File size: 14,048 Bytes
99a05f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
from utils.loss import sem_loss_function, class_loss_function, pixel_anchoring_function
import torch
import os
import time


class TrainStepper():
    def __init__(self, deco_model, context, learning_rate, loss_weight, pal_loss_weight, device):
        self.device = device

        self.model = deco_model
        self.context = context

        if self.context:
            self.optimizer_sem = torch.optim.Adam(params=list(self.model.encoder_sem.parameters()) + list(self.model.decoder_sem.parameters()),
                                                lr=learning_rate, weight_decay=0.0001)
            self.optimizer_part = torch.optim.Adam(
                params=list(self.model.encoder_part.parameters()) + list(self.model.decoder_part.parameters()), lr=learning_rate,
                weight_decay=0.0001)
        self.optimizer_contact = torch.optim.Adam(
            params=list(self.model.encoder_sem.parameters()) + list(self.model.encoder_part.parameters()) + list(
                self.model.cross_att.parameters()) + list(self.model.classif.parameters()), lr=learning_rate, weight_decay=0.0001)

        if self.context: self.sem_loss = sem_loss_function().to(device)
        self.class_loss = class_loss_function().to(device)
        self.pixel_anchoring_loss_smplx = pixel_anchoring_function(model_type='smplx').to(device)
        self.pixel_anchoring_loss_smpl = pixel_anchoring_function(model_type='smpl').to(device)
        self.lr = learning_rate
        self.loss_weight = loss_weight
        self.pal_loss_weight = pal_loss_weight

    def optimize(self, batch):
        self.model.train()

        img_paths = batch['img_path']
        img = batch['img'].to(self.device)

        img_scale_factor = batch['img_scale_factor'].to(self.device)

        pose = batch['pose'].to(self.device)
        betas = batch['betas'].to(self.device)
        transl = batch['transl'].to(self.device)
        has_smpl = batch['has_smpl'].to(self.device)
        is_smplx = batch['is_smplx'].to(self.device)

        cam_k = batch['cam_k'].to(self.device)

        gt_contact_labels_3d = batch['contact_label_3d'].to(self.device)
        has_contact_3d = batch['has_contact_3d'].to(self.device)

        if self.context:
            sem_mask_gt = batch['sem_mask'].to(self.device)
            part_mask_gt = batch['part_mask'].to(self.device)

        polygon_contact_2d = batch['polygon_contact_2d'].to(self.device)
        has_polygon_contact_2d = batch['has_polygon_contact_2d'].to(self.device)

        # Forward pass
        if self.context:
            cont, sem_mask_pred, part_mask_pred = self.model(img)
        else:
            cont = self.model(img)    

        if self.context:
            loss_sem = self.sem_loss(sem_mask_gt, sem_mask_pred)
            loss_part = self.sem_loss(part_mask_gt, part_mask_pred)
        valid_contact_3d = has_contact_3d
        loss_cont = self.class_loss(gt_contact_labels_3d, cont, valid_contact_3d)
        valid_polygon_contact_2d = has_polygon_contact_2d

        if self.pal_loss_weight > 0 and (is_smplx == 0).sum() > 0:
            smpl_body_params = {'pose': pose[is_smplx == 0], 'betas': betas[is_smplx == 0],
                                'transl': transl[is_smplx == 0],
                                'has_smpl': has_smpl[is_smplx == 0]}
            loss_pix_anchoring_smpl, contact_2d_pred_rgb_smpl, _ = self.pixel_anchoring_loss_smpl(cont[is_smplx == 0],
                                                                                                  smpl_body_params,
                                                                                                  cam_k[is_smplx == 0],
                                                                                                  img_scale_factor[
                                                                                                      is_smplx == 0],
                                                                                                  polygon_contact_2d[
                                                                                                      is_smplx == 0],
                                                                                                  valid_polygon_contact_2d[
                                                                                                      is_smplx == 0])
            # weigh the smpl loss based on the number of smpl sample
            loss_pix_anchoring = loss_pix_anchoring_smpl * (is_smplx == 0).sum() / len(is_smplx)
            contact_2d_pred_rgb = contact_2d_pred_rgb_smpl
        else:
            loss_pix_anchoring = 0
            contact_2d_pred_rgb = torch.zeros_like(polygon_contact_2d)

        if self.context: loss = loss_sem + loss_part + self.loss_weight * loss_cont + self.pal_loss_weight * loss_pix_anchoring
        else: loss = self.loss_weight * loss_cont + self.pal_loss_weight * loss_pix_anchoring

        if self.context:
            self.optimizer_sem.zero_grad()
            self.optimizer_part.zero_grad()
        self.optimizer_contact.zero_grad()

        loss.backward()

        if self.context:
            self.optimizer_sem.step()
            self.optimizer_part.step()
        self.optimizer_contact.step()

        if self.context:
            losses = {'sem_loss': loss_sem,
                    'part_loss': loss_part,
                    'cont_loss': loss_cont,
                    'pal_loss': loss_pix_anchoring,
                    'total_loss': loss}
        else:
            losses = {'cont_loss': loss_cont,
                    'pal_loss': loss_pix_anchoring,
                    'total_loss': loss}         

        if self.context:
            output = {
                'img': img,
                'sem_mask_gt': sem_mask_gt,
                'sem_mask_pred': sem_mask_pred,
                'part_mask_gt': part_mask_gt,
                'part_mask_pred': part_mask_pred,
                'has_contact_2d': has_polygon_contact_2d,
                'contact_2d_gt': polygon_contact_2d,
                'contact_2d_pred_rgb': contact_2d_pred_rgb,
                'has_contact_3d': has_contact_3d,
                'contact_labels_3d_gt': gt_contact_labels_3d,
                'contact_labels_3d_pred': cont}
        else:
            output = {
                'img': img,
                'has_contact_2d': has_polygon_contact_2d,
                'contact_2d_gt': polygon_contact_2d,
                'contact_2d_pred_rgb': contact_2d_pred_rgb,
                'has_contact_3d': has_contact_3d,
                'contact_labels_3d_gt': gt_contact_labels_3d,
                'contact_labels_3d_pred': cont}   

        return losses, output

    @torch.no_grad()
    def evaluate(self, batch):
        self.model.eval()

        img_paths = batch['img_path']
        img = batch['img'].to(self.device)

        img_scale_factor = batch['img_scale_factor'].to(self.device)

        pose = batch['pose'].to(self.device)
        betas = batch['betas'].to(self.device)
        transl = batch['transl'].to(self.device)
        has_smpl = batch['has_smpl'].to(self.device)
        is_smplx = batch['is_smplx'].to(self.device)

        cam_k = batch['cam_k'].to(self.device)

        gt_contact_labels_3d = batch['contact_label_3d'].to(self.device)
        has_contact_3d = batch['has_contact_3d'].to(self.device)

        if self.context:
            sem_mask_gt = batch['sem_mask'].to(self.device)
            part_mask_gt = batch['part_mask'].to(self.device)

        polygon_contact_2d = batch['polygon_contact_2d'].to(self.device)
        has_polygon_contact_2d = batch['has_polygon_contact_2d'].to(self.device)

        # Forward pass
        initial_time = time.time()
        if self.context: cont, sem_mask_pred, part_mask_pred = self.model(img)
        else: cont = self.model(img)
        time_taken = time.time() - initial_time

        if self.context:
            loss_sem = self.sem_loss(sem_mask_gt, sem_mask_pred)
            loss_part = self.sem_loss(part_mask_gt, part_mask_pred)
        valid_contact_3d = has_contact_3d
        loss_cont = self.class_loss(gt_contact_labels_3d, cont, valid_contact_3d)
        valid_polygon_contact_2d = has_polygon_contact_2d

        if self.pal_loss_weight > 0 and (is_smplx == 0).sum() > 0: # PAL loss only on 2D contacts in HOT which only has SMPL
            smpl_body_params = {'pose': pose[is_smplx == 0], 'betas': betas[is_smplx == 0], 'transl': transl[is_smplx == 0],
                                'has_smpl': has_smpl[is_smplx == 0]}
            loss_pix_anchoring_smpl, contact_2d_pred_rgb_smpl, _ = self.pixel_anchoring_loss_smpl(cont[is_smplx == 0],
                                                                                                 smpl_body_params,
                                                                                                 cam_k[is_smplx == 0],
                                                                                                 img_scale_factor[
                                                                                                     is_smplx == 0],
                                                                                                 polygon_contact_2d[
                                                                                                     is_smplx == 0],
                                                                                                 valid_polygon_contact_2d[
                                                                                                     is_smplx == 0])
            # weight the smpl loss based on the number of smpl samples
            contact_2d_pred_rgb = contact_2d_pred_rgb_smpl
            loss_pix_anchoring = loss_pix_anchoring_smpl * (is_smplx == 0).sum() / len(is_smplx)
        else:
            loss_pix_anchoring = 0
            contact_2d_pred_rgb = torch.zeros_like(polygon_contact_2d)

        if self.context: loss = loss_sem + loss_part + self.loss_weight * loss_cont + self.pal_loss_weight * loss_pix_anchoring
        else: loss = self.loss_weight * loss_cont + self.pal_loss_weight * loss_pix_anchoring

        if self.context:
            losses = {'sem_loss': loss_sem,
                    'part_loss': loss_part,
                    'cont_loss': loss_cont,
                    'pal_loss': loss_pix_anchoring,
                    'total_loss': loss}
        else:
            losses = {'cont_loss': loss_cont,
                  'pal_loss': loss_pix_anchoring,
                  'total_loss': loss}            

        if self.context:
            output = {
                'img': img,
                'sem_mask_gt': sem_mask_gt,
                'sem_mask_pred': sem_mask_pred,
                'part_mask_gt': part_mask_gt,
                'part_mask_pred': part_mask_pred,
                'has_contact_2d': has_polygon_contact_2d,
                'contact_2d_gt': polygon_contact_2d,
                'contact_2d_pred_rgb': contact_2d_pred_rgb,
                'has_contact_3d': has_contact_3d,
                'contact_labels_3d_gt': gt_contact_labels_3d,
                'contact_labels_3d_pred': cont}
        else:
            output = {
                'img': img,
                'has_contact_2d': has_polygon_contact_2d,
                'contact_2d_gt': polygon_contact_2d,
                'contact_2d_pred_rgb': contact_2d_pred_rgb,
                'has_contact_3d': has_contact_3d,
                'contact_labels_3d_gt': gt_contact_labels_3d,
                'contact_labels_3d_pred': cont}        

        return losses, output, time_taken

    def save(self, ep, f1, model_path):
        # create model directory if it does not exist
        os.makedirs(os.path.dirname(model_path), exist_ok=True)
        if self.context:
            torch.save({
                'epoch': ep,
                'deco': self.model.state_dict(),
                'f1': f1,
                'sem_optim': self.optimizer_sem.state_dict(),
                'part_optim': self.optimizer_part.state_dict(),
                'contact_optim': self.optimizer_contact.state_dict()
            },
                model_path)
        else:
            torch.save({
                'epoch': ep,
                'deco': self.model.state_dict(),
                'f1': f1,
                'sem_optim': self.optimizer_sem.state_dict(),
                'part_optim': self.optimizer_part.state_dict(),
                'contact_optim': self.optimizer_contact.state_dict()
            },
                model_path)    

    def load(self, model_path):
        print(f'~~~ Loading existing checkpoint from {model_path} ~~~')
        checkpoint = torch.load(model_path)
        self.model.load_state_dict(checkpoint['deco'], strict=True)

        if self.context:
            self.optimizer_sem.load_state_dict(checkpoint['sem_optim'])
            self.optimizer_part.load_state_dict(checkpoint['part_optim'])
        self.optimizer_contact.load_state_dict(checkpoint['contact_optim'])
        epoch = checkpoint['epoch']
        f1 = checkpoint['f1']
        return epoch, f1

    def update_lr(self, factor=2):
        if factor:
            new_lr = self.lr / factor

        if self.context:
            self.optimizer_sem = torch.optim.Adam(params=list(self.model.encoder_sem.parameters()) + list(self.model.decoder_sem.parameters()),
                                                lr=new_lr, weight_decay=0.0001)
            self.optimizer_part = torch.optim.Adam(
                params=list(self.model.encoder_part.parameters()) + list(self.model.decoder_part.parameters()), lr=new_lr, weight_decay=0.0001)
        self.optimizer_contact = torch.optim.Adam(
            params=list(self.model.encoder_sem.parameters()) + list(self.model.encoder_part.parameters()) + list(
                self.model.cross_att.parameters()) + list(self.model.classif.parameters()), lr=new_lr, weight_decay=0.0001)

        print('update learning rate: %f -> %f' % (self.lr, new_lr))
        self.lr = new_lr