A B Vijay Kumar
Update app.py
e59beab
raw
history blame
1.19 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "Salesforce/codegen-350M-mono"
base_model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=bnb_config, use_cache = False, device_map=device_map)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
def query(instruction, input):
prompt = f"""### Instruction:
Use the Task below and the Input given to write the Response, which is a programming code that can solve the Task.
### Task:
{instruction}
### Input:
{input}
### Response:
"""
input_ids = tokenizer(prompt, return_tensors="pt", truncation=True).input_ids.cuda()
output_base = base_model.generate(input_ids=input_ids, max_new_tokens=500, do_sample=True, top_p=0.9,temperature=0.5)
response = "{tokenizer.batch_decode(output_base.detach().cpu().numpy(), skip_special_tokens=True)[0][len(prompt):]}"
return response
inputs = ["text", "text"]
outputs = "text"
iface = gr.Interface(fn=query, inputs=inputs, outputs=outputs)
iface.launch()