Spaces:
Sleeping
Sleeping
import torch | |
from transformers import ViTModel, ViTFeatureExtractor, GPT2LMHeadModel, GPT2Tokenizer | |
from config.config import Config | |
from torchvision import transforms | |
class ImageCaptioningModel: | |
def __init__(self): | |
"""Initialize the ViT and GPT-2 models for image captioning.""" | |
self.device = Config.DEVICE | |
self.vit_model = ViTModel.from_pretrained(Config.VIT_MODEL).to(self.device) | |
self.feature_extractor = ViTFeatureExtractor.from_pretrained(Config.VIT_MODEL) | |
self.gpt2_model = GPT2LMHeadModel.from_pretrained(Config.GPT2_MODEL).to(self.device) | |
self.tokenizer = GPT2Tokenizer.from_pretrained(Config.GPT2_MODEL) | |
self.tokenizer.pad_token = self.tokenizer.eos_token | |
def extract_image_features(self, images): | |
"""Extract features from images using ViT.""" | |
pixel_values = self.feature_extractor(images=images, return_tensors="pt", do_rescale=False).pixel_values.to(self.device) | |
with torch.no_grad(): | |
outputs = self.vit_model(pixel_values) | |
return outputs.last_hidden_state[:, 0, :] # [batch_size, hidden_size] | |
def prepare_gpt2_inputs(self, image_features, captions): | |
"""Prepare GPT-2 inputs.""" | |
# Tokenize the captions | |
tokenized_captions = self.tokenizer(captions, padding="longest", truncation=True, | |
max_length=Config.MAX_SEQ_LEN, return_tensors="pt").to(self.device) | |
# Get the word embeddings for the tokens | |
token_embeddings = self.gpt2_model.transformer.wte(tokenized_captions['input_ids']) | |
# Concatenate image features with token embeddings | |
image_features = image_features.unsqueeze(1) # Reshape to [batch_size, 1, hidden_size] | |
inputs_embeds = torch.cat((image_features, token_embeddings), dim=1) # Concatenate along the sequence dimension | |
# Adjust input_ids to account for the image feature token | |
batch_size = image_features.shape[0] | |
image_token_id = torch.full((batch_size, 1), fill_value=self.tokenizer.bos_token_id, device=self.device) | |
input_ids = torch.cat((image_token_id, tokenized_captions['input_ids']), dim=1) | |
# Adjust attention_mask to account for the image feature token | |
image_attention = torch.ones((batch_size, 1), device=self.device) | |
attention_mask = torch.cat((image_attention, tokenized_captions['attention_mask']), dim=1) | |
return inputs_embeds, input_ids, attention_mask | |
def save(self, path): | |
"""Save model to disk.""" | |
self.gpt2_model.save_pretrained(path) | |
def load(self, path): | |
"""Load model from disk.""" | |
self.gpt2_model = GPT2LMHeadModel.from_pretrained(path).to(self.device) | |
# return self.gpt2_model | |