File size: 6,604 Bytes
535c52b
 
 
 
 
 
55d906c
c7bfded
191f3b0
f461359
 
55d906c
 
 
535c52b
191f3b0
 
 
 
 
 
 
 
 
0354ffb
157ba12
55d906c
535c52b
191f3b0
3405f58
2a73da8
55d906c
f461359
c7bfded
 
 
535c52b
 
 
 
191f3b0
 
 
 
 
 
 
 
 
 
55d906c
191f3b0
c7bfded
191f3b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7bfded
 
191f3b0
 
c7bfded
191f3b0
 
c7bfded
191f3b0
 
535c52b
 
78e5124
535c52b
 
 
 
55d906c
 
 
00e87f4
2a73da8
55d906c
c7bfded
 
1a00545
c7bfded
bd4b418
55d906c
 
 
 
 
535c52b
 
55d906c
 
 
00e87f4
2a73da8
55d906c
c7bfded
 
1a00545
c7bfded
bd4b418
55d906c
 
 
 
 
4aaf04f
535c52b
55d906c
 
 
00e87f4
55d906c
00e87f4
 
 
4aaf04f
535c52b
191f3b0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import requests
import gradio as gr
import tempfile
import os
from transformers import pipeline
from huggingface_hub import InferenceClient
import time
import psutil
from prometheus_client import start_http_server, Summary, Counter, Gauge
# import torch
# import numpy as np

# Ensure CUDA is available and set device accordingly
# device = 0 if torch.cuda.is_available() else -1

# Initialize Prometheus metrics
REQUEST_COUNT = Counter("transcription_requests_total", "Total transcription requests", ["method"])
REQUEST_DURATION = Summary("transcription_request_duration_seconds", "Duration of transcription requests in seconds", ["method"])
MEMORY_USAGE = Gauge("transcription_memory_usage_bytes", "Memory used by the transcription function")
RAM_USAGE_PERCENTAGE = Gauge("ram_usage_percentage", "Percentage of total RAM used by the transcription function")

# Start the Prometheus HTTP server to expose metrics
start_http_server(8000)  # Port 8000 is the standard for Prometheus metrics

model_id = "openai/whisper-small"
client = InferenceClient(model_id,token=os.getenv('HF_TOKEN'))
pipe = pipeline("automatic-speech-recognition", model=model_id) #, device=device)

print(f'The Server is Running with prometheus Metrics enabled !!!')

def transcribe(inputs, use_api=True):
    start = time.time()
    API_STATUS = ''
    
    memory_before = psutil.Process(os.getpid()).memory_info().rss

    if inputs is None:
        raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")

    try:
        # if use_api:
        #     print(f'Using API for transcription...')
        #     API_STATUS = 'Using API it took: '
        #     # Use InferenceClient (API) if checkbox is checked
        #     res = client.automatic_speech_recognition(inputs).text
        # else:
        #     print(f'Using local pipeline for transcription...')
        #     # Use local pipeline if checkbox is unchecked
        #     API_STATUS = 'Using local pipeline it took: '
        #     res = pipe(inputs, chunk_length_s=30)["text"]
        
        # end = time.time() - start

        # # Measure memory after running the transcription process
        # memory_after = psutil.Process(os.getpid()).memory_info().rss
        
        # # Calculate the difference to see how much memory was used by the code
        # memory_used = memory_after - memory_before  # Memory used in bytes
        # memory_used_gb = round(memory_used / (1024 ** 3), 2)  # Convert memory used to GB
        # total_memory_gb = round(psutil.virtual_memory().total / (1024 ** 3), 2)  # Total RAM in GB

        # # Calculate the percentage of RAM used by this process
        # memory_used_percent = round((memory_used / psutil.virtual_memory().total) * 100, 2)
        
        # return res, API_STATUS + str(round(end, 2)) + ' seconds', f"RAM Used by code: {memory_used_gb} GB ({memory_used_percent}%) Total RAM: {total_memory_gb} GB"
        method = 'API' if use_api else 'Local Pipeline'
        
        # Start timing for Prometheus
        with REQUEST_DURATION.labels(method=method).time():
            REQUEST_COUNT.labels(method=method).inc()  # Increment the request counter

            # Transcription
            if use_api:
                print(f'Using API for transcription...')
                res = client.automatic_speech_recognition(inputs).text
            else:
                print(f'Using local pipeline for transcription...')
                res = pipe(inputs, chunk_length_s=30)["text"]
            
        # Measure memory after running the transcription process
        memory_after = psutil.Process(os.getpid()).memory_info().rss
        memory_used = memory_after - memory_before
        MEMORY_USAGE.set(memory_used)  # Set memory usage in bytes
        
        total_memory_percent = psutil.virtual_memory().percent
        RAM_USAGE_PERCENTAGE.set(total_memory_percent)  # Set RAM usage as a percentage
        
        end = time.time() - start
        return res, f"{method} took: {round(end, 2)} seconds", f"RAM Used by code: {memory_used / (1024 ** 3):.2f} GB ({total_memory_percent}%)"
    
    except Exception as e:
        return fr'Error: {str(e)}', None, None

demo = gr.Blocks()

mf_transcribe = gr.Interface(
                fn=transcribe,
                inputs=[
                    gr.Audio(sources="microphone", type="filepath"),
                    # gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
                    # gr.Checkbox(label="Use API", value=True)
                ],
                outputs=[gr.Textbox(label="Transcribed Text", type="text"),
                         gr.Textbox(label="Time taken", type="text"),
                         gr.Textbox(label="RAM Utilization", type="text") 
                        ],  # Placeholder for transcribed text and time taken
                title="Welcome to QuickTranscribe",
                description=(
                    "Transcribe long-form microphone or audio inputs with the click of a button!"
                ),
                allow_flagging="never",
            )

file_transcribe = gr.Interface(
                fn=transcribe,
                inputs=[
                    gr.Audio(sources="upload", type="filepath", label="Audio file"),
                    # gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
                    # gr.Checkbox(label="Use API", value=False)  # Checkbox for API usage
                ],
                outputs=[ gr.Textbox(label="Transcribed Text", type="text"),
                         gr.Textbox(label="Time taken", type="text"),
                         gr.Textbox(label="RAM Utilization", type="text") 
                        ],  # Placeholder for transcribed text and time taken
                title="Welcome to QuickTranscribe",
                description=(
                    "Transcribe long-form microphone or audio inputs with the click of a button!"
                ),
                allow_flagging="never",
            )

with demo:
    with gr.Row():
    # with gr.Column():
        # Group the tabs for microphone and file-based transcriptions
        tab = gr.TabbedInterface([mf_transcribe, file_transcribe], ["Microphone", "Audio file"])

        # with gr.Column():
        #     use_api_checkbox = gr.Checkbox(label="Use API", value=False)  # Checkbox outside
        #     # time_taken = gr.Textbox(label="Time taken", type="text")  # Time taken outside the interfaces

if __name__ == "__main__":
    demo.queue().launch(server_name="0.0.0.0", server_port=7860)