import torch from transformers import ViTModel, ViTFeatureExtractor, GPT2LMHeadModel, GPT2Tokenizer from config.config import Config from torchvision import transforms class ImageCaptioningModel: def __init__(self): """Initialize the ViT and GPT-2 models for image captioning.""" self.device = Config.DEVICE self.vit_model = ViTModel.from_pretrained(Config.VIT_MODEL).to(self.device) self.feature_extractor = ViTFeatureExtractor.from_pretrained(Config.VIT_MODEL) self.gpt2_model = GPT2LMHeadModel.from_pretrained(Config.GPT2_MODEL).to(self.device) self.tokenizer = GPT2Tokenizer.from_pretrained(Config.GPT2_MODEL) self.tokenizer.pad_token = self.tokenizer.eos_token def extract_image_features(self, images): """Extract features from images using ViT.""" pixel_values = self.feature_extractor(images=images, return_tensors="pt", do_rescale=False).pixel_values.to(self.device) with torch.no_grad(): outputs = self.vit_model(pixel_values) return outputs.last_hidden_state[:, 0, :] # [batch_size, hidden_size] def prepare_gpt2_inputs(self, image_features, captions): """Prepare GPT-2 inputs.""" # Tokenize the captions tokenized_captions = self.tokenizer(captions, padding="longest", truncation=True, max_length=Config.MAX_SEQ_LEN, return_tensors="pt").to(self.device) # Get the word embeddings for the tokens token_embeddings = self.gpt2_model.transformer.wte(tokenized_captions['input_ids']) # Concatenate image features with token embeddings image_features = image_features.unsqueeze(1) # Reshape to [batch_size, 1, hidden_size] inputs_embeds = torch.cat((image_features, token_embeddings), dim=1) # Concatenate along the sequence dimension # Adjust input_ids to account for the image feature token batch_size = image_features.shape[0] image_token_id = torch.full((batch_size, 1), fill_value=self.tokenizer.bos_token_id, device=self.device) input_ids = torch.cat((image_token_id, tokenized_captions['input_ids']), dim=1) # Adjust attention_mask to account for the image feature token image_attention = torch.ones((batch_size, 1), device=self.device) attention_mask = torch.cat((image_attention, tokenized_captions['attention_mask']), dim=1) return inputs_embeds, input_ids, attention_mask def save(self, path): """Save model to disk.""" self.gpt2_model.save_pretrained(path) def load(self, path): """Load model from disk.""" self.gpt2_model = GPT2LMHeadModel.from_pretrained(path).to(self.device) # return self.gpt2_model