred.resize(size)
# # # image.putalpha(mask)
# # return image
# @spaces.GPU
# def PreProcess(image):
# size = image.size # Save original size
# image_tensor = transform_image(image).unsqueeze(0).to(device) # Transform the image into a tensor
# with torch.no_grad():
# preds = birefnet(image_tensor)[-1].sigmoid().cpu() # Get predictions
# pred = preds[0].squeeze()
# # Convert the prediction tensor to a PIL image
# pred_pil = transforms.ToPILImage()(pred)
# # Resize the mask to match the original image size
# mask = pred_pil.resize(size)
# # Convert the original image (passed as input) to a PIL image
# image_pil = image.convert("RGBA") # Ensure the image has an alpha channel
# # Apply the alpha mask to the image
# image_pil.putalpha(mask)
# return image_pil
# def segment_image(image):
# start = time.time()
# image = Image.fromarray(image)
# image = image.convert("RGB")
# org = image.copy()
# image = PreProcess(image)
# time_taken = np.round((time.time() - start),2)
# return (image, org), time_taken
# slider = ImageSlider(label='birefnet', type="pil")
# image = gr.Image(label="Upload an Image")
# butterfly = Image.open("butterfly.png")
# Dog = Image.open('Dog.jpg')
# time_taken = gr.Textbox(label="Time taken", type="text")
# demo = gr.Interface(
# segment_image, inputs=image, outputs=[slider,time_taken], examples=[butterfly,Dog], api_name="BiRefNet")
# if __name__ == '__main__' :
# demo.launch()
import requests
import gradio as gr
import tempfile
import os
from transformers import pipeline
from huggingface_hub import InferenceClient
import time
# import torch
# import numpy as np
# Ensure CUDA is available and set device accordingly
# device = 0 if torch.cuda.is_available() else -1
model_id = "openai/whisper-large-v3"
client = InferenceClient(model_id)
pipe = pipeline("automatic-speech-recognition", model=model_id) #, device=device)
def transcribe(inputs, use_api):
start = time.time()
API_STATUS = ''
if inputs is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
try:
if use_api:
print(f'Using API for transcription...')
API_STATUS = 'Using API it took: '
# Use InferenceClient (API) if checkbox is checked
res = client.automatic_speech_recognition(inputs).text
else:
print(f'Using local pipeline for transcription...')
# Use local pipeline if checkbox is unchecked
API_STATUS = 'Using local pipeline it took: '
res = pipe(inputs, chunk_length_s=30)["text"]
end = time.time() - start
return res, API_STATUS + str(round(end, 2)) + ' seconds'
# return res, end
except Exception as e:
return fr'Error: {str(e)}', None
def calculate_time_taken(start_time):
return time.time() - start_time
demo = gr.Blocks()
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="microphone", type="filepath"),
# gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
gr.Checkbox(label="Use API", value=False)
],
outputs=["text",gr.Textbox(label="Time taken", type="text")], # Placeholder for transcribed text and time taken
title="Whisper Large V3: Transcribe Audio",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button!"
),
allow_flagging="never",
)
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="upload", type="filepath", label="Audio file"),
# gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
gr.Checkbox(label="Use API", value=False) # Checkbox for API usage
],
outputs=["text",gr.Textbox(label="Time taken", type="text")], # Placeholder for transcribed text and time taken
title="Whisper Large V3: Transcribe Audio",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button!"
),
allow_flagging="never",
)
with demo:
with gr.Row():
# with gr.Column():
# Group the tabs for microphone and file-based transcriptions
tab = gr.TabbedInterface([mf_transcribe, file_transcribe], ["Microphone", "Audio file"])
# with gr.Column():
# use_api_checkbox = gr.Checkbox(label="Use API", value=False) # Checkbox outside
# # time_taken = gr.Textbox(label="Time taken", type="text") # Time taken outside the interfaces
if __name__ == "__main__":
demo.queue().launch() |