import json import psutil import torch from transformers import AutoTokenizer, AutoModelForCausalLM import gradio as gr import os import tarfile from typing import List, Tuple import boto3 from flask import Flask, Response, jsonify, request import threading import psutil import logging from waitress import serve # Set up logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class HealthCheckServer: def __init__(self, bot=None): self.app = Flask(__name__) self.bot = bot # Health check endpoint @self.app.route("/ping", methods=["GET"]) def ping(): try: # Check system health healthy = self.check_system_health() if healthy: logger.info("Health check passed") return Response(response='\n', status=200, mimetype='application/json') else: logger.error("Health check failed") return Response(response='\n', status=500, mimetype='application/json') except Exception as e: logger.error(f"Health check error: {str(e)}") return Response(response='\n', status=500, mimetype='application/json') # Inference endpoint @self.app.route("/invocations", methods=["POST"]) def invocations(): try: if not request.is_json: return Response(response='This predictor only supports JSON data', status=415, mimetype='text/plain') data = request.get_json() message = data.get('message', '') if not message: return Response(response=json.dumps({"error": "No message provided"}), status=400, mimetype='application/json') response = self.bot.generate_response(message) return Response(response=json.dumps({"response": response}), status=200, mimetype='application/json') except Exception as e: logger.error(f"Inference error: {str(e)}") return Response(response=json.dumps({"error": str(e)}), status=500, mimetype='application/json') def check_system_health(self): """Check if system and model are healthy""" try: # Check if model is loaded if self.bot and not hasattr(self.bot, 'model'): logger.error("Model not loaded") return False # Check memory usage mem = psutil.virtual_memory() if mem.percent > 90: logger.error(f"High memory usage: {mem.percent}%") return False # Check CPU usage if psutil.cpu_percent() > 95: logger.error(f"High CPU usage: {psutil.cpu_percent()}%") return False # Log current resource usage logger.info(f"System health: Memory {mem.percent}%, CPU {psutil.cpu_percent()}%") return True except Exception as e: logger.error(f"Health check error: {str(e)}") return False def run(self): """Run the health check server""" logger.info("Starting health check server on port 8080...") serve(self.app, host='0.0.0.0', port=8080) class CustomerSupportBot: def __init__(self, model_path="models/customer_support_gpt"): """ Initialize the customer support bot with the fine-tuned model. Args: model_path (str): Path to the saved model and tokenizer """ self.process = psutil.Process(os.getpid()) self.model_path = model_path self.model_file_path = os.path.join(self.model_path, "model.tar.gz") self.s3 = boto3.client("s3") self.model_key = "models/model.tar.gz" self.bucket_name = "customer-support-gpt" # Download and load the model self.download_and_load_model() def download_and_load_model(self): # Check if the model directory exists if not os.path.exists(self.model_path): os.makedirs(self.model_path) # Download model.tar.gz from S3 if not already downloaded if not os.path.exists(self.model_file_path): print("Downloading model from S3...") self.s3.download_file(self.bucket_name, self.model_key, self.model_file_path) print("Download complete. Extracting model files...") # Extract the model files with tarfile.open(self.model_file_path, "r:gz") as tar: tar.extractall(self.model_path) # Load the model and tokenizer from extracted files self.tokenizer = AutoTokenizer.from_pretrained(self.model_path) self.model = AutoModelForCausalLM.from_pretrained(self.model_path) print("Model and tokenizer loaded successfully.") # Move model to GPU if available self.device = "cpu" #"cuda" if torch.cuda.is_available() else "cpu" self.model = self.model.to(self.device) print(f'Model loaded on device: {self.device}') def generate_response(self, message: str, max_length=100, temperature=0.7) -> str: try: input_text = f"Instruction: {message}\nResponse:" # Tokenize input text inputs = self.tokenizer(input_text, return_tensors="pt").to(self.device) # Generate response using the model with torch.no_grad(): outputs = self.model.generate( **inputs, max_length=max_length, temperature=temperature, num_return_sequences=1, pad_token_id=self.tokenizer.pad_token_id, eos_token_id=self.tokenizer.eos_token_id, do_sample=True, top_p=0.95, top_k=50 ) # Decode and format the response response = self.tokenizer.decode(outputs[0], skip_special_tokens=True) response = response.split("Response:")[-1].strip() return response except Exception as e: return f"An error occurred: {str(e)}" def monitor_resources(self) -> dict: usage = { "CPU (%)": self.process.cpu_percent(interval=1), "RAM (GB)": self.process.memory_info().rss / (1024 ** 3) } return usage def create_chat_interface(): bot = CustomerSupportBot(model_path="/app/models") # Start health check server health_server = HealthCheckServer(bot) health_thread = threading.Thread(target=health_server.run, daemon=True) health_thread.start() # Function to run initial query def initial_query(): welcome_message = "Hello! I'm your customer support assistant. How can I help you today?" return "", [(None, welcome_message)] def predict(message: str, history: List[Tuple[str, str]]) -> Tuple[str, List[Tuple[str, str]]]: if not message: return "", history bot_response = bot.generate_response(message) # Log resource usage usage = bot.monitor_resources() print("Resource Usage:", usage) history.append((message, bot_response)) return "", history # Create the Gradio interface with custom CSS with gr.Blocks(css=""" .message-box { margin-bottom: 10px; } .button-row { display: flex; gap: 10px; margin-top: 10px; } """) as interface: gr.Markdown("# Customer Support Chatbot") gr.Markdown("Welcome! How can I assist you today?") chatbot = gr.Chatbot( label="Chat History", height=500, elem_classes="message-box", # type="messages" ) with gr.Row(): msg = gr.Textbox( label="Your Message", placeholder="Type your message here...", lines=2, elem_classes="message-box" ) with gr.Row(elem_classes="button-row"): submit = gr.Button("Send Message", variant="primary") clear = gr.ClearButton([msg, chatbot], value="Clear Chat") # Add example queries in a separate row with gr.Row(): gr.Examples( examples=[ "How do I reset my password?", "What are your shipping policies?", "I want to return a product.", "How can I track my order?", "What payment methods do you accept?" ], inputs=msg, label="Example Questions" ) # Set up event handlers submit_click = submit.click( predict, inputs=[msg, chatbot], outputs=[msg, chatbot] ) msg.submit( predict, inputs=[msg, chatbot], outputs=[msg, chatbot] ) # Add keyboard shortcut for submit msg.change(lambda x: gr.update(interactive=bool(x.strip())), inputs=[msg], outputs=[submit]) print("Interface created successfully.") # call the initial query function # run a query first how are you and predict the output print(predict("How are you", [])) # run a command which checks the resource usage print(f'Bot Resource Usage : {bot.monitor_resources()}') # show full system usage print(f'CPU Percentage : {psutil.cpu_percent()}') print(f'RAM Usage : {psutil.virtual_memory()}') print(f'Swap Memory : {psutil.swap_memory()}') return interface if __name__ == "__main__": demo = create_chat_interface() print("Starting Gradio server...") demo.launch( share=True, server_name="0.0.0.0", server_port=7860, # Changed to 7860 for Gradio debug=True, inline=False )