VenkateshRoshan
app and dockerfile for hf added
1d92a29
raw
history blame
6.75 kB
import json
import psutil
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
import os
import tarfile
from typing import List, Tuple
import boto3
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class CustomerSupportBot:
def __init__(self, model_path="models/customer_support_gpt"):
"""
Initialize the customer support bot with the fine-tuned model.
Args:
model_path (str): Path to the saved model and tokenizer
"""
self.process = psutil.Process(os.getpid())
self.model_path = model_path
self.model_file_path = os.path.join(self.model_path, "model.tar.gz")
self.s3 = boto3.client("s3")
self.model_key = "models/model.tar.gz"
self.bucket_name = "customer-support-gpt"
# Download and load the model
self.download_and_load_model()
def download_and_load_model(self):
# Check if the model directory exists
if not os.path.exists(self.model_path):
os.makedirs(self.model_path)
# Download model.tar.gz from S3 if not already downloaded
if not os.path.exists(self.model_file_path):
print("Downloading model from S3...")
self.s3.download_file(self.bucket_name, self.model_key, self.model_file_path)
print("Download complete. Extracting model files...")
# Extract the model files
with tarfile.open(self.model_file_path, "r:gz") as tar:
tar.extractall(self.model_path)
# Load the model and tokenizer from extracted files
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path)
self.model = AutoModelForCausalLM.from_pretrained(self.model_path)
print("Model and tokenizer loaded successfully.")
# Move model to GPU if available
self.device = "cpu" #"cuda" if torch.cuda.is_available() else "cpu"
self.model = self.model.to(self.device)
print(f'Model loaded on device: {self.device}')
def generate_response(self, message: str, max_length=100, temperature=0.7) -> str:
try:
input_text = f"Instruction: {message}\nResponse:"
# Tokenize input text
inputs = self.tokenizer(input_text, return_tensors="pt").to(self.device)
# Generate response using the model
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_length=max_length,
temperature=temperature,
num_return_sequences=1,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id,
do_sample=True,
top_p=0.95,
top_k=50
)
# Decode and format the response
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
response = response.split("Response:")[-1].strip()
return response
except Exception as e:
return f"An error occurred: {str(e)}"
def monitor_resources(self) -> dict:
usage = {
"CPU (%)": self.process.cpu_percent(interval=1),
"RAM (GB)": self.process.memory_info().rss / (1024 ** 3)
}
return usage
def create_chat_interface():
bot = CustomerSupportBot(model_path="/app/models")
def predict(message: str, history: List[Tuple[str, str]]) -> Tuple[str, List[Tuple[str, str]]]:
if not message:
return "", history
bot_response = bot.generate_response(message)
# Log resource usage
usage = bot.monitor_resources()
print("Resource Usage:", usage)
history.append((message, bot_response))
return "", history
# Create the Gradio interface with custom CSS
with gr.Blocks(css="""
.message-box {
margin-bottom: 10px;
}
.button-row {
display: flex;
gap: 10px;
margin-top: 10px;
}
""") as interface:
gr.Markdown("# Customer Support Chatbot")
gr.Markdown("Welcome! How can I assist you today?")
chatbot = gr.Chatbot(
label="Chat History",
height=500,
elem_classes="message-box",
# type="messages"
)
with gr.Row():
msg = gr.Textbox(
label="Your Message",
placeholder="Type your message here...",
lines=2,
elem_classes="message-box"
)
with gr.Row(elem_classes="button-row"):
submit = gr.Button("Send Message", variant="primary")
clear = gr.ClearButton([msg, chatbot], value="Clear Chat")
# Add example queries in a separate row
with gr.Row():
gr.Examples(
examples=[
"How do I reset my password?",
"What are your shipping policies?",
"I want to return a product.",
"How can I track my order?",
"What payment methods do you accept?"
],
inputs=msg,
label="Example Questions"
)
# Set up event handlers
submit_click = submit.click(
predict,
inputs=[msg, chatbot],
outputs=[msg, chatbot]
)
msg.submit(
predict,
inputs=[msg, chatbot],
outputs=[msg, chatbot]
)
# Add keyboard shortcut for submit
msg.change(lambda x: gr.update(interactive=bool(x.strip())), inputs=[msg], outputs=[submit])
print("Interface created successfully.")
# call the initial query function
# run a query first how are you and predict the output
print(predict("How are you", []))
# run a command which checks the resource usage
print(f'Bot Resource Usage : {bot.monitor_resources()}')
# show full system usage
print(f'CPU Percentage : {psutil.cpu_percent()}')
print(f'RAM Usage : {psutil.virtual_memory()}')
print(f'Swap Memory : {psutil.swap_memory()}')
return interface
if __name__ == "__main__":
demo = create_chat_interface()
print("Starting Gradio server...")
demo.launch(
share=False,
server_name="0.0.0.0",
server_port=7860, # Changed to 7860 for Gradio
debug=True,
inline=False
)