Spaces:
Runtime error
Runtime error
File size: 5,160 Bytes
b1d9c58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import json # Add this import
import psutil
import torch
import boto3
from transformers import AutoTokenizer
import gradio as gr
import os
from typing import List, Tuple
class CustomerSupportBot:
def __init__(self, endpoint_name="customer-support-gpt-2024-11-10-00-30-03-555"):
self.process = psutil.Process(os.getpid())
model_name = "EleutherAI/gpt-neo-125M"
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
# self.tokenizer = AutoTokenizer.from_pretrained("gpt2") # Use the tokenizer appropriate to your model
self.endpoint_name = endpoint_name
self.sagemaker_runtime = boto3.client('runtime.sagemaker')
def generate_response(self, message: str) -> str:
try:
input_text = f"Instruction: {message}\nResponse:"
# Prepare payload for SageMaker endpoint
payload = {
# "inputs": inputs['input_ids'].tolist()[0],
'inputs': input_text,
# You can include other parameters if needed (e.g., attention_mask)
}
print(f'Payload: {payload}')
# Convert the payload to a JSON string before sending
json_payload = json.dumps(payload) # Use json.dumps() to serialize the payload
print(f'JSON Payload: {json_payload}')
# Call the SageMaker endpoint for inference
response = self.sagemaker_runtime.invoke_endpoint(
EndpointName=self.endpoint_name,
ContentType='application/json',
Body=json_payload # Send the JSON string here
)
print(f'Response: {response}')
# Process the response
result = response['Body'].read().decode('utf-8')
parsed_result = json.loads(result)
# Extract the generated text from the first element in the list
generated_text = parsed_result[0]['generated_text']
# Split the string to get the response part after 'Response:'
response = generated_text.split('Response:')[1].strip()
# return the extracted response
return response
except Exception as e:
return f"An error occurred: {str(e)}"
def monitor_resources(self) -> dict:
usage = {
"CPU (%)": self.process.cpu_percent(interval=1),
"RAM (GB)": self.process.memory_info().rss / (1024 ** 3)
}
return usage
def create_chat_interface():
bot = CustomerSupportBot()
def predict(message: str, history: List[Tuple[str, str]]) -> Tuple[str, List[Tuple[str, str]]]:
if not message:
return "", history
bot_response = bot.generate_response(message)
# Log resource usage
usage = bot.monitor_resources()
print("Resource Usage:", usage)
history.append((message, bot_response))
return "", history
# Create the Gradio interface with custom CSS
with gr.Blocks(css="""
.message-box {
margin-bottom: 10px;
}
.button-row {
display: flex;
gap: 10px;
margin-top: 10px;
}
""") as interface:
gr.Markdown("# Customer Support Chatbot")
gr.Markdown("Welcome! How can I assist you today?")
chatbot = gr.Chatbot(
label="Chat History",
height=500,
elem_classes="message-box"
)
with gr.Row():
msg = gr.Textbox(
label="Your Message",
placeholder="Type your message here...",
lines=2,
elem_classes="message-box"
)
with gr.Row(elem_classes="button-row"):
submit = gr.Button("Send Message", variant="primary")
clear = gr.ClearButton([msg, chatbot], value="Clear Chat")
# Add example queries in a separate row
with gr.Row():
gr.Examples(
examples=[
"How do I reset my password?",
"What are your shipping policies?",
"I want to return a product.",
"How can I track my order?",
"What payment methods do you accept?"
],
inputs=msg,
label="Example Questions"
)
# Set up event handlers
submit_click = submit.click(
predict,
inputs=[msg, chatbot],
outputs=[msg, chatbot]
)
msg.submit(
predict,
inputs=[msg, chatbot],
outputs=[msg, chatbot]
)
# Add keyboard shortcut for submit
msg.change(lambda x: gr.update(interactive=bool(x.strip())), inputs=[msg], outputs=[submit])
return interface
if __name__ == "__main__":
demo = create_chat_interface()
demo.launch(
share=True,
server_name="0.0.0.0", # Makes the server accessible from other machines
server_port=7860, # Specify the port
debug=True
)
|