Spaces:
Runtime error
Runtime error
import boto3 | |
from pathlib import Path | |
import sagemaker | |
from sagemaker.huggingface import HuggingFaceModel | |
import logging | |
import tarfile | |
import os | |
# Set up logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
def create_model_tar(): | |
model_path = Path("models/customer_support_gpt") | |
tar_path = "model.tar.gz" | |
with tarfile.open(tar_path, "w:gz") as tar: | |
for file_path in model_path.glob("*"): | |
if file_path.is_file(): | |
logger.info(f"Adding {file_path} to tar archive") | |
tar.add(file_path, arcname=file_path.name) | |
return tar_path | |
try: | |
# Initialize s3 client | |
s3 = boto3.client("s3") | |
bucket_name = 'customer-support-gpt' | |
# Create and upload tar.gz | |
tar_path = create_model_tar() | |
s3_key = "models/model.tar.gz" # Changed path | |
logger.info(f"Uploading model.tar.gz to s3://{bucket_name}/{s3_key}") | |
s3.upload_file(tar_path, bucket_name, s3_key) | |
# Initialize SageMaker session | |
sagemaker_session = sagemaker.Session() | |
role = 'arn:aws:iam::841162707028:role/service-role/AmazonSageMaker-ExecutionRole-20241109T160615' | |
# Verify IAM role | |
iam = boto3.client('iam') | |
try: | |
iam.get_role(RoleName=role.split('/')[-1]) | |
logger.info(f"Successfully verified IAM role: {role}") | |
except iam.exceptions.NoSuchEntityException: | |
logger.error(f"IAM role not found: {role}") | |
raise | |
# Point to the tar.gz file | |
model_artifacts = f's3://{bucket_name}/{s3_key}' | |
print(f'Model artifacts: {model_artifacts}') | |
env = { | |
"model_path": "/opt/ml/model", | |
"max_length": "256", | |
"generation_config": '{"max_length":100,"temperature":0.7,"top_p":0.95,"top_k":50,"do_sample":true}' | |
} | |
try: | |
huggingface_model = HuggingFaceModel( | |
model_data=model_artifacts, | |
role=role, | |
transformers_version="4.37.0", # Explicit version | |
pytorch_version="2.1.0", # Matching your version | |
py_version="py310", # Keep py310 | |
env=env, | |
name="customer-support-gpt" | |
) | |
logger.info("Starting model deployment...") | |
predictor = huggingface_model.deploy( | |
initial_instance_count=1, | |
instance_type="ml.m5.xlarge", | |
wait=True | |
) | |
logger.info("Model deployed successfully!") | |
except Exception as e: | |
logger.error(f"Error during model deployment: {str(e)}") | |
raise | |
except Exception as e: | |
logger.error(f"Deployment failed: {str(e)}") | |
raise | |
finally: | |
# Clean up the local tar file | |
if os.path.exists(tar_path): | |
os.remove(tar_path) |