Spaces:
Sleeping
Sleeping
File size: 5,310 Bytes
99a05f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
# make a nestest plotly pie chart given a list of labels and a list of values
import os.path as osp
import json
import plotly.express as px
import plotly.io as pio
version = '1'
dir = '/is/cluster/work/stripathi/pycharm_remote/dca_contact/hot_analysis/'
out_dir_hico = osp.join(dir, f'filtered_data/v_{version}/hico')
out_dir_vcoco = osp.join(dir, f'filtered_data/v_{version}/vcoco')
objectwise_img_dict_hico = osp.join(out_dir_hico, 'imgnames_per_object_dict.json')
objectwise_img_dict_vcoco = osp.join(out_dir_vcoco, 'imgnames_per_object_dict.json')
with open(objectwise_img_dict_hico, 'r') as fp:
objectwise_img_dict_hico = json.load(fp)
# replace underscore with space
objectwise_img_dict_hico = {k.replace('_', ' '): v for k, v in objectwise_img_dict_hico.items()}
# replace values with lenght of values
objectwise_img_dict_hico = {k: len(v) for k, v in objectwise_img_dict_hico.items()}
with open(objectwise_img_dict_vcoco, 'r') as fp:
objectwise_img_dict_vcoco = json.load(fp)
# replace underscore with space
objectwise_img_dict_vcoco = {k.replace('_', ' '): v for k, v in objectwise_img_dict_vcoco.items()}
# replace values with lenght of values
objectwise_img_dict_vcoco = {k: len(v) for k, v in objectwise_img_dict_vcoco.items()}
# combine the dicts
objectwise_img_dict = objectwise_img_dict_hico.copy()
objectwise_img_dict.update(objectwise_img_dict_vcoco)
categorization = {"transportation": ['motorcycle','bicycle','boat','car','truck','bus','train','airplane',],
"accessories": ['backpack', 'tie', 'handbag', 'baseball glove'],
"furniture": ['bench','chair','couch','bed','toilet','dining table'],
'everyday objects': ['book','umbrella','cell phone','laptop','kite','suitcase','bottle','remote',
'toothbrush','teddy bear','scissors','keyboard','hair drier','traffic light',
'fire hydrant','stop sign','tv','vase','parking meter','clock','potted plant','mouse',],
'sports equipment': ['frisbee','sports ball','tennis racket','baseball bat','skateboard','snowboard','skis','surfboard',],
'food items': ['banana','cake','apple','carrot','pizza','donut','hot dog','sandwich','broccoli','orange'],
'kitchen appliances': ['knife', 'spoon', 'cup', 'wine glass', 'oven', 'fork', 'bowl', 'refrigerator', 'toaster', 'sink', 'microwave',]}
# get total lengths of each category
objectwise_img_dict_categorized = {}
for k, v in categorization.items():
objectwise_img_dict_categorized[k] = sum([objectwise_img_dict[obj] for obj in v])
# reverse categorization
categorization_rev = {}
for k, v in categorization.items():
for obj in v:
categorization_rev[obj] = k
data = dict(
character=list(categorization.keys()) + list(categorization_rev.keys()),
parent= ["objects"] * len(categorization.keys()) + list(categorization_rev.values()),
value =[0] * len(categorization.keys()) + list(objectwise_img_dict.values()),
)
# save data as pandas
import pandas as pd
df = pd.DataFrame(data)
df.to_csv(osp.join(dir, 'object_nest_piechart_data.csv'))
fig = px.sunburst(
data,
names='character',
parents='parent',
values='value',
)
# chage font size of the innermost level
fig.update_traces(textfont_size=30)
# save the figure
out_path = osp.join(dir, "object_nest_piechart.html")
fig.write_html(out_path)
# Save plot as PNG wihtout transparent background
out_path = osp.join(dir, "object_nest_piechart.png")
fig.write_image(out_path,
format='png',
width=2000, height=1000, scale=1, engine='kaleido')
# Set layout
fig.update_layout(
margin=dict(t=0, l=0, r=0, b=0),
plot_bgcolor='rgba(0, 0, 0, 0)',
paper_bgcolor='rgba(0, 0, 0, 0)'
)
# Save plot as HTML with transparent background
out_path = osp.join(dir, "object_nest_piechart_transparent.html")
pio.write_html(fig, file=out_path, auto_open=False, include_plotlyjs='cdn', config=dict(displayModeBar=False))
# Save plot as PNG with transparent background
out_path = osp.join(dir, "object_nest_piechart_transparent.png")
pio.write_image(fig, file=out_path,
format='png',
width=2000, height=1000, scale=1, engine='kaleido')
import matplotlib.pyplot as plt
import seaborn as sns
# make a bar plot of objectwise_img_dict
# sort the dict
objectwise_img_dict = {k: v for k, v in sorted(objectwise_img_dict.items(), key=lambda item: item[1], reverse=True)}
# save as pandas
import pandas as pd
df = pd.DataFrame.from_dict(objectwise_img_dict, orient='index', columns=['count'])
df.to_csv(osp.join(dir, 'image_per_object_category.csv'))
plt.figure(figsize=(20, 10))
sns.barplot(x=list(objectwise_img_dict.keys()), y=list(objectwise_img_dict.values()))
# make horizontal grid lines
plt.grid(axis='y', alpha=0.5)
# Add x-axis and y-axis labels
plt.xticks(rotation=45, ha='right', fontsize=15)
plt.yticks(fontsize=15)
plt.show()
# avoid clipping of x-axis labels
plt.tight_layout()
# save the figure
out_path = osp.join(dir, "image_per_object_category.png")
plt.savefig(out_path, transparent=False)
out_path = osp.join(dir, "image_per_object_category_transparent.png")
plt.savefig(out_path, transparent=True)
|