Spaces:
Runtime error
Runtime error
VenkateshRoshan
commited on
Commit
·
49130e6
1
Parent(s):
7115bd6
instance_type updated
Browse files- app.py +3 -42
- src/deploy_sagemaker.py +1 -1
app.py
CHANGED
@@ -85,6 +85,7 @@ class CustomerSupportBot:
|
|
85 |
}
|
86 |
return usage
|
87 |
|
|
|
88 |
def create_chat_interface():
|
89 |
bot = CustomerSupportBot(model_path="/app/models")
|
90 |
|
@@ -163,53 +164,13 @@ def create_chat_interface():
|
|
163 |
# Add keyboard shortcut for submit
|
164 |
msg.change(lambda x: gr.update(interactive=bool(x.strip())), inputs=[msg], outputs=[submit])
|
165 |
|
166 |
-
# Add health check endpoint
|
167 |
-
@interface.route("/ping", methods=["GET"])
|
168 |
-
def ping():
|
169 |
-
try:
|
170 |
-
# Check if model and tokenizer are loaded
|
171 |
-
if not hasattr(bot, 'model') or not hasattr(bot, 'tokenizer'):
|
172 |
-
return {"status": "unhealthy", "reason": "Model or tokenizer not loaded"}, 503
|
173 |
-
|
174 |
-
# Check if CUDA is available and model is on the correct device
|
175 |
-
if torch.cuda.is_available():
|
176 |
-
if not bot.model.device.type == 'cuda':
|
177 |
-
return {"status": "unhealthy", "reason": "Model not on GPU"}, 503
|
178 |
-
|
179 |
-
# Check memory usage
|
180 |
-
usage = bot.monitor_resources()
|
181 |
-
if usage["RAM (GB)"] > 30: # Example threshold
|
182 |
-
return {"status": "unhealthy", "reason": "High memory usage"}, 503
|
183 |
-
|
184 |
-
# Try a quick model inference to ensure it's working
|
185 |
-
try:
|
186 |
-
test_response = bot.generate_response("Test message")
|
187 |
-
if test_response.startswith("An error occurred"):
|
188 |
-
return {"status": "unhealthy", "reason": "Model inference failed"}, 503
|
189 |
-
except Exception as e:
|
190 |
-
return {"status": "unhealthy", "reason": f"Model inference error: {str(e)}"}, 503
|
191 |
-
|
192 |
-
return {
|
193 |
-
"status": "healthy",
|
194 |
-
"model_loaded": True,
|
195 |
-
"device": bot.device,
|
196 |
-
"resources": usage
|
197 |
-
}
|
198 |
-
except Exception as e:
|
199 |
-
return {"status": "unhealthy", "reason": str(e)}, 503
|
200 |
-
|
201 |
-
# Add secondary health endpoint
|
202 |
-
@interface.route("/health", methods=["GET"])
|
203 |
-
def health():
|
204 |
-
return {"status": "healthy"}
|
205 |
-
|
206 |
return interface
|
207 |
|
208 |
if __name__ == "__main__":
|
209 |
demo = create_chat_interface()
|
210 |
demo.launch(
|
211 |
-
share=
|
212 |
server_name="0.0.0.0", # Makes the server accessible from other machines
|
213 |
server_port=7860, # Specify the port
|
214 |
debug=True
|
215 |
-
)
|
|
|
85 |
}
|
86 |
return usage
|
87 |
|
88 |
+
|
89 |
def create_chat_interface():
|
90 |
bot = CustomerSupportBot(model_path="/app/models")
|
91 |
|
|
|
164 |
# Add keyboard shortcut for submit
|
165 |
msg.change(lambda x: gr.update(interactive=bool(x.strip())), inputs=[msg], outputs=[submit])
|
166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
return interface
|
168 |
|
169 |
if __name__ == "__main__":
|
170 |
demo = create_chat_interface()
|
171 |
demo.launch(
|
172 |
+
share=True,
|
173 |
server_name="0.0.0.0", # Makes the server accessible from other machines
|
174 |
server_port=7860, # Specify the port
|
175 |
debug=True
|
176 |
+
)
|
src/deploy_sagemaker.py
CHANGED
@@ -38,7 +38,7 @@ def deploy_app(acc_id, region_name, role_arn, ecr_repo_name, endpoint_name="cust
|
|
38 |
logger.info(f"Starting deployment of Gradio app to SageMaker endpoint {endpoint_name}...")
|
39 |
predictor = model.deploy(
|
40 |
initial_instance_count=1,
|
41 |
-
instance_type="ml.g4dn.
|
42 |
endpoint_name=endpoint_name
|
43 |
)
|
44 |
logger.info(f"Gradio app deployed successfully to endpoint: {endpoint_name}")
|
|
|
38 |
logger.info(f"Starting deployment of Gradio app to SageMaker endpoint {endpoint_name}...")
|
39 |
predictor = model.deploy(
|
40 |
initial_instance_count=1,
|
41 |
+
instance_type="ml.g4dn.xlarge",
|
42 |
endpoint_name=endpoint_name
|
43 |
)
|
44 |
logger.info(f"Gradio app deployed successfully to endpoint: {endpoint_name}")
|