File size: 5,160 Bytes
b1d9c58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import json  # Add this import
import psutil
import torch
import boto3
from transformers import AutoTokenizer
import gradio as gr
import os
from typing import List, Tuple

class CustomerSupportBot:
    def __init__(self, endpoint_name="customer-support-gpt-2024-11-10-00-30-03-555"):
        self.process = psutil.Process(os.getpid())
        model_name = "EleutherAI/gpt-neo-125M"
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        # self.tokenizer = AutoTokenizer.from_pretrained("gpt2")  # Use the tokenizer appropriate to your model
        self.endpoint_name = endpoint_name
        self.sagemaker_runtime = boto3.client('runtime.sagemaker')
        
    def generate_response(self, message: str) -> str:
        try:
            input_text = f"Instruction: {message}\nResponse:"
            
            # Prepare payload for SageMaker endpoint
            payload = {
                # "inputs": inputs['input_ids'].tolist()[0],
                'inputs': input_text,
                # You can include other parameters if needed (e.g., attention_mask)
            }
            print(f'Payload: {payload}')
            # Convert the payload to a JSON string before sending
            json_payload = json.dumps(payload)  # Use json.dumps() to serialize the payload
            print(f'JSON Payload: {json_payload}')
            # Call the SageMaker endpoint for inference
            response = self.sagemaker_runtime.invoke_endpoint(
                EndpointName=self.endpoint_name,
                ContentType='application/json',
                Body=json_payload  # Send the JSON string here
            )
            print(f'Response: {response}')

            # Process the response
            result = response['Body'].read().decode('utf-8')
            parsed_result = json.loads(result)

            # Extract the generated text from the first element in the list
            generated_text = parsed_result[0]['generated_text']

            # Split the string to get the response part after 'Response:'
            response = generated_text.split('Response:')[1].strip()

            # return the extracted response
            return response
        except Exception as e:
            return f"An error occurred: {str(e)}"

    def monitor_resources(self) -> dict:
        usage = {
            "CPU (%)": self.process.cpu_percent(interval=1),
            "RAM (GB)": self.process.memory_info().rss / (1024 ** 3)
        }
        return usage

def create_chat_interface():
    bot = CustomerSupportBot()
    
    def predict(message: str, history: List[Tuple[str, str]]) -> Tuple[str, List[Tuple[str, str]]]:
        if not message:
            return "", history
        
        bot_response = bot.generate_response(message)
        
        # Log resource usage
        usage = bot.monitor_resources()
        print("Resource Usage:", usage)
        
        history.append((message, bot_response))
        return "", history

    # Create the Gradio interface with custom CSS
    with gr.Blocks(css="""
        .message-box {
            margin-bottom: 10px;
        }
        .button-row {
            display: flex;
            gap: 10px;
            margin-top: 10px;
        }
    """) as interface:
        gr.Markdown("# Customer Support Chatbot")
        gr.Markdown("Welcome! How can I assist you today?")
        
        chatbot = gr.Chatbot(
            label="Chat History",
            height=500,
            elem_classes="message-box"
        )
        
        with gr.Row():
            msg = gr.Textbox(
                label="Your Message",
                placeholder="Type your message here...",
                lines=2,
                elem_classes="message-box"
            )
        
        with gr.Row(elem_classes="button-row"):
            submit = gr.Button("Send Message", variant="primary")
            clear = gr.ClearButton([msg, chatbot], value="Clear Chat")

        # Add example queries in a separate row
        with gr.Row():
            gr.Examples(
                examples=[
                    "How do I reset my password?",
                    "What are your shipping policies?",
                    "I want to return a product.",
                    "How can I track my order?",
                    "What payment methods do you accept?"
                ],
                inputs=msg,
                label="Example Questions"
            )

        # Set up event handlers
        submit_click = submit.click(
            predict,
            inputs=[msg, chatbot],
            outputs=[msg, chatbot]
        )
        
        msg.submit(
            predict,
            inputs=[msg, chatbot],
            outputs=[msg, chatbot]
        )
        
        # Add keyboard shortcut for submit
        msg.change(lambda x: gr.update(interactive=bool(x.strip())), inputs=[msg], outputs=[submit])

    return interface

if __name__ == "__main__":
    demo = create_chat_interface()
    demo.launch(
        share=True,
        server_name="0.0.0.0",  # Makes the server accessible from other machines
        server_port=7860,  # Specify the port
        debug=True
    )