Spaces:
Sleeping
Sleeping
File size: 1,329 Bytes
8eeb5a3 bf9aafc 8eeb5a3 bf9aafc 9c621dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
from flask import Flask, request, jsonify, render_template
from PIL import Image
import io
from infer import ImageCaptioningInference
from models.model import ImageCaptioningModel
app = Flask(__name__)
model_dir = 'model'
# Initialize inference class
model = ImageCaptioningModel()
model.load(model_dir)
inference_model = ImageCaptioningInference(model)
# # Path to the input image
# image_path = 'test_img.jpg'
# # Perform inference and print the generated caption
# caption = inference_model.infer_image(image_path)
# print("Generated Caption:", caption)
@app.route('/')
def home():
# return "Welcome to the Flask API"
return render_template('index.html')
@app.route('/upload-image', methods=['POST'])
def upload_image():
if 'image' not in request.files:
return jsonify({'error': 'No image found in request'})
image = request.files['image']
# print(image)
# try :
image = Image.open(io.BytesIO(image.read()))
# image.show()
generated_caption = inference_model.infer_image(image)
return jsonify({'generated_caption': generated_caption})
# except Exception as e:
# return jsonify({'error': f'{e}'}), 500
# if __name__ == '__main__':
# app.run(debug=True)
if __name__ == "__main__":
app.run(host='0.0.0.0', port=5000, debug=True)
|