VenkateshRoshan
Files updated
5a809d1
import torch
from transformers import ViTModel, ViTFeatureExtractor, GPT2LMHeadModel, GPT2Tokenizer
from config.config import Config
from torchvision import transforms
class ImageCaptioningModel:
def __init__(self):
"""Initialize the ViT and GPT-2 models for image captioning."""
self.device = Config.DEVICE
self.vit_model = ViTModel.from_pretrained(Config.VIT_MODEL).to(self.device)
self.feature_extractor = ViTFeatureExtractor.from_pretrained(Config.VIT_MODEL)
self.gpt2_model = GPT2LMHeadModel.from_pretrained(Config.GPT2_MODEL).to(self.device)
self.tokenizer = GPT2Tokenizer.from_pretrained(Config.GPT2_MODEL)
self.tokenizer.pad_token = self.tokenizer.eos_token
def extract_image_features(self, images):
"""Extract features from images using ViT."""
pixel_values = self.feature_extractor(images=images, return_tensors="pt", do_rescale=False).pixel_values.to(self.device)
with torch.no_grad():
outputs = self.vit_model(pixel_values)
return outputs.last_hidden_state[:, 0, :] # [batch_size, hidden_size]
def prepare_gpt2_inputs(self, image_features, captions):
"""Prepare GPT-2 inputs."""
# Tokenize the captions
tokenized_captions = self.tokenizer(captions, padding="longest", truncation=True,
max_length=Config.MAX_SEQ_LEN, return_tensors="pt").to(self.device)
# Get the word embeddings for the tokens
token_embeddings = self.gpt2_model.transformer.wte(tokenized_captions['input_ids'])
# Concatenate image features with token embeddings
image_features = image_features.unsqueeze(1) # Reshape to [batch_size, 1, hidden_size]
inputs_embeds = torch.cat((image_features, token_embeddings), dim=1) # Concatenate along the sequence dimension
# Adjust input_ids to account for the image feature token
batch_size = image_features.shape[0]
image_token_id = torch.full((batch_size, 1), fill_value=self.tokenizer.bos_token_id, device=self.device)
input_ids = torch.cat((image_token_id, tokenized_captions['input_ids']), dim=1)
# Adjust attention_mask to account for the image feature token
image_attention = torch.ones((batch_size, 1), device=self.device)
attention_mask = torch.cat((image_attention, tokenized_captions['attention_mask']), dim=1)
return inputs_embeds, input_ids, attention_mask
def save(self, path):
"""Save model to disk."""
self.gpt2_model.save_pretrained(path)
def load(self, path):
"""Load model from disk."""
self.gpt2_model = GPT2LMHeadModel.from_pretrained(path).to(self.device)
# return self.gpt2_model